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LOCAL CONVERGENCE ANALYSIS FOR A CERTAIN CLASS
OF INEXACT METHODS

IOANNIS K. ARGYROS1∗ AND SAÏD HILOUT2

Abstract. We provide a local convergence analysis for a certain class inexact
methods in a Banach space setting, in order to approximate a solution of a
nonlinear equation [6]. The assumptions involve center–Lipschitz–type and
radius–Lipschitz–type conditions [15], [8], [5]. Our results have the following
advantages (under the same computational cost): larger radii, and finer error
bounds on the distances involved than in [8], [15] in many interesting cases.

Numerical examples further validating the theoretical results are also pro-
vided in this study.

1. Introduction

In this study we are concerned with the problem of approximating a locally unique
solution x? of equation

F (x) = 0, (1.1)

where F is a Fréchet–differentiable operator defined on a convex subset D of a
Banach space X with values in a Banach space Y .

A large number of problems in applied mathematics and also in engineering
are solved by finding the solutions of certain equations. For example, dynamic
systems are mathematically modeled by difference or differential equations, and
their solutions usually represent the states of the systems. For the sake of simplic-
ity, assume that a time–invariant system is driven by the equation ẋ = Q(x), for
some suitable operator Q, where x is the state. Then the equilibrium states are
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determined by solving equation (1.1). Similar equations are used in the case of
discrete systems. The unknowns of engineering equations can be functions (differ-
ence, differential, and integral equations), vectors (systems of linear or nonlinear
algebraic equations), or real or complex numbers (single algebraic equations with
single unknowns). Except in special cases, the most commonly used solution
methods are iterative–when starting from one or several initial approximations a
sequence is constructed that converges to a solution of the equation. Iteration
methods are also applied for solving optimization problems. In such cases, the
iteration sequences converge to an optimal solution of the problem at hand. Since
all of these methods have the same recursive structure, they can be introduced
and discussed in a general framework.

We study the convergence of inexact Newton method (INMB):

For n = 0 step 1 until convergence do
F ind the step ∆n with satisfies :
Bn ∆n = −F (xn) + rn

where,
‖ Pn rn ‖

‖ Pn F (xn) ‖ ≤ ηn ≤ 1;

Set:

xn+1 = xn + ∆n, (n ≥ 0), (1.2)

Here, Pn is an invertible operator, and B−1
n ∈ L(Y ,X ) for each n.

The (INMB) was considered by Morini in [13], whereas, if Pn = I (n ≥ 0),
the method has been studied extensively in [1]–[3], [6], [7], [9]–[15] under various
Lipschitz–type hypotheses. A survey of such results can be found in [5] (see, also
[4], [8], [15]). The advantages of introducing operators Pn have been explained
in [13]. In case Bn = F ′(xn) (n ≥ 0), we will denote (INMB) by (INMF).

In this study, we are motivated by the work in [8], [15], where, radius Lipschitz–
type conditions are used (see (2.3)) to provide a local as well as a semilocal con-
vergence for Newton’s method. We use weaker and needed center–Lipschitz–type
conditions (see (2.2)) to find upper bounds on the distances ‖ F ′(x)−1 F ′(x?) ‖
(x ∈ D) instead of the stronger (2.3) used in [8], [15] for Newton’s method. It
turns out that this approach leads to a local convergence analysis not only for
Newton’s method, but also for (INMB) and (INMF), with the following advan-
tages, and under the same computational cost (see Remark 2.5):

(a) larger convergence radii,
(b) finer estimates for the distances ‖ xn − x? ‖ (n ≥ 0).

Numerical examples further validating the theoretical results are also provided.

2. Local convergence analysis of (INMF) and (INMB)

We provide four local convergence results for (INMB) and (INMF):
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Theorem 2.1. Let F : D ⊆ X −→ Y be a Fréchet–differentiable operator.

Assume:

there exist x? ∈ D, satisfying equation (1.1), such that F ′(x?)−1 ∈ L(Y ,X ),
r0 > 0, with

U(x?, r0) = {x ∈ X : ‖ x− x? ‖≤ r0} ⊆ D, (2.1)

positive integrable functions L0, and L, satisfying center–Lipschitz condition,
and radius Lipschitz–type condition:

‖ F ′(x?)−1 [F ′(x)− F ′(x?)] ‖≤
∫ ρ(x)

0

L0(t) dt, (2.2)

‖ F ′(x?)−1 [F ′(x)− F ′(xθ)] ‖≤
∫ ρ(x)

θ ρ(x)

L(t) dt, (2.3)

respectively, for all x ∈ U(x?, r0), xθ = x?+θ (x−x?), ρ(x) =‖ x−x? ‖, θ ∈ [0, 1],

vn = θn ‖ (Pn F ′(xn))−1 ‖ ‖ Pn F ′(xn) ‖= θn cond (Pn F ′(xn)) ≤ v < 1, (2.4)

and

(1− v)

∫ r0

0

L0(t) dt + (1 + v)

∫ r0

0

L(t) dt ≤ 1− v. (2.5)

Then, sequence {xn} (n ≥ 0) generated by (INMF) is well defined, remains in
U(x?, r0) for all n ≥ 0, and converges to x?, provided that x0 ∈ U(x?, r0).

