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COMMON FIXED POINT THEOREMS FOR HYBRID
MAPPINGS SATISFYING GENERALIZED CONTRACTIVE

CONDITIONS

ABDELKRIM ALIOUCHE

Abstract. We prove common fixed point theorems in symmetric spaces for
two pairs of hybrid mappings using the concept of T−weakly and S−weakly
commuting mappings satisfying generalized contractive conditions which gen-
eralize theorems of Aamri and El Moutawakil [J. Math. Anal. Appl., 270
(2002), 181–188.], Aamri and El Moutawakil [Appl. Math. E-notes., 3 (2003),
156–162.] and Aliouche [J. Math. Anal. Appl., 322 (2006), 796–802.].

1. Introduction and preliminaries

Let (X, d) be a metric space. For x ∈ X andA ⊂ X, d(x,A) = inf {d(x, y), y ∈ A}.
Let CB(X) be the set of all nonempty closed and bounded subsets of X. Let

H be the Hausdorff metric with respect to d defined by

H(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
for all A,B ∈ CB(X).

Let f : X → X be a single-valued mapping and T : X → CB(X) be a
multi-valued mapping.
f and T are said to be commuting, see [9], in X if for all x ∈ X, fTx ⊂ Tfx.
f and T are said to be weakly commuting on X, see [17] and [18], if for all

x ∈ X, fTx ∈ CB(X) and

H(fTx, Tfx) ≤ d(fx, Tx)
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f and T are said to be compatible, see [10] and [13], if for all x ∈ X, fTx ∈
CB(X) and

lim
n→∞

H(fTxn, T fxn) = 0

whenever {xn} is a sequence in X such that limn→∞ fxn = t ∈ A = limn→∞ Txn
for some t ∈ X and A ∈ CB(X).
f and T are noncompatible if fTx ∈ CB(X) for all x ∈ X and there exists

at least one sequence {xn} in X such that limn→∞ Txn = A ∈ CB(X) and
limn→∞ fxn = t ∈ A, but limn→∞H(fTxn, T fxn) either non-zero or does not
exist.

Commuting implies weakly commuting implies compatible, but the converse is
not true in general, see [13].
f and T are said to be weakly compatible, see [11], if they commute at their

coincidence points; i.e., fx ∈ Tx implies that fTx = Tfx.
f and T are said to be (IT )−commuting at x ∈ X, see [20], if fTx ⊂ Tfx.
f and T are said to be R−weakly commuting at x ∈ X, see [19], if fTx ∈

CB(X) and there exists an R > 0 such that

H(fTx, Tfx) ≤ Rd(fx, Tx). (1.1)

f and T are said to be pointwise R−weakly commuting on X if for all x ∈ X,
fTx ∈ CB(X) and (1.1) holds.

It was proved in [20] that a pointwise R−weakly commuting hybrid pair is
not weakly compatible in general. However, pointwise R−weak commutativity
at coincidence points is equivalent to (IT ) commutativity.
f is T−weakly commuting at x ∈ X, see [12], if ffx ∈ Tfx.
For a hybrid pair (f, T ), (IT ) commuting at coincidence points implies that f

is T−weakly commuting, but the converse is not true, see [12].
If T is a single-valued mapping, then T−weak commutativity at coincidence

points is equivalent to weak commutativity.
Let f, T : X → X. The pair (f, T ) satisfies the property (E.A), see [1], if there

exists a sequence {xn} in X such that limn→∞ fxn = limn→∞ Txn = t for some
t ∈ X.

Let f : X → X and T : X → CB(X). The pair (f, T ) satisfies property
(E.A), see [12], if there exists a sequence {xn} is a sequence in X such that
limn→∞ fxn = t ∈ A = limn→∞ Txn for some t ∈ X and A ∈ CB(X).

