The Journal of Nonlinear Science and Applications http://www.tjnsa.com

SEPARATION THEOREM WITH RESPECT TO SUB-TOPICAL FUNCTIONS AND ABSTRACT CONVEXITY

M. ALIMOHAMMADY^{1,2} AND A. SHAHMARI^{2,*}

Communicated by S. M. Vaezpour

ABSTRACT. This paper deals with topical and sub-topical functions in a class of ordered Banach spaces. The separation theorem for downward sets and sub-topical functions is given. It is established some best approximation problems by sub-topical functions and we will characterize sub-topical functions as superimum of elementary sub-topical functions.

1. INTRODUCTION AND PRELIMINARIES

Topical functions are intensively studied (see [2,3]), and they have many applications in various parts of applied mathematics in particular in the modeling of discrete event system (see [2,3]). Topical functions are also interesting from a different point of view, namely as a tool in the study of the so-called downward sets. Downward set arise in the study of some problems of mathematical economics and game theory (see [4]).

Moreover, topical functions have studied in much more general class of subtopical (increasing plus-sub-homogeneous) functions (see [9]). In section 1, we recall some definitions and establish some results related to topical functions of $\varphi(x, y) := \sup\{\lambda \in \mathbb{R} : \lambda \cdot 1 \leq x + y\}$. In section 2, we will prove some basic properties of sub-topical functions, we prove separability theorem for downward sets and sub-topical functions. In section 3, it is given other form of separation theorem with respect to sub-topical function. We would characterize best approximation problem by sub-topical functions. It is given separation theorem for

Date: Received: 15 January 2009, Revised: 18 April 2009.

^{*} Corresponding author.

²⁰⁰⁰ Mathematics Subject Classification. Primary 35P20, Secondary 35J70; 35BJ20.

Key words and phrases. Downward set, Subdifferential set, ordered Banach space, topical function, sub-topical function, separation theorem, abstract convex set.

downward sets and sub-topical functions. Finally we establish best approximation problem by sub-topical functions and characterize sub-topical functions as superimum of elementary sub-topical functions.

Let $(X, \| . \|)$ be a Banach space and C be a closed convex cone in X such that $C \cap (-C) = \{0\}$ and $\operatorname{int} C \neq \emptyset$. X is equipped with the relation \geq i.e; generated by $C : y \leq x$ if and only if $x - y \in C$ $(x, y \in X)$ and C : y < x if and only if $x - y \in intC$ $(x, y \in X)$. Assume that C is a normal cone. Recall that a cone C is called *normal* if there exits a constant m > 0 such that $\|x\| \leq m\|y\|$, whenever $0 \leq x \leq y$ and $x, y \in X$. Let $\mathbf{1} \in int C$ and

$$B = \{ x \in X : -1 \le x \le 1 \}. (1)$$

It is well known and easy to check that B can be considered as the unit ball under a certain norm $\|.\|_1$, which is equivalent to the initial norm $\|.\|$. Without loss of generality one can assume that $\|.\| = \|.\|_1$ (see [6]).

For any subset W of X, denote by intW, clW and bdW the interior, closure and boundary of W respectively.

For a non-empty subset W of X and $x \in X$, define (see[6])

$$d(x, W) = \inf_{w \in W} \|x - w\|. (2)$$

Recall (see [6]), a point $w_o \in W$ is called *best approximation* for $x \in X$, if

$$\|x - w_o\| = d(x, W)$$

Let $W \subset X$. For $x \in X$ it is denoted by $P_W(x)$ the set of all best approximations of x in W:

$$P_W(x) = \{ w \in W : ||x - w|| = d(x, W) \}.$$
(3)

It is well-known that $P_W(x)$ is a closed and bounded subset of X. If $x \in X \setminus W$ then $P_W(X)$ is located in the boundary of W (see [6]). For $x \in X$ and r > 0, according to (1),

$$B(x,r) := \{ y \in X : ||x - y|| \le r \} = \{ y \in X : x - r \cdot \mathbf{1} \le y \le x + r \cdot \mathbf{1} \}.$$
(4)

Definition 1.1. [5, 6] A function $f : X \longrightarrow \overline{\mathbb{R}}$ to the set of extended real numbers is a *topical function* if

a) (*Plus-homogeneous*), i.e, $f(x + \lambda \cdot \mathbf{1}) = f(x) + \lambda$ for $\forall x \in X$ and $\forall \lambda \in \mathbb{R}$,

b) (Increasing function), i.e; if $x \leq y$ then $f(x) \leq f(y)$.

Let $\varphi: X \times X \longrightarrow \mathbb{R}$ be a function which is defined by

$$\varphi(x,y) := \sup\{\lambda \in \mathbb{R} : \lambda \cdot \mathbf{1} \le x + y\} \ (\forall x, y \in X). \ (5)$$

From (5) it is easy to see that the set $\{\lambda \in \mathbb{R} : \lambda \cdot \mathbf{1} \leq x + y\}$ is non-empty and bounded above by ||x + y||. Clearly this set is closed. It follows from the definition of $\varphi \varphi$ enjoys the following properties:

$$-\infty < \varphi(x, y) \le ||x + y||$$
 for all $x, y \in X$. (6)

$$\varphi(x, y) \cdot \mathbf{1} \le x + y \text{ for all } x, y \in X.$$
 (7)
 $\varphi(x, y) = \varphi(y, x) \text{ for all } x, y \in X.$ (8)