Moreover, the following estimate holds:

‖ xn+1 − x? ‖≤ α ‖ xn − x? ‖, (2.6)

where,

α = (1 + v)

∫ ρ(x0)

0

L(t) dt

1−
∫ ρ(x0)

0

L0(t) dt

+ v ≤ 1. (2.7)

Proof. By hypothesis x0 ∈ U(x?, r0), and α ∈ [0, 1), since, by (2.5), and the
positivity of L0, L:

α < (1 + v)

∫ r0

0

L(t) dt

1−
∫ r0

0

L0(t) dt

+ v ≤ 1.

Let us assume xm ∈ U(x?, r0), m ≤ n, we shall show (2.6), and xm+1 ∈ U(x?, r0)
hold, for all m.
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In view of (2.2), (2.5), and the induction hypotheses, we get:

‖ F ′(x?)−1 (F (xm)− F (x0)) ‖≤
∫ ρ(xm)

0

L0(t) dt ≤
∫ r0

0

L0(t) dt < 1. (2.8)

It follows from the Banach lemma on invertible operators [1], [5], that F ′(xm)−1

exists, and

‖ F ′(xm)−1 F ′(x?) ‖≤
(

1−
∫ ρ(xm)

0

L0(t) dt

)−1

≤
(

1−
∫ r0

0

L0(t) dt

)−1

. (2.9)

Using (INMF), we obtain the approximation:

xm+1 − x? = xm − x? − F ′(xm)−1 (F (xm)− F (x?)− rm)

= F ′(xm)−1 F ′(x?)

∫ 1

0

F ′(x?)−1 (F (xm)− F (xθ)) (xm − x?) d θ+

F ′(xm) P−1
m Pm rm.

(2.10)
By (2.3), (2.4), (2.7), (2.9), (2.10), and the induction hypotheses, we obtain in

turn:

‖ xm+1 − x? ‖ ≤ ‖ F ′(xm)−1 F ′(x?) ‖ ×
∫ 1

0

‖ F ′(x?)−1 (F (xm)− F (xθ)) ‖ ‖ xm − x? ‖ d θ+

θm ‖ (Pm F ′(xm))−1 ‖ ‖ Pm F (xm) ‖

≤ 1

1−
∫ ρ(xm)

0

L0(t) dt

∫ 1

0

∫ ρ(xm)

θ ρ(xm)

L(t) dt ρ(xm) d θ+

θm ‖ (Pm F ′(xm))−1 ‖ ‖ Pm F ′(xm) F ′(xm)−1 F (xm) ‖

≤

∫ ρ(xm)

0

L(t) t dt

1−
∫ ρ(xm)

0

L0(t) dt

+

θm cond (Pm F ′(xm))

(
‖ xm − x? ‖ +

∫ ρ(xm)

0

L(t) dt

1−
∫ ρ(xm)

0

L0(t) dt

)
.

(2.11)
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Then

‖ xm+1 − x? ‖ ≤ (1 + vm)

∫ ρ(xm)

0

L(t) t dt

1−
∫ ρ(xm)

0

L0(t) dt

+ vm ρ(xm)

≤
(

(1 + vm)

∫ ρ(xm)

0

L(t) t dt

1−
∫ ρ(xm)

0

L0(t) dt

+ vm

)
ρ(xm)

≤ α ‖ xm − x? ‖<‖ xm − x? ‖,

(2.12)

which implies xm+1 ∈ U(x?, r0), and lim
m−→∞

xm = x?.

That completes the proof of Theorem 2.1. ¤

Proposition 2.2. Under hypotheses (2.2)–(2.4) of Theorem 2.1, further assume:

function

Lc(t) = t1−c L(t) (2.13)

is nondecresing for some c ∈ [0, 1];

there exists r1 > 0, such that:

U(x?, r1) ⊆ D, (2.14)

(1 + v)

∫ r1

0

L(t) t dt

r1

(
1−

∫ r1

0

L0(t) dt

) + v ≤ 1. (2.15)

Then, sequence {xn} (n ≥ 0) generated by (INMF) is well defined, remains in
U(x?, r1) for all n ≥ 0, and converges to x?, provided that x0 ∈ U(x?, r1).