Let f, g, S, T : X → X. The pairs (f, S) and (g, T ) satisfy a common property
(E.A), see [14], if there exist two sequences {xn} , {yn} and t ∈ X such that

lim
n→∞

Sxn = lim
n→∞

fxn = lim
n→∞

gyn = lim
n→∞

Tyn = t. (1.2)

If S = T and g = f in (1.2), we obtain the definition of property (E.A) for
single-valued mappings.

Let f, g : X → X and S, T : X → CB(X). The pairs (f, S) and (g, T ) satisfy
a common property (E.A), see [14], if there exist two sequences {xn} , {yn}, t ∈ X
and A,B ∈ CB(X) such that

lim
n→∞

Sxn = A, lim
n→∞

Tyn = B, lim
n→∞

fxn = lim
n→∞

gyn = t ∈ A ∩B. (1.3)
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If S = T and g = f in (1.3), we obtain the definition of property (E.A) for
multi–valued mappings.

It has been observed by Hicks and Rhoades [8] that some of the defining prop-
erties of the metric are not needed in the proofs of certain metric theorems.
Motivated by this fact, they established some common fixed point Theorems in
symmetric spaces and proved that very general probabilistic structures admit a
compatible symmetric or semi-metric.

Recall that a symmetric on a set X is a nonnegative real valued function d on
X ×X such that

(i) d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x).
Let d be a symmetric on a set X and for r > 0 and any x ∈ X, let B(x, r) =

{y ∈ X : d(x, y) < r}. A topology t(d) on X is given by U ∈ t(d) if and only if
for each x ∈ U , B(x, r) ⊂ U for some r > 0. A symmetric d is a semi-metric if
for each x ∈ X and each r > 0, B(x, r) is a neighborhood of x in the topology
t(d). Note that limn→∞ d(xn, x) = 0 if and only if xn → x in the topology t(d).

The following two axioms were given by Wilson [22]. Let (X, d) be a symmetric
space.

(W.3) Given {xn}, x and y in X,
limn→∞ d(xn, x) = 0 and limn→∞ d(xn, y) = 0 imply x = y.
(W.4) Given {xn}, {yn} and x in X,
limn→∞ d(xn, x) = 0 and limn→∞ d(xn, yn) = 0 imply that limn→∞ d(yn, x) = 0
It is easy to see that for a semi-metric d, if t(d) is Hausdorff, then (W.3) holds.
Now, we define the Hausdorff distance in a symmetric space.

Definition 1.1 ([7] ). Let A be a nonempty subset of X. A is said to be
d−closed iff A−d = A, where
A−d = {x ∈ X : d(x,A) = 0} and d(x,A) = inf {d(x, y) : y ∈ A}.
A is said to be d−bounded iff δd(A) <∞ where δd(A) = sup {d(x, y) : x, y ∈ A}.

The following definition is a generalization of the well-known the Hausdorff
distance to the setting of a symmetric case.

Definition 1.2 ([7] ). Let CB(X) be the set of all nonempty d−closed and
d−bounded subsets of X. Consider the function H defined by

H(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
for all A,B ∈ CB(X).

It is easy to see that (CB(X), H) is a symmetric space.

Example 1.3. Let X = [1,∞) and d be a symmetric on X defined by d(x, y) =
e|x−y| − 1 for all x, y in X. Define f : X → X and T : X → CB(X) by
f(x) = 2x + 1 and Tx = [2, 2x+ 3]. Consider the sequence {xn} such that

xn = 1 +
1

n
, n = 1, 2, .... t = 3 ∈ [2, 5] = A. Clearly, limn→∞ d(fxn, 3) = 0 and

limn→∞H(Txn, A) = 0. Therefore, (f, T ) satisfies the property (E.A).

Example 1.4. Let X = R with the above symmetric function d. It is easy to
see that the condition (W.3) holds. Define f, T : X− → X by: fx = x + 1 and



COMMON FIXED POINT THEOREMS FOR HYBRID MAPPINGS 139

Tx = {x + 2}, for all x ∈ X. Suppose that property (E.A) holds. Then there
exists a sequence {xn} in X satisfying limn→∞ d(fxn, t) = limn→∞H(Txn, A) = 0
for some t ∈ X. Therefore, limn→∞ xn = t − 1 and A = {t + 2} and obviously
t /∈ A. Hence f and T do not satisfy the property (E.A).