 $\varphi(x, -x) = \sup\{\lambda \in \mathbb{R} : \lambda \cdot \mathbf{1} \le x - x = 0\} = 0 \text{ for all } x \in X. (9)$

For each $y \in X$, define a function $\varphi_y : X \longrightarrow \mathbb{R}$ by

$$\varphi_y(x) := \varphi(x, y) \ \forall x \in X.$$
 (10)

Let $f: X \longrightarrow \mathbb{R}$. Recall that directional derivative $f'_+(x, u)$ of f at $x \in X$ in direction of $u \in X$ is defined by (see [7]),

$$f'_{+}(x,u) := \lim_{t \to 0^{+}} \frac{f(x+tu) - f(x)}{t}.$$
 (11)

2. Basic properties of sub-topical functions

Definition 2.1. [9] A function $f: X \longrightarrow \overline{\mathbb{R}}$ is called *plus-sub-homogeneous* if

$$f(x + \lambda \cdot \mathbf{1}) \leq f(x) + \lambda \ \forall x \in X \ and \ \forall \lambda \in \mathbb{R}_+.$$
 (12)

f is called *sub-topical* if it be increasing and plus-sub-homogeneous. In the following, we characterize plus-sub-homogenous which its proof is direct.

Lemma 2.2. A function $f: X \longrightarrow \overline{\mathbb{R}}$ is plus-sub-homogeneous if and only if

$$f(x + \lambda. \mathbf{1}) \ge f(x) + \lambda \ \forall x \in X \ and \ \forall \lambda \in \mathbb{R}_{-}.$$
 (13)

Let us present some examples of sub-topical functions:

Example 2.3.

a) Every topical function is sub-topical.

b) Every sub-linear function such that $f(1) \leq 1$ is sub-topical. Indeed

$$f(x + \lambda \cdot \mathbf{1}) \leq f(x) + \lambda f(\mathbf{1}) \leq f(x) + \lambda \ \forall x \in X \ and \ \forall \lambda \in \mathbb{R}_+$$

Following is a result for showing Lipschitz continuity of a sub-topical function. Its proof is direct.

Theorem 2.4. Let $f : X \longrightarrow \mathbb{R}$ be a sub-topical function, then f is Lipschitz continuous.

Theorem 2.5. Let $f : X \longrightarrow \overline{\mathbb{R}}$ be a sub-topical function. Then the following assertions are true.

- a) If there exists $x \in X$ such that $f(x) = \infty$, then $f \equiv \infty$.
- b) If there exists $x \in X$ such that $f(x) = -\infty$, then $f \equiv -\infty$.

Proof.

a) Suppose that there exists $x \in X$ such that $f(x) = \infty$. Let $y \in X$. $\lambda = \varphi(-x, y)$. There are two cases:

Case (1): If $\lambda < 0$, by (7) we have $\varphi(-x, y) \cdot \mathbf{1} \leq y - x$, then $x \leq y - \lambda \cdot \mathbf{1}$. Since $-\lambda > 0$ and f is sub-topical, so

$$f(x) \le f(y) - \lambda.$$

It implies that $f(y) = \infty$.

Case (2): If $\lambda \ge 0$, then $0 \le \varphi(-x, y) \cdot \mathbf{1} \le y - x$, so $x \le y$ and f is an increasing. Then $f(x) \le f(y)$, so $f(y) = \infty$. b) Let $y \in X$ be an arbitrary, $\lambda = \varphi(x, -y)$. Then the remind of proof is similar to that one in (a).

Theorem 2.6. Let $f : X \longrightarrow \overline{\mathbb{R}}$ be an increasing function. Then f is plus-subhomogeneous if and only if, $f_x : \mathbb{R}_+ \longrightarrow \overline{\mathbb{R}}$ given by $f_x(\alpha) = f(x + \alpha \cdot \mathbf{1}) - \alpha$, is decreasing.

Proof. If $f(x) = \infty$ (or, $-\infty$) for some $x \in X$, by theorem 2.5 $f \equiv \infty$ (or, $-\infty$), then $f_x \equiv \infty(-\infty)$ and so f_x is decreasing for all $x \in X$. Therefore, $f: X \longrightarrow \mathbb{R}$ is sub-topical and $0 \le \alpha \le \beta$.

$$f_x(\beta) = f(x + \beta \cdot \mathbf{1}) - \beta = f(x + \alpha \cdot \mathbf{1} + (\beta - \alpha) \cdot \mathbf{1}) - \beta$$
$$\leq f(x + \alpha \cdot \mathbf{1}) + \beta - \alpha - \beta = f_x(\alpha).$$

Conversely, if f_x is decreasing, $f_x(0) \ge f_x(\alpha)$ for all $\alpha \ge 0$. Hence, $f(x) \ge f(x + \alpha \cdot \mathbf{1}) - \alpha$ and f is plus-sub-homogeneous.

Theorem 2.7. Let $f : X \longrightarrow \mathbb{R}$ be an increasing function. Then f is plus-sub-homogeneous if and only if $f'_+(x, \mathbf{1}) \leq 1$ ($\forall x \in X$).

