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ON DECOMPOSITION OF FUZZY A-CONTINUITY

S.JAFARI 1, K.VISWANATHAN 2∗, M.RAJAMANI 2 AND S.KRISHNAPRAKASH 2

Abstract. In this paper, we introduce and study the notion of fuzzy C−sets
and fuzzy C−continuity. We also prove a mapping f : X → Y is fuzzy
A−continuous if and only if it is both fuzzy semi-continuous and fuzzy C−continuous.

1. Introduction

In the classical paper [10] of 1965, Zadeh generalized the usual notion of a set
by introducing the important and useful notion of fuzzy sets. Since then, this
notion has had tremendous effect on both pure and applied mathematics in dif-
ferent respects. Recently El-Naschie has shown in [4] and [5] that the notion of
fuzzy topology may be relevant to quantum particle physics in connection with
string theory and ε∞ theory. In 1986, Tong [9] introduced the notion of A−sets
and A−continuous mappings in topological spaces and proved that a mapping is
continuous if and only if it is both α−continuous and A−continuous. In 1990,
Ganster [7] established a decomposition of A−continuity: A mapping f : X → Y
is A−continuous if and only if it is both semi-continuous and LC-continuous.
Erguang and Pengfei [6] introduced the notion of C−sets and C−continuity and
obtained another decomposition of A−continuity: A mapping f : X → Y is
A−continuous if and only if it is both semi-continuous and C−continuous. Re-
cently, Rajamani and Ambika [8] introduced the notion of fuzzy A−sets and fuzzy
A−continuity and obtained a decomposition of fuzzy continuity.
In this paper, we transform the notions of C−set and C−continuity to fuzzy
topological settings and obtain a decomposition of fuzzy A−continuity.
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2. PRELIMINARIES

Throughout this paper, X and Y denote fuzzy topological spaces (X, τ) and
(Y, σ) respectively on which no separation axioms are assumed. Let λ be a fuzzy
set in a fuzzy topological spaces X. The fuzzy interior of λ , fuzzy closure of λ
and fuzzy preclosure of λ are denoted by int(λ), cl(λ) and pcl(λ) respectively.

Now, we recall some definitions and results which are used in this paper.

DEFINITION 2.1: A fuzzy set λ in a fuzzy topological space X is called

(1) fuzzy semi-open [1] if λ ≤ cl(int(λ));
(2) fuzzy pre-open [2] if λ ≤ int(cl(λ));
(3) fuzzy regular-open [1] if λ = int(cl(λ)).

The complements of the above mentioned fuzzy open sets are called their re-
spective fuzzy closed sets.

DEFINITION 2.2: A fuzzy set λ in a fuzzy topological space X is called a
fuzzy A−set [6] if λ = α∧β , where α is a fuzzy open set and β is a fuzzy regular
closed set.

DEFINITION 2.3: A map f : X → Y is said to be

(1) fuzzy continuous [3] if f−1(µ) is fuzzy open in X, for every fuzzy open set
µ in Y ;

(2) fuzzy semi-continuous [1] if f−1(µ) is fuzzy semi-open in X, for every fuzzy
open set µ in Y ;

(3) fuzzy pre-continuous [2] if f−1(µ) is fuzzy pre-open in X, for every fuzzy
open set µ in Y ;

The collection of all fuzzy C−sets and fuzzy semi-open sets in X will be de-
noted by FC(X,τ) and FSO(X,τ) respectively.

3. FUZZY C−SETS

DEFINITION 3.1: A fuzzy set λ in a fuzzy topological space X is called a
fuzzy C−set if λ = α ∧ β, where α is fuzzy open and β is fuzzy pre-closed in X.

PROPOSITION 3.2: Every fuzzy A−set is a fuzzy C−set.

REMARK 3.3: The converse of the Proposition 3.2. need not be true as seen
from the following example.

EXAMPLE 3.4: Let X = {a, b, c}, Define α1, α2, α3 : X → [0, 1] by
α1(a) = 0.3 α2(a) = 0.4 α3 (a) = 0.7
α1(b) = 0.4 α2(b) = 0.5 α3 (b)= 0.6
α1(c) = 0.4 α2(c) = 0.5 α3 (c) = 0.6
Let τ = {0, 1, α1, α2}. Then (X, τ) is a fuzzy topological space. Now, α3 is a
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fuzzy C−set but not a fuzzy A−set.

REMARK 3.5: The concepts of fuzzy C−sets and fuzzy semi-open sets are
independent as shown by the following examples.

EXAMPLE 3.6: Let X = {a, b, c}, Define α1, α2, α3 : X → [0, 1] by
α1(a) = 0.2 α2(a) = 0.3 α3 (a) = 0.3
α1(b) = 0.3 α2(b) = 0.3 α3 (b)= 0.3
α1(c) = 0.3 α2(c) = 0.4 α3 (c)= 0.3
Let τ = {0, 1, α1, α2}. Then (X, τ) is a fuzzy topological space. Now, α3 is a
fuzzy semi-open set but not a fuzzy C−set.