Example 1.5. Let X = [1,∞) and d be a symmetric on X defined by d(x, y) =
e|x−y| − 1 for all x, y in X. Define f, g : X → X and S, T : X → CB(X) by

fx = 2 +
x

3
, gx = 2 +

x

2
, Sx = [1, 2 + x] and Tx = [3, 3 +

x

2
]. Consider the

sequences {xn} and {yn} such that xn = 3 +
1

n
, yn = 2 +

1

n
, n = 1, 2, .... Clearly,

t = 3, A = [1, 5], B = [3, 4], t ∈ A ∩B and

lim
n→∞

H(Sxn, A) = lim
n→∞

H(Gyn, B) = lim
n→∞

d(fxn, 3) = lim
n→∞

d(gyn, 3) = 0.

Therefore, (f, S) and (g, T ) satisfy a common property (E.A).

Definition 1.6. Let (X, d) be a symmetric space. We say that (X, d) satisfies
the property (H.E) if given {xn}, {yn} and x in X

lim
n→∞

d(xn, x) = 0 and lim
n→∞

d(yn, x) = 0 imply lim
n→∞

d(xn, yn) = 0.

Example 1.7. (i) Every metric space (X, d) satisfies the property (H.E).
(ii) Let X = [0,+∞) with the symmetric function d defined in Example 1.3.
It is easy to see that the symmetric space (X, d) satisfies the property (H.E).

Several authors have proved fixed point theorems and common fixed point
theorems for mappings satisfying contractive conditions of integral type, see [3],
[5], [6], [16] and [21] .

Recently, Zhang [23] and Aliouche [4] proved common fixed point theorems
using new generalized contractive conditions in metric spaces. These theorems
extended well-known results in [5], [6], [16] and [21].

Let A ∈ (0,∞], R+
A = [0, A). Let F : R+

A → R satisfying
(i) F (0) = 0 and F (t) > 0 for each t ∈ (0, A),
(ii) F is nondecreasing on R+

A,
(iii) F is continuous.
Define z[0, A) = {F : F satisfies (i)–(iii)}.
The following Lemma was proved in [23]

Lemma 1.8. Let A ∈ (0,+∞], F ∈ z[0, A). If limn→∞ F (εn) = 0 for εn ∈ R+
A,

then limn→∞ εn = 0.

The following examples were given in [23].
(i) Let F (t) = t, then F ∈ z[0, A) for each A ∈ (0,+∞].
(ii) Suppose that ϕ is nonnegative, Lebesgue integrable on [0, A) and satisfies

ε

lim
0
ϕ(t)dt > 0 for each ε ∈ (0, A).

Let F (t) = limt
0 ϕ(s)ds, then F ∈ [0, A).

(iii) Suppose that ψ is nonnegative, Lebesgue integrable on [0, A) and satisfies
ε

lim
0
ψ(t)dt > 0 for each ε ∈ (0, A)
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and ϕ is nonnegative, Lebesgue integrable on [0, limA
0 ψ(s)ds) and satisfies

ε

lim
0
ϕ(t)dt > 0 for each ε ∈ (0,

A

lim
0
ψ(s)ds).

Let F (t) = lim
limt

0 ψ(s)ds
0 ϕ(u)du, then F ∈ z[0, A).

(iv) If G ∈ [0, A) and F ∈ z[0, G(A−0)), then a composition mapping F ◦G ∈
z[0, A). For instance, let H(t) = lim

F (t)
0 ϕ(s)ds, then H ∈ z[0, A) whenever

F ∈ z[0, A) and ϕ is nonnegative, Lebesgue integrable on z[0, F (A − 0)) and
satisfies

ε

lim
0
ϕ(t)dt > 0 for each ε ∈ (0, F (A− 0)).