Moreover, the following estimate holds:

‖ xn+1 − x? ‖≤ βn ‖ xn − x? ‖, (2.16)

where,

βn = (1 + v)

∫ ρ(x0)

0

L(t) t dt ρ(xn)c

ρ(x0)1+c

(
1−

∫ ρ(x0)

0

L0(t) dt

) + v

≤ β = (1 + v)

∫ ρ(x0)

0

L(t) t dt

ρ(x0)

(
1−

∫ ρ(x0)

0

L0(t) dt

) + v < 1.

(2.17)
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Proof. We follow the proof of Theorem 2.1 until (2.10). Define function fd,c,
(d ≥ 0), by:

fd,c(s) =
1

sc+d

∫ s

0

td L(t) dt. (2.18)

In view of Lemma 2.2 in [15], function fd,c is non–decreasing. It then follows
in turn:

‖ xm+1 − x? ‖ ≤ (1 + vm)

∫ ρ(xm)

0

L(t) t dt

1−
∫ ρ(xm)

0

L0(t) dt

+ vm ρ(xm)

= (1 + vm)
f1,c(ρ(xm))

1−
∫ ρ(xm)

0

L0(t) dt

ρ(xm)1+c + vm ρ(xm)

≤ 1 + vm)
f1,c(ρ(x0))

1−
∫ ρ(x0)

0

L0(t) dt

ρ(xm)1+c + vm ρ(xm)

≤ βm ‖ xm − x? ‖≤ β ‖ xm − x? ‖<‖ xm − x? ‖,

(2.19)

which implies xm+1 ∈ U(x?, r1), and lim
m−→∞

xm = x?.

That completes the proof of Proposition 2.2. ¤
Theorem 2.3. Under hypotheses (2.1)–(2.4) of Thorem 2.1 (for r2 > 0, replacing
r0), further assume:

‖ B(x)−1 F ′(x) ‖≤ w1, (2.20)

‖ B(x)−1 (F ′(x)− B(x)) ‖≤ w2, (2.21)

hold for all x ∈ U(x?, r2),

and

(1 + v) w1

∫ r2

0

L(t) dt + (1− w2 − w1 v)

∫ r2

0

L0(t) dt ≤ 1− w2 − w1 v. (2.22)

Then, sequence {xn} (n ≥ 0) generated by (INMB) is well defined, remains in
U(x?, r2) for all n ≥ 0, and converges to x?, provided that x0 ∈ U(x?, r2).

Moreover, the following estimate holds:

‖ xn+1 − x? ‖≤ γ ‖ xn − x? ‖, (2.23)

where,

γ = (1 + v)

w1

∫ ρ(x0)

0

L(t) dt

1−
∫ ρ(x0)

0

L0(t) dt

+ w2 + w1 v < 1. (2.24)
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Proof. Using the properties of functions L0, L, (2.12), and (2.24), we obtain
γ ∈ (0, 1). By (INMB), if xm ∈ U(x?, r2), we have the approximation:

xm+1 − x? = xm − x? − B−1
m (F (xm)− F (x?)) + B−1

m rm

= −B−1
m F ′(xm)

∫ 1

0

F ′(xm)−1 F ′(x?) F ′(x?)−1 (F ′(xm)− F ′(xθ))

(xm − x?) d θ + B−1
m (F ′(xm)− Bm) (xm − x?) + B−1

m P−1
m Pm rm.

(2.25)
In view of (2.2)–(2.4), (2.9), (2.20), and the induction hypotheses, we obtain

in turn:

‖ xm+1 − x? ‖ ≤ ‖ B−1
m F ′(xm) ‖ ×∫ 1

0

‖ F ′(xm)−1 F ′(x?) ‖ ‖ F ′(x?)−1 (F ′(xm)− F ′(xθ)) ‖
‖ xm − x? ‖ d θ+ ‖ B−1

m (F ′(xm)− Bm) ‖ ‖ xm − x? ‖ +
θm ‖ (Pm Bm)−1 ‖ ‖ Bm F (xm) ‖

≤ w1

1−
∫ ρ(xm)

0

L0(t) dt

∫ 1

0

∫ ρ(xm)

θ ρ(xm)

L(t) dt ρ(xm) d θ + w2 ρ(xm)+

θm ‖ P−1
m F ′(xm) ‖ ‖ (Pm F ′(xm))−1 ‖

‖ Pm F ′(xm) ‖ ‖ F ′(xm)−1 F (xm) ‖

≤
w1

∫ ρ(xm)

0

L(t) t dt

1−
∫ ρ(xm)

0

L0(t) dt

+ w2 ρ(xm)+

w1 vm

(
ρ(xm) +

∫ ρ(xm)

0

L(t) t dt

1−
∫ ρ(xm)

0

L0(t) dt

)

≤ (1 + vm)

w1

∫ ρ(xm)

0

L(t) t dt

1−
∫ ρ(xm)

0

L0(t) dt

+ (w2 + w1 vm) ρ(xm)

≤
(

(1 + vm)

w1

∫ ρ(xm)

0

L(t) dt

1−
∫ ρ(xm)

0

L0(t) dt

+ w2 + w1 vm

)
ρ(xm)

≤ γ ‖ xm − x? ‖<‖ xm − x? ‖,
(2.26)

which implies xm+1 ∈ U(x?, r2), and lim
m−→∞

xm = x?.