Proof. (\Longrightarrow). According to theorem 2.6, f_x is decreasing. Then $(f_x)'_+(\lambda) \leq 0 \ (\forall x \in X)$.

$$(f_x)'_+(\lambda) = \lim_{t \to 0^+} \frac{f_x(\lambda + t) - f_x(\lambda)}{t}$$
$$\lim_{t \to 0^+} \frac{f(x + \lambda \cdot \mathbf{1} + t \cdot \mathbf{1}) - \lambda - t - f(x + \lambda \cdot \mathbf{1}) + \lambda}{t}$$

If $z := x + \lambda \cdot \mathbf{1}$

$$(f_x)'_+(\lambda) = \lim_{t \to 0^+} \frac{f(z+t\cdot \mathbf{1}) - t - f(z)}{t} = (f_z)'_+(0) = f'_+(z,\mathbf{1}) - 1.$$

Therefore, $f'_+(x, \mathbf{1}) \leq 1, \ \forall x \in X.$

(⇐=) Conversely, if $f'_+(x,1) \leq 1$ for all $x \in X$, then $(f_x)'_+(\lambda) \leq 0$. Indeed $(f_x)'_+(\lambda) = f'_+(x + \lambda \cdot \mathbf{1}, \mathbf{1}) - 1$. Therefore, f_x is decreasing and f is plus-sub-homogeneous. \blacklozenge

116

Let $\{f_{\alpha} : \alpha \in I\}$ be a family of sub-topical functions. Then $\overline{f}(x) = \sup_{\alpha \in I} f_{\alpha}(x)$ and $\underline{f}(x) = \inf_{\alpha} f_{\alpha}(x)$ are sub-topical functions.

Next result is an example for a sub-topical function which is not topical.

Example 2.8. If $\alpha > 1$, we define

$$\varphi_{\alpha}(x,y) := \sup\{\lambda \in \mathbb{R} : \lambda \alpha \cdot \mathbf{1} \le x + y\} \ (\forall x, y \in X). \ (14)$$

It follows from (14) that the set $\{\lambda \in \mathbb{R} : \lambda \alpha \cdot \mathbf{1} \leq x + y\}$ is non-empty and bounded from above $(by \ \alpha^{-1} || x + y ||)$. Clearly this set is closed. It follows from the definition of φ_{α} that φ_{α} enjoys the following properties:

 $-\infty < \varphi_{\alpha}(x, y) \le \alpha^{-1} ||x + y|| \text{ for all } x, y \in X. (15)$ $\varphi_{\alpha}(x, y) \cdot \mathbf{1} \le \alpha^{-1}(x + y) \text{ for all } x, y \in X. (16)$ $\varphi_{\alpha}(x, y) = \varphi_{\alpha}(y, x) \text{ for all } x, y \in X. (17)$

$$\varphi_{\alpha}(x, -x) = \sup\{\lambda \in \mathbb{R} : \lambda \alpha \cdot \mathbf{1} \le x - x = 0\} = 0 \text{ for all } x \in X. (18)$$

For each $y \in X$ define the function $\varphi_{\alpha,y} : X \longrightarrow \mathbb{R}$ by

$$\varphi_{\alpha,y}(x) := \varphi_{\alpha}(x,y) \ \forall x \in X.$$
 (19)

Then,

$$\varphi_{\alpha,y}(x) = \varphi_{\alpha}(x,y) = \alpha^{-1}\varphi(x,y) = \alpha^{-1}\varphi_y(x).$$

Lemma 2.9. Let φ_{α} be the function defined by (14). Then

a) For $1 \leq \alpha \leq \beta$, then $\varphi_{\beta} \leq \varphi_{\alpha} \leq \varphi$.

b)
$$\lim_{\alpha \longrightarrow 1^+} \varphi_{\alpha}(x, y) = \sup_{\alpha > 1} \varphi_{\alpha}(x, y) = \varphi(x, y)$$

Proof. (a). $\varphi_{\beta} = \beta^{-1}\varphi \leq \alpha^{-1}\varphi = \varphi_{\alpha}$ (b). $\lim_{\alpha \longrightarrow 1^{+}} \varphi_{\alpha}(x, y) = \lim_{\alpha \longrightarrow 1^{+}} \alpha^{-1}\varphi(x, y) = \varphi(x, y).$

Consider $X_{\varphi_{\alpha}} = \{\varphi_{\alpha,y} : \alpha > 1, y \in X\}$. Lemma 2.2 shows that, elements of $X_{\varphi_{\alpha}}$ can be elementary function for φ , (i.e; $\varphi_y(x) = \sup\{\varphi_{\alpha,y}(x) : \varphi_{\alpha,y} \in X_{\varphi_{\alpha}}\}$).

Remark.1. The function $\varphi_{\alpha,y}$ defined by (19) is sub-topical, so by theorem 2.4 is Lipschitz continuous.

Now it is given a characterization of downward sets in terms of separation from outside points by sub-topical functions instead of topical functions. **Theorem 2.10.** Let φ_{α} be the function defined by (14). Then for a nonempty subset W of X the following assertions are equivalent: i) W is a downward subset of X.

ii) For each $x \in X \setminus W$,

$$\varphi_{\alpha}(w, -x) < 0, \ (\forall w \in W). \ (20)$$

iii) For each $x \in X \setminus W$, there exists $l \in X$ such that

$$\varphi_{\alpha}(w,l) < 0 \le \varphi_{\alpha}(x,l), \ (\forall w \in W). \ (21)$$

Proof. (i) \implies (ii). Suppose that (i) holds and there exists $x \in X \setminus W$. It is known (in [6]) that, $\varphi(w, -x) < 0$. Therefore, $\varphi_{\alpha}(w, -x) = \alpha^{-1}\varphi(w, -x) < 0$ ($\forall w \in W$).