Let A ∈ (0,+∞], ψ : R+
A → R+. Define

Ψ[0, A) = {ψ : ψ(t) < t for each t ∈ (0, A)}.
The following Theorems were proved in [1] and [3] respectively.

Theorem 1.9. Let A,B, S and T be self-mappings of a metric space (X, d) such
that

d(Ax,By) ≤ φ(max{d(Sx, Ty), d(Sx,By), d(By, Ty)})
for all x, y ∈ X, where 0 < φ(t) < t for each t > 0. Suppose that A(X) ⊂ T (X)
and B(X) ⊂ S(X) and (A, S) or (B, T ) satisfies the property (E.A). If the range
of one of the mappings A,B, S and T is a complete subspace of X, then A,B, S
and T have a unique common fixed point in X.

Theorem 1.10. Let d be a symmetric for X satisfying (W.3), (W.4) and (HE).
Let A,B, S and T be self-mappings of (X, d) such that∫ d(Ax,By)

0

ϕ(t)dt ≤ φ(

∫ max{d(Sx,Ty),d(Sx,By),d(By,Ty)}

0

ϕ(t)dt)

for all x, y ∈ X, where 0 < φ(t) < t and ϕ : R+ → R+ is a Lebesgue-integrable
mapping which is summable, non-negative and such that∫ ε

0

ϕ(t)dt > 0 for all ε > 0

Suppose that A(X) ⊂ T (X) and B(X) ⊂ S(X), (A, S) and (B, T ) are weakly
compatible and (A, S) or (B, T ) satisfies the property (E.A). If the range of one
of the mappings A,B, S and T is a complete subspace of X, then A,B, S and T
have a unique common fixed point in X.

It is our purpose in this paper to extend Theorems 1.9 and 1.10 for two pairs of
hybrid mappings; i.e., single-valued and multivalued mappings and prove common
fixed point Theorems using generalized contractive conditions which generalize
Theorems of [1], [2] and [3].

2. Main results

Let D = sup{d(x, y) : x, y ∈ X}. Set A = D if D = ∞ and A > D if D <∞.
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Theorem 2.1. Let d be a symmetric for X satisfying (W.3), (W.4) and (H.E).
Let f and g be self-mappings of X and S, T be mappings from X into CB(X)
such that

S(X) ⊂ g(X) and T (X) ⊂ f(X) (2.1)

F (H(Sx, Ty)) ≤ ψ(F (max{d(fx, gy), d(fx, Ty), d(gy, Ty)})) (2.2)

for all x, y ∈ X, where F ∈ z[0, A) and ψ ∈ Ψ[0, F (A−0)) for each A ∈ (0,+∞].
Suppose that (f, S) is S−weakly commuting at u, fu = ffu for u ∈ C(f, S) :=set
of coincidence points of f and S and (g, T ) is T−weakly commuting at v, gv = ggv
for v ∈ C(g, T ) :=set of coincidence points of g and T and (f, S) or (g, T ) satisfies
the property (E.A). If one f (X) or g (X) is a closed subset of X, then f, g, S
and T have a common fixed point in X.

Proof. Assume that the pair (g, T ) satisfies the property (E.A). Then, there exists
a sequence {xn} in X such that limn→∞ d(gxn, z) = 0 and limn→∞H(Txn, A) = 0
for some z ∈ X and z ∈ A ∈ CB(X). By (H.E) we have limn→∞ d(gxn, Txn) = 0.
Since T (X) ⊂ f(X), there exists a sequence {yn} in X such that fyn ∈ Txn. Let
us show that limn→∞H(Syn, A) = 0. Suppose that lim supn→∞H(Syn, Txn) > 0.
Then, using (2.2) we have

lim sup
n→∞

F (H(Syn, Txn)) ≤ lim sup
n→∞

ψ(F (max{d(fyn, gxn), d(fyn, Txn),

d(gxn, Txn)}))
= lim sup

n→∞
ψ(F (d(gxn, Txn))).