LOCAL CONVERGENCE ANALYSIS 251

That completes the proof of Theorem 2.3. ¤

Proposition 2.4. Under hypotheses (2.1)–(2.4) (for r3 > 0, replacing r0), (2.13),
(2.20), (2.21) (for r3, replacing r2), further assume r3 satisfies:

(1 + v)

w1

∫ r3

0

L(t) t dt

r3

(
1−

∫ r3

0

L0(t) dt

) + w2 + w1 v ≤ 1. (2.27)

Then, sequence {xn} (n ≥ 0) generated by (INMB) is well defined, remains in
U(x?, r3) for all n ≥ 0, and converges to x?.

Moreover, the following estimate holds:

‖ xn+1 − x? ‖≤ δ ‖ xn − x? ‖, (2.28)

where,

δ = (1 + v)

w1

∫ ρ(x0)

0

L(t) t dt

ρ(x0)

(
1−

∫ ρ(x0)

0

L0(t) dt

) + w2 + w1 v < 1. (2.29)

Proof. Using the properties of functions L, L0, (2.27), and (2.29), we deduce
δ ∈ (0, 1). If xm ∈ U(x?, r3), as in Proposition 2.2, using (2.26), we get in turn:

‖ xm+1 − x? ‖ ≤ (1 + vm)

w1

∫ ρ(xm)

0

L(t) t dt

1−
∫ ρ(xm)

0

L0(t) dt

+ (w2 + w1 vm) ρ(xm)

≤ (1 + v)
w1 f1,c(ρ(xm))

1−
∫ ρ(xm)

0

L0(t) dt

ρ(xm)1+c + (w2 + w1 v) ρ(xm)

≤ (1 + v)
w1 f1,c(ρ(x0))

1−
∫ ρ(x0)

0

L0(t) dt

ρ(xm)1+c + (w2 + w1 v) ρ(xm)

≤ δ ‖ xm − x? ‖<‖ xm − x? ‖,
which implies xm+1 ∈ U(x?, r3), and lim

m−→∞
xm = x?.

That completes the proof of Proposition 2.4. ¤

Remark 2.5. Note that in general

L0(t) ≤ L(t) t ≤ 0, (2.30)

and
L(t)

L0(t)
can be arbitrarily large [4], [6].
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In order for us to compare our results with relevant ones already in the litera-
ture, let us consider the case Bn = F ′(xn) (n ≥ 0), v = w1 = w2 = 0. Then the
convergence radii in [15], and [8] (for c = 1) are given by∫ r

0

L(t) dt ≤ 1

2
, (2.31)

and
1

r

∫ r

0

(r + t) L(t) dt ≤ 1, (2.32)

respectively.

In view of (2.5), (2.15), (2.30), (2.31), and (2.32), we obtain:

r ≤ r0, (2.33)

and
r ≤ r1. (2.34)

In case strict inequality holds in (2.30), then so does in (2.33), and (2.34).

Moreover, the error estimates (2.6), and (2.16) are finer (smaller) than the
corresponding ones in [8], and [15]. Note that these advantages are obtained
under the same computational cost, since in practice, the computation of function
L requires that of L0.

Remark 2.6. The local results obtained here can be used for projection methods
such as Arnoldi’s, the generalized minimum residual method (GMRES), the gen-
eralized conjugate residual method (GCR), for combined Newton/finite projec-
tion methods and in connection with the mesh independence principle to develop
the cheapest and most efficient mesh refinement strategies [5].

Remark 2.7. The local results can also be used to solve equations of the form
F (x) = 0, where F ′ satisfies the autonomous differential equation [5]:

F ′(x) = P (F (x)), (2.35)

where, P : Y → X is a known continuous operator. We have F ′(x?) = P (F (x?)) =
P (0), so we can apply our results without actually knowing the solution x? of
equation (1.1).

Example 2.8. Let X = Y = R, and define function F on D = U(0, 1) by:

F (x) = ex − 1. (2.36)

Then we can set P (x) = x + 1 in (2.35). Using (2.2), (2.3), and (2.36), we have:

L0(t) = `0 = e− 1, and L(t) = ` = e. (2.37)

In view of (2.5), (2.31), and (2.37), we get:

r =
1

2 `
< r0 =

1

`0 + `
, (2.38)

and, in particular
r = .183939721 < r0 = .225399674.
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