 $(ii) \implies (iii)$. Assume that (ii) holds and $x \in X \setminus W$ is arbitrary. Then by hypothesis, $\varphi_{\alpha}(w, -x) < 0 \ (\forall w \in W)$. Let $l = -x \in X$,

$$\varphi_{\alpha}(w, -x) = \varphi_{\alpha}(w, l) < 0 = \varphi_{\alpha}(x, -x) = \varphi_{\alpha}(x, l).$$

 $(iii) \Longrightarrow (i)$. Suppose that (iii) holds and W is not downward set. There is $x \le w$ such that $w \in W$ and $x \in X \setminus W$. There is $l \in X$ such that $\forall \alpha > 1$, $\varphi_{\alpha}(w, l) < 0 \le \varphi_{\alpha}(x, l)$. But $\varphi_{\alpha,l}(\cdot)$ is increasing. Therefore,

$$\varphi_{\alpha}(x,l) \le \varphi_{\alpha}(w,l) < 0,$$

which is a contradiction. \blacklozenge

Theorem 2.11. [6] For a function $f : X \longrightarrow \overline{\mathbb{R}}$, the following assertions are equivalent:

i) f is topical. ii) For each $y \in X$, there exists $l_y \in X$ such that

$$\varphi_{l_u}: X \longrightarrow \mathbb{R}$$

satisfies in

$$\varphi_{l_y} \leq f \text{ and } f(y) = \varphi_{l_y}(y) \ (y \in domf).$$

iii) f in X_{φ} - convex.

Example 2.12. Let the function $f : \mathbb{R} \longrightarrow \mathbb{R}$ given by f(x) = x is topical and for $\alpha = 2, \varphi_2 : \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ is defined by

$$\varphi_2(x,y) = 2^{-1}(x+y) \ (\forall x, y \in X).$$

For arbitrary but fixed $y \in \mathbb{R}$, if there exist $l_y \in \mathbb{R}$ such that

$$\varphi_{2,l_y}(x) \leq f(x) \ \forall x \in \mathbb{R} \ and \ \varphi_{2,l_y}(y) = f(y),$$

then $l_y = y$ and $y \leq x \ \forall x \in \mathbb{R}$ which is a contradiction.

3. Separation theorem and abstract convexity by sub-topical functions

Remark.2. Define, $S_{y,d}(\cdot) := \min\{\varphi_y(\cdot), d\}$ if $y \in X$ and $d \in \mathbb{R}$, then $S_{y,d}$ is sub-topical. Indeed $S_{y,d}$ is increasing since φ_y is increasing. Also

(*)
$$y_1 \leq y_2 \iff S_{y_1,d} \leq S_{y_2,d}$$

(**) $d_1 \leq d_2 \iff S_{y,d_1 \leq} S_{y,d_2}$.

and if $x \in X$, $\lambda > 0$

$$S_{y,d}(x + \lambda \cdot \mathbf{1}) = \min\{\varphi_y(x + \lambda \cdot \mathbf{1}), d\} = \min\{\varphi_y(x) + \lambda, d = d_1 + \lambda\}$$
$$= \min\{\varphi_y(x), d_1\} + \lambda = S_{y,d_1}(x) + \lambda \le S_{y,d}(x) + \lambda.$$

Theorem 3.1. Let $f : X \longrightarrow \overline{\mathbb{R}}$ be a function. The following assertions are equivalent:

i)
$$f$$
 is topical.
ii) $f(x) \ge S_{y,d}(x) + f(-y)$ for all $x, y \in X, d \in \mathbb{R}_+$.

Proof. Suppose that (i) holds and since $S_{y,d}(x) = \min\{\varphi(x,y), d\} \leq \varphi_y(x)$. Then by (see [1]),

$$S_{y,d}(x) \le \varphi_y(x) \le f(x) - f(-y).$$

It implies that

$$f(x) \ge S_{y,d}(x) + f(-y).$$

Conversely, assume that (ii) holds, if $f(x) = \infty(or - \infty)$ for some $x \in X$, by hypothesis $f \equiv \infty(or - \infty)$. Then f is topical. We assume that $f: X \longrightarrow \mathbb{R}$.

$$f(x + \lambda \cdot \mathbf{1}) \ge S_{-x,|\lambda|}(x + \lambda \cdot \mathbf{1}) + f(x).$$

By definition of $S_{y,d} \in S$,

$$f(x + \lambda \cdot \mathbf{1}) \ge f(x) + \lambda \ (I)$$

and

$$f(x) + \lambda \ge S_{-x-\lambda \cdot \mathbf{1},|\lambda|}(x) + f(x+\lambda \cdot 1) + \lambda = f(x+\lambda \cdot \mathbf{1})$$
(II)

Therefore, (I) and (II) imply that $f(x + \lambda \cdot \mathbf{1}) = f(x) + \lambda$. We show that f is increasing. Let $x \leq y$ for $x, y \in X$. According to (9):

$$0 = \varphi(x, -x) \le \varphi(y, -x)$$

and

$$0 = S_{-x,0}(y) = \min\{\varphi_{-x}(y), 0\} \le \varphi_{-x}(y) \le f(y) - f(x)$$

Therefore, $f(x) \leq f(y)$.

Theorem 3.2. The map $\xi : X \times \mathbb{R} \longrightarrow S = \{S_{y,d} : y \in X, d \in \mathbb{R}\}$ which $(y,d) \mapsto S_{y,d}$ is bijection.