Therefore

lim sup
n→∞

ψ(F (d(gxn, Txn))) > 0

which is a contradiction. Then

lim sup
n→∞

F (H(Syn, Txn)) = 0

and Lemma 1.8 implies that limn→∞H(Syn, Txn) = 0. By (W.4), we deduce
that limn→∞H(Syn, A) = 0.

Suppose that f(X) is a complete subspace of X. Then, z = fu for some u ∈ X.
We claim that fu ∈ Su. Using (2.2) we get

F (H(Su, Txn)) ≤ ψ(F (max{d(fu, gxn), d(fu, Txn), d(gxn, Txn)}))
< F (max{d(fu, gxn), d(fu, Txn), d(gxn, Txn)}).

Letting n→∞ we obtain

lim
n→∞

F (H(Su, Txn)) = 0

and Lemma 1.8 implies that limn→∞H(Su, Txn) = 0. By (W.3) we have
fu ∈ Su = A.



142 A. ALIOUCHE

Since S(X) ⊂ g(X), there exists v ∈ X such that gv ∈ Su. We claim that
gv ∈ Tv. If not, (2.2) gives

F (d(gv, Tv)) ≤ F (H(Su, Tv))

≤ ψ(F (max{d(fu, gv), d(fu, Tv), d(gv, Tv)}))
< F (d(gv, Tv))

which is a contradiction. Hence, gv ∈ Tv. Let us show that z is a common
fixed point of f, g, S and T .
S−weak commutativity of f and S at u implies that fu = ffu ∈ Sfu; i.e.,

z = fz ∈ Sz.
T−weak commutativity of g and T at v implies that gv = ggv ∈ Tgv; i.e.,

z = gz ∈ Tz.
The proof is similar when g(X) is assumed to be a closed subset of X instead

of f(X). �

Remark 2.2. If S and T are single-valued mappings in Theorem 2.1 and if we give
to the function F example (ii) and others examples, we obtain Theorem 1.10 of
[3] and several Corollaries.

If S = T and g = f in Theorem 3.1, we get the following Corollary.

Corollary 2.3. Let d be a symmetric for X satisfying (W.3) and (H.E). Let f
be a self-mapping of X and T be a mapping from X into CB(X) satisfying

T (X) ⊂ f(X)

F (H(Tx, Ty) ≤ ψ(F (H(max{d(fx, fy), d(fx, Ty), d(fy, Ty)))
for all x, y ∈ X, where F ∈ z[0, A) and ψ ∈ Ψ[0, F (A−0)) for each A ∈ (0,+∞].
Suppose that (f, T ) is T−weakly commuting at u, fu = ffu for u ∈ C(f, T ) :=set
of coincidence points of f and T and (f, T ) satisfies the property (E.A). If f(X)
is a closed subset of X, then f and T have a common fixed point in X.

Remark 2.4. If F (t) = t and T is a single-valued mappings in Corollary 2.3, we
obtain Theorem 2.1 of [2].

Corollary 2.5. Let (X, d) be a metric space, f and g be self-mappings of X
and S, T be mappings from X into CB(X) satisfying (2.1) and (2.2). Suppose
that (f, S) is S−weakly commuting at u, fu = ffu for u ∈ C(f, S) :=set of
coincidence points of f and S and (g, T ) is T−weakly commuting at v, gv = ggv
for v ∈ C(g, T ) :=set of coincidence points of g and T and (f, S) or (g, T ) satisfies
the property (E.A). If f (X) or g (X) is a closed subset of X, then f, g, S and T
have a common fixed point in X.

Remark 2.6. If S and T are single-valued mappings and the function F takes
example (ii) in Corollary 2.5, we obtain Corollary 3 of [3].

If we give to the function F examples (i), (ii), i(ii) and (iv) in Corollary 2.5,
we obtain several Corollaries.

