The Journal of Nonlinear Science and Applications http://www.tjnsa.com

SOME PROPERTIES OF B-CONVEXITY

HONGMIN SUO 1,2,*

Communicated by S. S. Chang

ABSTRACT. In this paper, we give a characteristic of B-convexity structures of finite dimensional B-spaces: if a finite dimensional B-space has the weak selection property then its B-convexity structure satisfies H-condition. We also get some relationships among B-convexity structures, selection property and fixed point property. We show that in a compact convex subset of a finite dimensional B-space satisfying H-condition the weak selection property implies the fixed point property.

1. INTRODUCTION AND PRELIMINARIES

The convexity of space plays a very important role in fixed point theory and continuous selection theory. There were many works deal with various kinds of generalized, topological, or axiomatically defined convexities [1, 2, 3, 4]. Most of them were to establish various fixed point theorems and selection theorems in topological space without linear structure such as some generalizations of Brouwer fixed point theorem, Fan-Browder fixed point theorem and Michael selection theorem [2, 5, 6, 7, 8]. Recently, Briec [2] introduced the *B*-convexity by algebra borrows from topological ordered vector spaces and semilattice both. Briec proved that all the basic results related to fixed point theorems available in *B*-convexity [2].

The aim of this paper is to give some relationships among B-convexity structure, selection property and fixed point theorems. We prove that if X is a B-space

Date: Received: 2 January 2009; Revised: 5 March 2009.

^{*}Corresponding author. Supported by the Scientific Research Foundation of GuiZhou (No.2008(2050)).

²⁰⁰⁰ Mathematics Subject Classification. Primary 46A55; Secondary 47H10, 54H25.

Key words and phrases. B-Convexity, continuous selection, fixed point, KKM-maping.

HONGMIN SUO

with *B*-convexity and of weak selection property with respect to any standard simplex Δ_N then X satisfies *H*-condition, and we show that in a compact convex subset of a *B*-space with *B*-convexity structure the weak selection property implies the fixed point property.

A *B*-convex set can be seen as an abstract cone, in as much as we have a partial order and a multiplication by positive reals compatible with that partial order, we will remain in the finite dimensional setting of \mathbb{R}^n with its natural partial order. Let n_1 and n_2 be two positive integers whose sum is n and

$$R^{n_1}_{-} = \{ (x_1, \cdots, x_{n_1}) \in R^{n_1} \quad max\{x_i\} \le 0 \}, R^{n_2}_{+} = \{ (x_1, \cdots, x_{n_2}) \in R^{n_2} \quad max\{x_i\} \le 0 \}.$$

We identify $R_{-}^{n_1} \times R_{+}^{n_2}$ with an octant of R^n . For $t \in R_+$ and $x \in R_{-}^{n_1} \times R_{+}^{n_2}$, tx is usual multiplication by a scalar, for x and y in $R_{-}^{n_1} \times R_{+}^{n_2}$, we let $x \vee y$ be the element of $R_{-}^{n_1} \times R_{+}^{n_2}$ defined in the following way:

$$(x \lor y)_j = \begin{cases} \min\{x_j, y_j\} & if \quad j \le n_1 \\ \max\{x_j, y_j\} & if \quad j > n_1. \end{cases}$$
(1.1)

Then one can easily see that:

(A) $(x, y) \to x \lor y$ is associative, commutative, and idempotent , and also continuous ,and $x \lor 0 = x$ for all $R^{n_1}_- \times R^{n_2}_+$.

(B) For $t \in R_+$, the map $t \to tx$ is continuous and order preserving, and for all t_1, t_2 in R_+ and for all x and y in $R_-^{n_1} \times R_+^{n_2}, (t_1t_2)x = t_1(t_2x)$ and $t(x \lor y) = (tx) \lor (ty).$

A finite dimensional *B*-space (of type (n_1, n_2)) is, by definition, a subset *X* of $R^{n_1}_- \times R^{n_2}_+$ such that:

(BS)
$$0 \in X, \forall t \ge 0$$
 and $\forall x \in X, tx \in X$ and $\forall x, y \in X, x \lor y \in X$.

For a subset B of X the following properties are equivalent [1]:

$$\begin{array}{ll} (B1)\forall x,y\in B, tx\vee y\in B \quad \forall t\in [0,1],\\ (B2)\forall x_1,\cdots,x_m\in B, \text{ and }\forall t_1,\cdots,t_m\in [0,1] \text{ such that}\\ max_{1\leq i\leq m}\{t_j\}=1, \ t_1x_1\vee\cdots\vee t_mx_m=\vee t_ix_i\in B. \end{array}$$

Definition 1.1. A subset of X for which (B1) or (B2) holds is called B-convex[1].