Proof. ξ is obviously onto. We show f is one-to-one. If $S_{y_1,d_1} = S_{y_2,d_2}$, $S_{y_1,d_1}(-y_1 + d_1 \cdot \mathbf{1}) = d_1 = S_{y_2,d_2}(-y_1 + d_1 \cdot \mathbf{1}) = \min\{\varphi(y_2, -y_1) + d_1, d_2\}.$ Then $d_1 \leq d_2$ and $d_1 \leq \varphi(y_2, -y_1) + d_1$, so $0 \leq \varphi(y_2, -y_1)$ and implies that $0 \leq \varphi(y_2, -y_1) \cdot \mathbf{1} \leq y_2 - y_1$, so $y_1 \leq y_2$. Also since, $S_{y_2,d_2}(-y_2 + d_2 \cdot \mathbf{1}) = d_2 = S_{y_1,d_1}(-y_2 + d_2 \cdot \mathbf{1}) = \min\{\varphi(y_1, -y_2) + d_2, d_1\}$, then $d_2 \leq d_1$ and $d_2 \leq \varphi(y_1, -y_2) + d_2$, so $0 \leq \varphi(y_1, -y_2)$ and implies that $0 \leq \varphi(y_1, -y_2) \cdot \mathbf{1} \leq y_1 - y_2$. Therefore, $y_2 \leq y_1$. It follows that $y_1 = y_2$ and $d_1 = d_2$.

Theorem 3.3. Let $f : X \longrightarrow \mathbb{R}$ be a function. If f is a topical function then there exists a set $M = Y \times \mathbb{R}_+ \subseteq X \times \mathbb{R}$ such that

$$f(x) = \sup_{(y,d) \in M} S_{y,d}(x).$$
 (22)

In this case, one can take $Y = \{y \in X : f(-y) \ge 0\}$.

Proof. Let f be a topical. If $f(x) = \infty$ for some $x \in X$, by theorem (3.6), $f \equiv \infty$. Then Y = X, so $f(x) = \sup_{y \in Y} \varphi(x, y) = \infty$. If $f(x) = -\infty$ for some $x \in X$, by theorem 2.5, $f \equiv -\infty$. Then $Y = \emptyset$ and $f(x) = \sup_{y \in Y} \varphi(x, y) = -\infty$. Suppose that $f: X \longrightarrow \mathbb{R}$, be a topical function. According to theorem 2.11, $\forall x \in X$ there exists $y \in Y$ such that,

$$\varphi_y \le f, \ \varphi_y(x) = f(x).$$

Choose $d = |f(x)|, S_{y,d} = \min\{\varphi_y, d\} \leq f$ and $S_{y,d}(x) = f(x)$. Therefore, $f(x) = \sup_{(y,d)\in M} S_{y,d}(x)$.

Definition 3.4. The lower polar-function of $f: X \longrightarrow \overline{\mathbb{R}}$ is the function $f^*: S \longrightarrow \overline{\mathbb{R}}$

$$f^{\star}(S_{y,d}) := \sup_{x \in X} \{ S_{y,d}(x) - f(x) \}, \ (\forall S_{y,d} \in S). \ (23)$$

Theorem 3.5. Let $f: X \longrightarrow \overline{\mathbb{R}}$ be a function, then

$$f^{\star}(S_{y,d}) \ge d - f(-y + d \cdot \mathbf{1}) \ (\forall S_{y,d} \in S). \ (24)$$

f is topical if and only if

$$f^{\star}(S_{y,d}) = -f(-y) \; (\forall S_{y,d} \in S). \; (25)$$

Proof. $f^*(S_{y,d}) = \sup_{x \in X} \{S_{y,d}(x) - f(x)\}$ $\geq S_{y,d}(-y + d \cdot \mathbf{1}) - f(-y + d \cdot \mathbf{1}) = d - f(-y + d \cdot \mathbf{1}).$ Indeed $S_{y,d}(-y + d \cdot \mathbf{1}) = d$. Then $f^*(S_{y,d}) \geq d - f(-y + d \cdot \mathbf{1}).$ If f is a topical function. Let $x, y \in X$ be arbitrary. It follows from (7) that $S_{y,d}(x) \cdot \mathbf{1} \leq x + y$ and hence $S_{y,d}(x) \cdot \mathbf{1} - y \leq x$. Since f is topical function,

$$S_{y,d}(x) - f(x) \le -f(-y) \ (x, y \in X).$$

Then

$$f^{\star}(S_{y,d}) = \sup_{x \in X} \{S_{y,d}(x) - f(x)\} \le -f(-y), \ (y \in Y).$$

From (24), $d - f(-y + d \cdot \mathbf{1}) = d - f(-y) - d = -f(-y) \le f^*(S_{y,d}) \le -f(-y)$. Therefore, $f^*(S_{y,d}) = -f(-y)$.

Conversely, we assume that (25) holds. Let $x, y \in X$ be arbitrary. $f^*(S_{y,d}) \geq S_{y,d}(x) - f(x)$. By (25), $-f(-y) \geq S_{y,d}(x) - f(x)$, so $f(x) \geq S_{y,d}(x) + f(-y)$. By theorem 3.3, f is a topical function which it completes the proof.