If S and T are single-valued mappings and F (t) = t in Corollary 2.5, we obtain
Theorem 1.9 of [1].
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Theorem 2.7. Let d be a symmetric for X satisfying (W.3), (W.4) and (H.E).
Let f and g be self-mappings of X and S, T be mappings from X into CB(X)
satisfying (2.2). Suppose that (f, S) is S−weakly commuting at u, fu = ffu
for u ∈ C(f, S) :=set of coincidence points of f and S and (g, T ) is T−weakly
commuting at v, gv = ggv for v ∈ C(g, T ) :=set of coincidence points of g and
T and (f, S) and (g, T ) satisfy a common property (E.A). If f (X) and g (X) are
closed subsets of X, then f, g, S and T have a common fixed point in X.

Proof. Suppose that (f, S) and (g, T ) satisfy a common property (E.A). Then,
there exists two sequences {xn} , {yn}, z ∈ X and A,B ∈ CB(X) such that

lim
n→∞

H(Sxn, A) = lim
n→∞

H(Tyn, B) = lim
n→∞

d(fxn, z) = lim
n→∞

d(gyn, z) = 0, z ∈ A∩B.

Assume that f(X) and g(X) are closed subsets of X. Then, z = fu = gv for
some u, v ∈ X.

We claim that fu ∈ Su. Using (2.2) we get

F (H(Su, Tyn)) ≤ ψ(F (max{d(fu, gyn), d(fu, Tyn), d(gyn, T yn)}))
< F (max{d(fu, gyn), d(fu, Tyn), d(gyn, T yn)}).

Letting n→∞ we obtain

lim
n→∞

F (H(Su, Tyn)) = 0

and Lemma 1.8 implies that limn→∞H(Su, Tyn) = 0. By (W.3) we have
fu ∈ Su = B.

The rest of the proof follows as in Theorem 2.1. �

Corollary 2.8. Let (X, d) be a metric space, f and g be self-mappings of X
and S, T be mappings from X into CB(X) satisfying (2.2). Suppose that (f, S)
is S−weakly commuting at u, fu = ffu for u ∈ C(f, S) :=set of coincidence
points of f and S and (g, T ) is T−weakly commuting at v, gv = ggv for v ∈
C(g, T ) :=set of coincidence points of g and T and (f, S) and (g, T ) satisfy a
common property (E.A). If f (X) and g (X) are closed subsets of X, then f, g, S
and T have a common fixed point in X.

Remark 2.9. If we give to the function F examples (i), (ii), (iii) and (iv) in
Theorem 2.7, we get several Corollaries.

If we give to the function F examples (i), (ii), i(ii) and (iv) in Corollary 2.8,
we get several Corollaries.

Example 2.10. Let X = [1,∞) and d be a symmetric on X defined by d(x, y) =
(x− y)2 for all x, y in X. Define f, g : X → X and S, T : X → CB(X) by

f(x) = x2, g(x) = x4, Sx = [1, x+ 1] and Tx = [1, x2 + 1].

We have for all x, y ∈ X
d(fx, gy) =

(
x2 − y4

)2

=
(
x+ y2

)2 (
x− y2

)2

≥ 4
(
x− y2

)2

= 4H(Sx, Ty)
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and so

H(Sx, Ty) ≤ 1

4
d(fx, gy)

= ψ(d(fx, gy)).

Clearly, A = D = ∞, F (t) = t, F ∈ z[0,∞), ψ(t) =
t

4
, ψ ∈ Ψ[0,∞),

S(X) = g(X) = T (X) = f(X) = [1,∞[, (f, S) is S−weakly commuting at 1,
f1 = f 21 = 1, (g, T ) is T−weakly commuting at 1, g1 = g21 = 1. Taking

xn = 1 +
1

n
, the pair (f, S) satisfies the property (E.A) with t = 1, A = [1, 2]

and f (X) is a closed subset of X. Moreover, the pairs (f, S) and (g, T ) satisfy a
common property (E.A) with t = 1, A = B = [1, 2] and g (X) is a closed subset of
X. Consequently, by Theorems 2.1 and 2.7, 1 is a common fixed point of f, g, S
and T .
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