The Journal of Nonlinear Sciences and Applications http://www.tjnsa.com

ON DECOMPOSITION OF FUZZY A-CONTINUITY

S.JAFARI ¹, K.VISWANATHAN ^{2*}, M.RAJAMANI ² AND S.KRISHNAPRAKASH ²

ABSTRACT. In this paper, we introduce and study the notion of fuzzy C-sets and fuzzy C-continuity. We also prove a mapping $f : X \to Y$ is fuzzy A-continuous if and only if it is both fuzzy semi-continuous and fuzzy C-continuous.

1. INTRODUCTION

In the classical paper [10] of 1965, Zadeh generalized the usual notion of a set by introducing the important and useful notion of fuzzy sets. Since then, this notion has had tremendous effect on both pure and applied mathematics in different respects. Recently El-Naschie has shown in [4] and [5] that the notion of fuzzy topology may be relevant to quantum particle physics in connection with string theory and ε^{∞} theory. In 1986, Tong [9] introduced the notion of A-sets and A-continuous mappings in topological spaces and proved that a mapping is continuous if and only if it is both α -continuous and A-continuous. In 1990, Ganster [7] established a decomposition of A-continuous and LC-continuous. Erguang and Pengfei [6] introduced the notion of C-sets and C-continuous. Erguang and Pengfei [6] introduced the notion of C-sets and C-continuous. Recently, Rajamani and Ambika [8] introduced the notion of fuzzy A-sets and fuzzy A-continuity and obtained a decomposition of fuzzy continuity.

In this paper, we transform the notions of C-set and C-continuity to fuzzy topological settings and obtain a decomposition of fuzzy A-continuity.

Date: Received: 2 December 2008.

^{*} Corresponding author.

²⁰⁰⁰ Mathematics Subject Classification. 54A05,54C05.

Key words and phrases. fuzzy A-set, fuzzy C-set, fuzzy A-continuity, fuzzy C-continuity.

2. PRELIMINARIES

Throughout this paper, X and Y denote fuzzy topological spaces (X, τ) and (Y, σ) respectively on which no separation axioms are assumed. Let λ be a fuzzy set in a fuzzy topological spaces X. The fuzzy interior of λ , fuzzy closure of λ and fuzzy preclosure of λ are denoted by $int(\lambda), cl(\lambda)$ and $pcl(\lambda)$ respectively.

Now, we recall some definitions and results which are used in this paper.

DEFINITION 2.1: A fuzzy set λ in a fuzzy topological space X is called

- (1) fuzzy semi-open [1] if $\lambda \leq cl(int(\lambda))$;
- (2) fuzzy pre-open [2] if $\lambda \leq int(cl(\lambda))$;
- (3) fuzzy regular-open [1] if $\lambda = int(cl(\lambda))$.

The complements of the above mentioned fuzzy open sets are called their respective fuzzy closed sets.

DEFINITION 2.2: A fuzzy set λ in a fuzzy topological space X is called a fuzzy A-set [6] if $\lambda = \alpha \wedge \beta$, where α is a fuzzy open set and β is a fuzzy regular closed set.

DEFINITION 2.3: A map $f: X \to Y$ is said to be

- (1) fuzzy continuous [3] if $f^{-1}(\mu)$ is fuzzy open in X, for every fuzzy open set μ in Y;
- (2) fuzzy semi-continuous [1] if $f^{-1}(\mu)$ is fuzzy semi-open in X, for every fuzzy open set μ in Y;
- (3) fuzzy pre-continuous [2] if $f^{-1}(\mu)$ is fuzzy pre-open in X, for every fuzzy open set μ in Y;

The collection of all fuzzy C-sets and fuzzy semi-open sets in X will be denoted by $FC(X,\tau)$ and $FSO(X,\tau)$ respectively.

3. FUZZY C-SETS

DEFINITION 3.1: A fuzzy set λ in a fuzzy topological space X is called a fuzzy C-set if $\lambda = \alpha \land \beta$, where α is fuzzy open and β is fuzzy pre-closed in X.

PROPOSITION 3.2: Every fuzzy *A*-set is a fuzzy *C*-set.

REMARK 3.3: The converse of the Proposition 3.2. need not be true as seen from the following example.

EXAMPLE 3.4: Let $X = \{a, b, c\}$, Define $\alpha_1, \alpha_2, \alpha_3 : X \to [0, 1]$ by $\alpha_1(a) = 0.3$ $\alpha_2(a) = 0.4$ $\alpha_3(a) = 0.7$ $\alpha_1(b) = 0.4$ $\alpha_2(b) = 0.5$ $\alpha_3(b) = 0.6$ $\alpha_1(c) = 0.4$ $\alpha_2(c) = 0.5$ $\alpha_3(c) = 0.6$ Let $\tau = \{0, 1, \alpha_1, \alpha_2\}$. Then (X, τ) is a fuzzy topological space. Now, α_3 is a fuzzy C-set but not a fuzzy A-set.