Definition 3.6. Let $f: X \longrightarrow \mathbb{R}$ be a topical function and $S_{l,d} \in S$. Define the X_s -subdifferential $\partial_{X_s} f(y)$ of at a point $y \in X$ by,

$$\partial_{X_s} f(y) = \{ (l,d) \in X \times \mathbb{R} : S_{l,d}(x) \le f(x) \ \forall x \in X, \ and \ S_{l,d}(y) = f(y) \}, \ (26)$$

where $X_s := \{(l, d) \in X \times \mathbb{R} : S_{l,d} \in S\}.$

Theorem 3.7. Let $f: X \longrightarrow \mathbb{R}$ be a topical function and $y \in X$. Then

$$\partial_{X_s} f(y) = \{ (l, d) \in X \times \mathbb{R} : S_{l, d}(y) \ge f(y) \text{ and } f(-l) = 0 \}.$$

In particular, $(f(y) \cdot \mathbf{1} - y, f(y)) \in \partial_{X_s} f(y)$ and $(f(y) \cdot \mathbf{1} - y, |f(y)|) \in \partial_{X_s} f(y)$

Proof. Let

$$Q := \{ (l,d) \in X \times \mathbb{R} : S_{l,d}(y) \ge f(y) \text{ and } f(-l) = 0 \}.$$

Let $(l, d) \in \partial_{X_s} f(y)$. Then $f(y) \leq S_{l,d}(y)$. It follows that $f(y) \cdot \mathbf{1} \leq S_{l,d}(y) \cdot \mathbf{1} \leq \varphi_l(y) \cdot \mathbf{1} \leq y + l$. Therefore, $y \geq f(y) \cdot \mathbf{1} - l$ and $f(y) \geq f(y) + f(-l)$. Then $f(-l) \leq 0$ (I). Since $f(x) \geq S_{l,d}(x)$, $\forall x \in X$ so $f(-l+d \cdot \mathbf{1}) \geq S_{l,d}(-l+d \cdot \mathbf{1})$. Therefore, $f(-l)+d \geq \min\{\varphi_l(-l+d \cdot \mathbf{1}), d\} = d$. This implies that $f(-l) \geq 0$ (II) by using (I), (II), f(-l) = 0 and $(l, d) \in D$.

Conversely, if $(l, d) \in D$, there exists $x \in X$ such that $S_{l,d}(x) > f(x)$ which implies that there exists r > 0 such that $S_{l,d}(x) > f(x) + r$, and so $x > (f(x) + r) \cdot \mathbf{1} - l$. Since f is topical and f(-l) = 0. It shows that

$$f(x) > f(x) + r + f(-l),$$

which is a contradiction by choosing of r. Therefore, $S_{l,d}(x) \leq f(x), \forall x \in X$. Also $S_{l,d}(y) \leq f(y)$. Since $(l,d) \in D$, then $f(y) \leq S_{l,d}(y)$. It implies $f(y) = S_{l,d}(y)$. Hence, $(l,d) \in \partial_{X_s} f(y)$. If $f(y) \cdot \mathbf{1} - y, d = |f(y)|$ or d = f(y), then $(l,d) \in \partial_{X_s} f(y)$

$$S_{l,d}(y) = \min\{\varphi_l(y), d\} = f(y) \text{ and } f(y - f(y) \cdot \mathbf{1}) = 0.$$

Then $(l,d) \in \partial_{X_s} f(y)$.

It is worth noting that the function $S_{l,d}$ defined by remark (2) is sub-topical and by theorem (3.5) Lipschitz continuous. We now give characterizations of downward sets in terms of separation from outside points.

Theorem 3.8. Let $W \subseteq X$ and $S_{l,d}$ be a function defined by remark (2). Then the following assertions are equivalent:

i) W is a downward set.

ii) For each $x \in X \setminus W$, there exists $(l,d) \in X \times \mathbb{R}_+$ such that $S_{l,d}(w) < 0 \leq S_{l,d}(x)$.

Proof.

 $(i) \Longrightarrow (ii)$. Suppose that (i) holds and $x \notin W$. Let $l = -x, d \in \mathbb{R}_+$, then by [6], $\varphi_l(w) < 0 \le \varphi_l(x) \ \forall w \in W$. From the definition of $S_{l,d}(w) = \min\{\varphi_l(w), d\}$,

 $S_{l,d}(w) < 0 \le S_{l,d}(x) \ (\forall w \in W).$

 $(ii) \implies (i)$. Suppose that (ii) holds and W is not a downward set. There is $w_0 \in W$ and $x_0 \in X \setminus W$ with $x_0 \leq w_0$. By hypothesis, there exists $l \in X, d \in \mathbb{R}^+$ such that

$$S_{l,d}(w) < 0 \le S_{l,d}(x_0) \ (\forall w \in W)$$

Since $S_{l,d}$ is increasing, then $S_{l,d}(x_0) \leq S_{l,d}(w_0)$. Therefore,

$$S_{l,d}(w_0) < 0 \le S_{l,d}(x_0) \le S_{l,d}(w_0)$$

This is a contradiction. \blacklozenge

Theorem 3.9. Let $W \subseteq X$, and $S_{l,d}$ be the function defined by remark (2). Then the following assertions are equivalent:

i) W is a closed downward subset of X.

ii) W is downward, and for each $x \in X$ the set

$$H = \{\lambda \in \mathbb{R} : x + \lambda \cdot \mathbf{1} \in W\}, \ (27)$$

is closed in \mathbb{R} .

iii) For each $x \in X \setminus W$. There is $(l, d) \in X \times \mathbb{R}_{++}$ such that

$$S_{l,d}(w) < 0 < S_{l,d}(x), \ (w \in W).$$
 (28)

vi) For each $x \in X \setminus W$ there exists $(l, d) \in X \times \mathbb{R}_{++}$ such that

$$\sup_{w \in W} S_{l,d}(w) < S_{l,d}(x).$$
(29)

Proof.