EXAMPLE 3.7: Let X = {a, b, c}, Define α1, α2, α3 : X → [0, 1] by
α1(a) = 0.4 α2(a) = 0.6 α3 (a) = 0.5
α1(b) = 0.5 α2(b) = 0.7 α3 (b)= 0.6
α1(c) = 0.6 α2(c) = 0.8 α3 (c)= 0.7
Let τ = {0, 1, α1, α2}. Then (X, τ) is a fuzzy topological space. Now, α3 is a
fuzzy C−set but not a fuzzy semi-open set.

LEMMA 3.8: Let α be a fuzzy set in a fuzzy topological space X. Then
α ∈ FC(X, τ) if and only if α = λ ∧ pcl(α) for some fuzzy open set λ.

Proof: Let α ∈ FC(X, τ). Then α = λ∧ µ where λ is fuzzy open and µ is fuzzy
pre-closed. Now, α ≤ λ and α ≤ µ, we have pcl(α) ≤ pcl(µ) = µ , since µ is fuzzy
pre-closed in X. Thus pcl(α) ≤ µ . Therefore λ∧pcl(α) ≤ (λ∧µ) = α ≤ λ∧pcl(α).
(i.e.,) λ ∧ pcl(α) = α.
Converse part is obvious.

THEOREM 3.9: Let α be a fuzzy set in a fuzzy topological space X. Then α =
λ∧cl(int(α)) for some fuzzy open set λ if and only if α ∈ FC(X, τ)∧FSO(X, τ).

Proof: Let α = λ∧cl(int(α)) for some fuzzy open set λ in X. Then α ≤ cl(int(α)).
So α is fuzzy semi open in X. Let β = cl(int(α)), then β is fuzzy regular closed.
Since every fuzzy regular closed set is fuzzy pre-closed, β is fuzzy pre-closed which
implies α is fuzzy C−set. Thus α ∈ FC(X, τ) ∧ FSO(X, τ).
Conversely, let α ∈ FC(X, τ) ∧ FSO(X, τ). Then α ∈ FC(X, τ) and α ∈
FSO(X, τ). Since α ∈ FC(X, τ), α = λ ∧ pcl(α), using Lemma 3.8. Thus
α = λ ∧ cl(int(α)) for some fuzzy open set λ.

4. DECOMPOSITION OF FUZZY A−CONTINUITY

DEFINITION 4.1: A mapping f : X → Y is called fuzzy A−continuous if
f−1(µ) is a fuzzy A− set in X, for every fuzzy open set µ in Y.
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DEFINITION 4.2: A mapping f : X → Y is called fuzzy C−continuous if
f−1(µ) is a fuzzy C−set in X, for every fuzzy open set µ in Y.

PROPOSITION 4.3: Every fuzzy A−continuous function is fuzzy C−continuous.

REMARK 4.4: The converse of Proposition 4.3 need not be true as shown by
the following example.

EXAMPLE 4.5: Let X = {a, b, c}, Y = {x, y, z} and α1, α2 and α3 are fuzzy
sets defined as follows :
α1(a) = 0.3 α2(a) = 0.4 α3 (a) = 0.7
α1(b) = 0.4 α2(b) = 0.5 α3 (b)= 0.6
α1(c) = 0.4 α2(c) = 0.5 α3 (c)= 0.6
Let τ1 = {0, 1, α1, α2}, τ2 = {0, 1, α3}. Then the mapping f : (X, τ1) → (Y, τ2)
defined by f(a) = x, f(b) = y and f(c) = z is fuzzy C−continuous but not fuzzy
A−continuous.

REMARK 4.6: The concepts of fuzzy C−continuity and fuzzy semi-continuity
are independent as shown by the following examples.

THEOREM 4.7: Let X = {a, b, c}, Y = {x, y, z} and α1, α2 and α3 are fuzzy
sets defined as follows :
α1(a) = 0.2 α2(a) = 0.3 α3 (a) = 0.3
α1(b) = 0.3 α2(b) = 0.3 α3 (b)= 0.3
α1(c) = 0.3 α2(c) = 0.4 α3 (c)= 0.3
Let τ1 = {0, 1, α1, α2}, τ2 = {0, 1, α3}. Then the mapping f : (X, τ1) → (Y, τ2)
defined by f(a) = x, f(b) = y and f(c) = z is fuzzy semi-continuous but not fuzzy
C−continuous.

EXAMPLE 4.8: Let X = {a, b, c}, Y = {x, y, z} and α1, α2 and α3 are fuzzy
sets defined as follows :
α1(a) = 0.4 α2(a) = 0.6 α3 (a) = 0.5
α1(b) = 0.5 α2(b) = 0.7 α3 (b)= 0.6
α1(c) = 0.6 α2(c) = 0.8 α3 (c)= 0.7
Let τ1 = {0, 1, α1, α2}, τ2 = {0, 1, α3}. Then the mapping f : (X, τ1) → (Y, τ2)
defined by f(a) = x, f(b) = y and f(c) = z is fuzzy C−continuous but not fuzzy
semi-continuous.

THEOREM 4.9: A mapping f : X → Y is fuzzy A−continuous if and only if
it is both fuzzy semi-continuous and fuzzy C−continuous.
Proof: Follows from Theorem 3.9.
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