REMARK 3.5: The concepts of fuzzy C-sets and fuzzy semi-open sets are independent as shown by the following examples.

EXAMPLE 3.6: Let $X = \{a, b, c\}$, Define $\alpha_1, \alpha_2, \alpha_3 : X \to [0, 1]$ by $\alpha_1(a) = 0.2$ $\alpha_2(a) = 0.3$ $\alpha_3(a) = 0.3$ $\alpha_1(b) = 0.3$ $\alpha_2(b) = 0.3$ $\alpha_3(b) = 0.3$ $\alpha_1(c) = 0.3$ $\alpha_2(c) = 0.4$ $\alpha_3(c) = 0.3$ Let $\tau = \{0, 1, \alpha_1, \alpha_2\}$. Then (X, τ) is a fuzzy topological space. Now, α_3 is a fuzzy semi-open set but not a fuzzy C-set.

EXAMPLE 3.7: Let $X = \{a, b, c\}$, Define $\alpha_1, \alpha_2, \alpha_3 : X \to [0, 1]$ by $\alpha_1(a) = 0.4$ $\alpha_2(a) = 0.6$ $\alpha_3(a) = 0.5$ $\alpha_1(b) = 0.5$ $\alpha_2(b) = 0.7$ $\alpha_3(b) = 0.6$ $\alpha_1(c) = 0.6$ $\alpha_2(c) = 0.8$ $\alpha_3(c) = 0.7$ Let $\tau = \{0, 1, \alpha_1, \alpha_2\}$. Then (X, τ) is a fuzzy topological space. Now, α_3 is a

fuzzy C-set but not a fuzzy semi-open set.

LEMMA 3.8: Let α be a fuzzy set in a fuzzy topological space X. Then $\alpha \in FC(X, \tau)$ if and only if $\alpha = \lambda \wedge pcl(\alpha)$ for some fuzzy open set λ .

Proof: Let $\alpha \in FC(X, \tau)$. Then $\alpha = \lambda \wedge \mu$ where λ is fuzzy open and μ is fuzzy pre-closed. Now, $\alpha \leq \lambda$ and $\alpha \leq \mu$, we have $pcl(\alpha) \leq pcl(\mu) = \mu$, since μ is fuzzy pre-closed in X. Thus $pcl(\alpha) \leq \mu$. Therefore $\lambda \wedge pcl(\alpha) \leq (\lambda \wedge \mu) = \alpha \leq \lambda \wedge pcl(\alpha)$. (i.e.,) $\lambda \wedge pcl(\alpha) = \alpha$. Converse part is obvious.

THEOREM 3.9: Let α be a fuzzy set in a fuzzy topological space X. Then $\alpha = \lambda \wedge cl(int(\alpha))$ for some fuzzy open set λ if and only if $\alpha \in FC(X, \tau) \wedge FSO(X, \tau)$.

Proof: Let $\alpha = \lambda \wedge cl(int(\alpha))$ for some fuzzy open set λ in X. Then $\alpha \leq cl(int(\alpha))$. So α is fuzzy semi open in X. Let $\beta = cl(int(\alpha))$, then β is fuzzy regular closed. Since every fuzzy regular closed set is fuzzy pre-closed, β is fuzzy pre-closed which implies α is fuzzy C-set. Thus $\alpha \in FC(X, \tau) \wedge FSO(X, \tau)$.

Conversely, let $\alpha \in FC(X,\tau) \wedge FSO(X,\tau)$. Then $\alpha \in FC(X,\tau)$ and $\alpha \in FSO(X,\tau)$. Since $\alpha \in FC(X,\tau), \alpha = \lambda \wedge pcl(\alpha)$, using Lemma 3.8. Thus $\alpha = \lambda \wedge cl(int(\alpha))$ for some fuzzy open set λ .

4. DECOMPOSITION OF FUZZY A-CONTINUITY

DEFINITION 4.1: A mapping $f : X \to Y$ is called fuzzy A-continuous if $f^{-1}(\mu)$ is a fuzzy A- set in X, for every fuzzy open set μ in Y.

DEFINITION 4.2: A mapping $f : X \to Y$ is called fuzzy *C*-continuous if $f^{-1}(\mu)$ is a fuzzy *C*-set in *X*, for every fuzzy open set μ in *Y*.

PROPOSITION 4.3: Every fuzzy *A*-continuous function is fuzzy *C*-continuous.

REMARK 4.4: The converse of Proposition 4.3 need not be true as shown by the following example.