 $(i) \Longrightarrow (ii)$. The proof is the same as in [6]

 $(ii) \Longrightarrow (iii)$. Suppose that (ii) holds and $x \in X \setminus W$ is arbitrary. There is $l \in X$ such that

 $\varphi(w,l) < 0 < \varphi(x,l) \; (\forall w \in W).$

Let $d = \varphi(x, l) \in \mathbb{R}_{++}$, then

$$S_{l,d}(w) = \min\{\varphi(w,l), d\} = \varphi(w,l) < 0 \ (\forall w \in W).$$

and

$$S_{l,d}(x) = \min\{\varphi(x,l), d\} = \varphi(x,l) > 0.$$

Therefore,

$$S_{l,d}(w) < 0 < S_{l,d}(x) \ (\forall w \in W).$$

 $(iii) \Longrightarrow (vi)$, is obvious.

 $(vi) \Longrightarrow (i)$. Suppose that (vi) holds and W is not downward. There is $w_0 \in W$ and $x_0 \in X \setminus W$ with $x_0 \leq w_0$. By hypothesis, there exists $l \in X$, $d \in \mathbb{R}_{++}$ such that

$$\sup_{w \in W} S_{l,d}(w) < S_{l,d}(x_0).$$

122

Since $S_{l,d}(\cdot)$ is increasing, it follows that;

$$S_{l,d}(x_0) \le S_{l,d}(w_0) \le \sup_{w \in W} S_{l,d}(w) < S_{l,d}(x_0).$$

This is a contraction. Hence, W is a downward set. Finally, assume that W is not closed. There is a sequence $\{w_n\}_{n\geq 1} \subseteq W$ and $x_0 \in X \setminus W$ such that $||w_n - x_0|| \longrightarrow 0$ as $n \longrightarrow \infty$. Since $x_0 \in X \setminus W$, there exists $l \in X, d \in \mathbb{R}_{++}$ such that;

$$\sup_{w \in W} S_{l,d}(w) < S_{l,d}(x_0).$$

Thus,

$$S_{l,d}(w_n) \le \sup_{w \in W} S_{l,d}(w) \ (\forall n \ge 1).$$

From continuity of $S_{l,d}(\cdot)$, $S_{l,d}(x_0) \leq \sup_{w \in W} S_{l,d}(w)$. This is a contradiction.

Lemma 3.10. Let W be a closed downward subset of X, $w_0 \in bdW$ and let $S_{l,d}$ be the function defined by remark (2). Then $S_{-w_0,d}(w) \leq 0$ ($\forall w \in W$,) and $d \in \mathbb{R}_+$.

Proof. Suppose that this condition holds, by (see [6]), $\varphi(w, -w_0) \leq 0 \; (\forall w \in W)$. Therefore, if $d \in \mathbb{R}_+$,

$$S_{-w_0,d}(w) = \min\{\varphi(w, -w_0), d\} = \varphi(w, -w_0) \le 0 \ (\forall w \in W).$$

Lemma 3.11. Let W be a closed downward subset of $X, w_0 \in bdW, l = -w_0$ and $d \in \mathbb{R}_+$. Let $S_{l,d}$ be the function defined by remark (2). Then

$$S_{l,d}(w) \le 0 = S_{l,d}(w_0), \ (\forall w \in W).$$

Proof. By hypothesis and [6]

$$\varphi(w,l) \le 0 = \varphi(w_0,l) \; (\forall w \in W).$$

Let d = 0

$$S_{l,d}(w) = \min\{\varphi(w,l), d\} = \varphi(w,l) \le 0,$$

and

$$S_{l,d}(w_0) = min\{\varphi(w_0, l), d\} = 0.$$

Therefore,

$$S_{l,d}(w) \le 0 = S_{l,d}(w_0) \ (\forall w \in W).$$

The following theorem gives a necessary and sufficient condition for the best approximation in terms of separation from outside points.

Theorem 3.12. Let W be a closed downward subset of X and $x_0 \in X$. Let $y_0 \in W$ and $r_0 = ||x_0 - y_0||$. Assume that $S_{l,d}$ is the function defined by remark (2). Then the following assertions are equivalent: i) $y_0 \in P_W(x_0)$. ii) There exists $l \in X$ and $d \in \mathbb{R}_+$ such that; $S_{l,d}(w) \leq 0 \leq S_{l,d}(y) \; (\forall w \in W, y \in B(x_0, r_0)) \; (30)$

Moreover, if (30) holds with $l = -y_0$, then $y_0 = minP_W(x_0)$.

Proof. (i) \Longrightarrow (ii). Suppose that $y_0 \in P_W(x_0)$, then $r_0 = ||x_0 - y_0|| = d(W, x_0)$. Since W is closed downward subset of X, then by (see [6]), that the least element $w_0 = x_0 - r_0 \cdot 1$ of the set $P_W(x_0)$ exists. Let $l = -w_0 \in X$. Then,

$$\varphi(w,l) \le 0 \le \varphi(y,l) \; (\forall w \in W, y \in B(x_0,r_0)). \; (31)$$

Let $\varphi_l(x_0 + r_0 \cdot \mathbf{1}) = d$, then $d \in \mathbb{R}_+$. Indeed $\forall y \in B(x_0, r_0)$. By (4), $0 \le y \le x_0 + r_0 \cdot \mathbf{1}$, then by (31), $0 \le \varphi(y, l) \le \varphi(x_0 + r_0 \cdot \mathbf{1}, l)$. Therefore,

$$S_{l,d}(w) = \min\{\varphi(w,l), d\} = \varphi(w,l) \le 0, \ (\forall w \in W)$$

and

$$S_{l,d}(y) = \min\{\varphi(y,l), d\} = \varphi(y,l) \ge 0. \ (\forall y \in B(x_0, r_0))$$