For example (B1) holds for increasing set (S is increasing if $x \leq y$ and $x \in S$ implies $y \in S$). Sets of the form $\prod_{i=1}^{m} [a_i, b_i]$ are B-convex in \mathbb{R}^n_+ .

Since an arbitrary intersection of *B*-convex sets is *B*-convex, and arbitrary set $S \subset X$ is always contained in a smallest *B*-convex subset of *X*, we call that set the *B*-convex hull of *S*, it is denoted by [*S*]. From (B2) one has the following characterization:

The *B*-convex hull of *S* it is the set of all elements of the form $t_1x_1 \vee \cdots \vee t_mx_m$ with $x_i \in S$ and $max_{1 \leq i \leq m} \{t_j\} = 1, t_i \in [0, 1].$

B-convex sets also are contractible[2]. We recall that a set *A* is contractible if there exists a continuous map $h: A \times [0,1] \to A$ such that the map $a \to h(a,0)$ is constant and $a \to h(a,1)$ is the identity map of *A*.

For finite dimensional *B*-space X we define a map as follows:

$$(K(x, y, t) = \begin{cases} x \lor 2ty & if \quad 0 \le t \le 1/2\\ (2 - 2t)x \lor y & if \quad 1/2 < t \le 1. \end{cases}$$
(1.2)

To see that a *B*-convex set *B* is contractible one fixes $x_0 \in B$ and take $h(x,t) = K(x_0, x, t)$.

Other properties of B-convex and foxed points theorem and related matters in the framework of B-convexity see [2].

A topological space X with a convexity structure C (e.g. B-convexity) is said to be of weak selection property with respect to S if every multivalued mapping $F: S \to 2^X$ admits a singlevalued continuous selection whenever F is lower semicontinuous and nonempty closed convex valued. (X, C) is said to be of weak selection property with respect to S if $F: S \to 2^X$ admits a singlevalued continuous selection whenever F is multivalued mapping with nonempty convex images and preimages relatively open in X (i.e., F(x) is convex for each $x \in S$ and F^{-1} is open in S). X is said to be of fixed point property if every continuous selfmap F on X has a fixed point in X.

Let $N = \{0, 1, 2, \dots, n\}$, $\Delta_N = e^0 e^1 \cdots e^n$ be the standard simplex of dimension n, where $\{e^0 e^1 \cdots e^n\}$ is the canonical basis of R^{n+1} , and for $J \subset N$, and $\Delta_N = co\{e^j : j \in J\}$ be a face of Δ_N . For each $x \in e^0 e^1 \cdots e^n$, there is a unique set of numbers t_0, \dots, t_n with, $\sum_{t=0}^n t_i = 1$, $t_i \ge 0, i \in N$ such that $x = \sum_{i=0}^n t_i e^i$. The coefficients t_0, \dots, t_n are called the barycentric coordinates of x. Let

$$\chi(\upsilon) = \{i : \upsilon = \sum_{i=0}^{n} t_i e^i, t_i \ge 0\}$$

Definition 1.2. Let $\{T_i : i \in I\}$ be some simplicial subdivision of standard simplex $\Delta_N = e^0 e^1 \cdots e^n$, ν denote the collection of all vertices of all subsimplexes in the subdivision. A function $\lambda : \nu \to \{0, 1, \cdots, n\}$ satisfying

$$\lambda(v) \in \chi(v), \forall v \in \nu,$$

is called a normal labeling of this subdivision. Moreover, T_i is called a completely labeled subsimplex or completely labeled lattice if T_i must have vertices with the completes set of labels: $0, 1, \dots n$.

Theorem 1.3. Let $\{T_i : i \in I\}$ be any simplicial subdivision of Δ_N and normally labeled by a function λ . Then there exist odd numbers of completely labeled subsimplexes of lattices in the subdivision with respect to the labeling function λ .

Last theorem is famous Sperner's lemma[3].

Theorem 1.4. Let Y be a topological space. For each $J \subset N$, let Γ_J be a nonempty contractible subset of Y. If $\emptyset \neq J \subset J' \subset N$ implies $\Gamma_J \subset \Gamma_{J'}$, then there exists a continuous mapping f such that $F(\Delta_J) \subset \Gamma_J$ for each nonempty subset $J \subset N$.

This is Horvath' lemma [6, 7].

2. Main results

According to Horvath's lemma, we call that a finite dimensional B-space satisfies H-condition if the B-convexity has the following property:

(*H*) For each finite subset $\{y_0, y_1, \dots, y_n\} \subset Y$, there exists a continuous mapping $f : \triangle_N \to [\{y_0, y_1, \dots, y_n\}]$ such that $f(\triangle_J) \subset [y_j : j \in J]$ for each nonempty subset $J \subset N$.

Now, we first prove the crucial result of this section as below.

Theorem 2.1. If a finite dimensional B-space Y with B-convexity is of weak selection property with respect to any standard simplex, then a finite dimensional B-space Y satisfies H-condition.