EXAMPLE 4.5: Let $X = \{a, b, c\}, Y = \{x, y, z\}$ and α_1, α_2 and α_3 are fuzzy sets defined as follows : $\alpha_1(a) = 0.3$ $\alpha_2(a) = 0.4$ $\alpha_3(a) = 0.7$ $\alpha_1(b) = 0.4$ $\alpha_2(b) = 0.5$ $\alpha_3(b) = 0.6$ $\alpha_1(c) = 0.4$ $\alpha_2(c) = 0.5$ $\alpha_3(c) = 0.6$ Let $\tau_1 = \{0, 1, \alpha_1, \alpha_2\}, \tau_2 = \{0, 1, \alpha_3\}$. Then the mapping $f : (X, \tau_1) \to (Y, \tau_2)$ defined by f(a) = x, f(b) = y and f(c) = z is fuzzy *C*-continuous but not fuzzy *A*-continuous.

REMARK 4.6: The concepts of fuzzy C-continuity and fuzzy semi-continuity are independent as shown by the following examples.

THEOREM 4.7: Let $X = \{a, b, c\}, Y = \{x, y, z\}$ and α_1, α_2 and α_3 are fuzzy sets defined as follows : $\alpha_1(a) = 0.2$ $\alpha_2(a) = 0.3$ $\alpha_3(a) = 0.3$ $\alpha_1(b) = 0.3$ $\alpha_2(b) = 0.3$ $\alpha_3(b) = 0.3$ $\alpha_1(c) = 0.3$ $\alpha_2(c) = 0.4$ $\alpha_3(c) = 0.3$ Let $\tau_1 = \{0, 1, \alpha_1, \alpha_2\}, \tau_2 = \{0, 1, \alpha_3\}$. Then the mapping $f : (X, \tau_1) \rightarrow (Y, \tau_2)$ defined by f(a) = x, f(b) = y and f(c) = z is fuzzy semi-continuous but not fuzzy C-continuous.

EXAMPLE 4.8: Let $X = \{a, b, c\}, Y = \{x, y, z\}$ and α_1, α_2 and α_3 are fuzzy sets defined as follows : $\alpha_1(a) = 0.4$ $\alpha_2(a) = 0.6$ $\alpha_3(a) = 0.5$ $\alpha_1(b) = 0.5$ $\alpha_2(b) = 0.7$ $\alpha_3(b) = 0.6$ $\alpha_1(c) = 0.6$ $\alpha_2(c) = 0.8$ $\alpha_3(c) = 0.7$ Let $\tau_1 = \{0, 1, \alpha_1, \alpha_2\}, \tau_2 = \{0, 1, \alpha_3\}$. Then the mapping $f : (X, \tau_1) \to (Y, \tau_2)$ defined by f(a) = x, f(b) = y and f(c) = z is fuzzy *C*-continuous but not fuzzy semi-continuous.

THEOREM 4.9: A mapping $f : X \to Y$ is fuzzy A-continuous if and only if it is both fuzzy semi-continuous and fuzzy C-continuous. **Proof:** Follows from Theorem 3.9.

References

- Azad, K.K., On fuzzy semi-continuity, fuzzy almost continuity, J. Math. Anal. Appl., 87(1981), 14-32.
- 2. Bin Shahana, A.S., On fuzzy strong semi-continuity and fuzzy pre-continuity, Fuzzy sets and system, 44(1991), 303-308.
- 3. Chang, C.L. Fuzzy topological spaces, J. Math. Anal. Appl., 24, (1968), 182-190.
- El-Naschie, M. S. On the uncertainty of cantorian geometry and the two-slit experiment, Chaos, Solitons and fractals 9(3)(1998), 517-529.
- 5. El-Naschie, M. S., On the certification of heterotic strings, M theory and ε^{∞} theory, chaos, Solitons and fractals (2000), 2397-2408
- Erguang, Y. and Pengfei, Y., On decomposition of A- continuity, Acta Math. Hunger., 110(4)(2006),309-313.
- Ganster, M. and Reilly, I.L., A decomposition of continuity, Acta Math. Hunger., 56(1990),299-301.
- Rajamani, M. and Ambika, M., Another decomposition of fuzzy continuity in fuzzy topological spaces, Proc. Of Annual Conference of KMA and National Seminar on Fuzzy Mathematics and Applications, Payyanur College, Payyanur, Jan 8-10, (2004) ,41-48.
- 9. Tong, J., A decomposition of fuzzy continuity, Fuzzy Math, 7(1987), 97-98.
- 10. Zadeh, L. A., Fuzzy sets, Inform. and Control 8(1965), 338-353.

¹ COLLEGE OF VESTSJAELLAND SOUTH HERRESTRADE 11 4200 SLAGELSE DENMARK. *E-mail address*: jafari@stofanet.dk

² Post Graduate and Research Department of Mathematics N G M College Pollachi-642 001 Tamilnadu, INDIA. *E-mail address*: visu_ngm@yahoomail.com