 $(ii) \Longrightarrow (i)$. Assume that there exists $l \in X$ and $d \in \mathbb{R}_+$ such that

$$S_{l,d}(w) \le 0 \le S_{l,d}(y). \ (\forall w \in W, y \in B(x_0, r_0))$$

From (4), $x_0 - r_0 \cdot \mathbf{1} \in B(x_0, r_0)$. From the hypothesis $S_{l,d}(x_0 - r_0 \cdot \mathbf{1}) \geq 0$. According to the definition of $S_{l,d}$, $\varphi(x_0 - r_0 \cdot \mathbf{1}, l) \geq 0$. Indeed $S_{l,d}(x_0 - r_0 \cdot \mathbf{1}) = \min\{\varphi(x_0 - r_0 \cdot \mathbf{1}, l)\} \geq 0$. Since $\varphi(., l)$ is topical, $\varphi(x_0, l) \geq r_0$. Due to (7),

$$r_0 \cdot \mathbf{1} \le \varphi(x_0, l) \cdot \mathbf{1} \le x_0 + l.$$
(32)

Let $w \in W$ be an arbitrary and $p_w = \varphi(w, -x_0) \cdot \mathbf{1} + x_0 \in X$. Then $\varphi(w, -x_0) \cdot \mathbf{1} \leq w - x_0$ and $p_w \leq w$. Since W is downward set and $w \in W$, it follows that $p_w \in W$. By hypothesis $S_{l,d}(p_w) \leq 0$ and since $d \in \mathbb{R}_+$, $\varphi(p_w, l) \leq 0$. Since $\varphi(p_w, .)$ is topical and (32) holds,

$$S_{-x_0,d}(p_w) \le \varphi(p_w, -x_0) \le \varphi(p_w, l) - r_0 \le -r_0.$$

Since $\varphi(., -x_0)$ is topical

$$-r_0 \ge \varphi(p_w, -x_0) = \varphi(\varphi(w, -x_0) \cdot \mathbf{1} + x_0, -x_0) = \varphi(w, -x_0).$$

From Lipschitz continuity of φ_{-x_0} ,

$$r_0 \le |\varphi(w, -x_0)| = |\varphi(x_0, -x_0) - \varphi(w, -x_0)| \le ||x_0 - w||.$$

Thus $r_0 \leq ||x_0 - w||$ for all $(w \in W)$ and $||x_0 - y_0|| = d(x_0, W)$. Consequently, $y_0 \in P_W(x_0)$. Finally, suppose that (30) holds with $l = -y_0$. From implication $(ii) \Longrightarrow (i), y_0 \in P_W(x_0)$. Let $w \in P_W(x_0)$ be an arbitrary. Thus, $||x_0 - w|| = d(x_0, W) = ||x_0 - y_0|| = r_0$, that is $w \in B(x_0, r_0)$. It follows from the hypothesis $S_{-y_0,d}(w) \geq 0$ and so $0 \leq S_{-y_0,d}(w) \cdot \mathbf{1} \leq \varphi(w, -y_0) \cdot \mathbf{1} \leq w - y_0$. This implies that $y_0 \leq w$ for all $w \in P_W(x_0)$. Hence, $y_0 = \min P_W(x_0)$, which it completes the proof. \blacklozenge

124

References

- 1. M. Alimohammady, A. Shahmari, Superlinear separation on downward sets and characterization of topical functions over ordered Banach spaces., Optimization, to appear.
- J. Gunawardena, An introduction to idempotency. Idempotency (Bristol, 1994), 1-49, publ. Newton Inst., 11, Cambridge Univ. Press, Cambridge, 1998.
- 3. J. Gunawardena, From max-plus algebra to nonexpansive mappings: a nonlinear theory for discrete event systems, Theoretical Computer Science, to appear (revised version of technical Report HPL-BRIMS-99-07, Hewlett-Packard Labs, 1999).
- J.-E. Martinez-Legaz, A. M. Rubinov, and I. Singer, Downward sets and thir separeation and approximation properties, J. Global Optimization 23 (2002), 111–137.
- 5. H. Mohebi, Topical functions and their properties in a class of ordered Banach spaces, J. Math. Anal. Appl. in press. 1.1
- H. Mohebi, ,Rubinov,A. M. Best approximation by downward sets with applications, J. Math. Anal. Appl. in press. 1.1, 2.11
- R.T. Rockafellar, Convex Analysis, Princeton Mathematical series, No. 28, Princeton University press, Princeton, N.J., 1970.
- 8. A. M. Rubinov, *Abstract convexity and global optimization*, Kluwer Academic Publishers , Boston , Dordrech , London , 2000.
- 9. A. M. Rubinov, and I. Singer, Topical and sub-topical functions , downward sets and abstract convexity, Optimization , 50 (2001), 307–351. 2.1

 1,2 Department of Mathematics, University of Mazandaran, Babolsar 47416-1468, Iran.

E-mail address: amohsen@umz.ac.ir

² ISLAMIC AZAD UNIVERSITY, AYATOLLAH AMOLI BRANCH, AMOL, IRAN *E-mail address*: ashahmari@yahoo.com