Proof. Let $A = \{y_0, y_1, \dots, y_n\}$ be any finite subset of Y, $\Delta_N = e^0 e^1 \cdots e^n$ the standard simplex of dimension n. For each $J \subset N$ and each face Δ_J of Δ_N , denote the interior of Δ_J by

$$\Delta_J^0 = \{ v \in \Delta_J : \chi(v) = J \}.$$

Define $T: \triangle_N \to 2^Y$ as follows:

$$T(x) = [\{y_j : j \in \chi(x)\}], \ x \in \Delta_N.$$

It is routinely to check that T is with nonempty convex images and preimages relatively open in Δ_N . In fact, for each $y \in Y$ and each $x \in T^{-1}(y)$, there is only one face Δ_J , $J = \chi(x)$ such that $x \in \Delta_J^0$. So $x \notin \Delta_{J'}$ for any face $\Delta_{J'}$ not containing Δ_J . For any $\Delta_{J'} \supset \Delta_J$, there exists a neighborhood $O(x) \subset \Delta_N$ of x such that $O(x) \bigcap \Delta_{J'} = \emptyset$ as every face $\Delta_{J'}$ is closed and the number of faces Δ_N of is finite. Therefore, for any $z \in O(x)$, any face $\Delta_{J'}$ contains z only if $\Delta_J \subset \Delta_{J'}$. Then for each $z \in O(x)$, $z \in \Delta_{\chi(z)}$ implies $\Delta_{\chi(z)} \supset \Delta_J$, So that $\chi(z) \supset J = \chi(x)$. It follow that $T(z) \supset T(x)$ for all $z \in O(x)$, and so $y \in T(x) \subset T(z)$, *i.e.*, $z \in T^{-1}(y)$ for all $z \in O(x)$. Hence $T^{-1}(y)$ is relatively

74

open in \triangle_N .

In addition, it is obvious that T is nonempty closed and convex. Since Y is of selection property with respect to any standard simplex, there exists a single-valued continuous mapping $f : \triangle_N \to Y$ such that $f(x) \in T(x)$ for all $x \in \triangle_N$. The definition of T implies that $f(\triangle_J) \subset [\{y_j : j \in J\}]$ for each nonempty subset $J \subset N$, which complete the proof. \Box

Corollary 2.2. If a finite dimensional B-space Y with B-convexity is of weak selection property with respect to any compact Hausdorff space, then a finite dimensional B-space Y satisfies H-condition.

Proof. . It is immediate from Theorem 2.1.

Let X be a subset of a finite dimensional B-space Y. A multivalued mapping $F: X \to 2^Y$ is called a KKM-mapping if $[A] \subset \bigcup_{x \in A} F(x)$ for each finite subset $A \subset X$.

Theorem 2.3. Let X is subset of a finite dimensional Y B-space satisfying Hcondition and $F: Y \to 2^X$ is a KKM-mapping. If F is closed-valued, then family $\{F(y): y \in Y\}$ has the finite intersection property.

Proof. Let $\{y_0, y_1, \dots, y_n\}$ be arbitrary finite subset of X. Since Y satisfies H-condition, there exists a singlevalued continuous mapping $f : \Delta_N \to [\{y_0, \dots, y_n\}]$ such that $f(\Delta_J) \subset [\{y_j : j \in J\}]$ for each nonempty subset $j \subset N$.

For each $k \in \{1, 2, \dots\}$ and each $\varepsilon_k = 1/k \ge 0$, let $\{T_i^k : i \in I_k\}$ be some simplicial subdivision of Δ_N such that the mesh of the subdivision less than $1/2^k$. And let ν^k be the set of vertices of all subsimplexes in this subdivision.

For each $v \in \nu^k$, let

$$\lambda^k(\upsilon) = \min\{j \in \chi(\upsilon) : f(\upsilon) \in F(y_j)\}.$$

Then $\lambda^k(v)$ is nonempty, since $v \in conv\{e^j : j \in \chi(v)\}$ and

$$f(\upsilon) \in f([\{e^j : j \in \chi(\upsilon)\}]) \subset [\{y_j : j \in \chi(\upsilon)\}] \subset \bigcup_{j \in \chi(\upsilon)} F(y_j).$$

By the hypothesis, it is easy to see that λ^k is a normal label function of the subdivision.

So for each $k = 1, 2, \cdots$, there must exist a subsimplex T_{i_k} with complete labels by Sperner's Lemma. Let z_0^k, \cdots, z_n^k be all vertices of subsimplex T_{i_k} , and

$$\lambda(z_0^k) = 0, \ \lambda(z_1^k) = 1, \cdots, \lambda(z_n^k) = n$$

By the definition of λ , we have

 $f(z_0^k) \in F(y_0), f(z_1^k) \in F(y_1), \cdots, f(z_n^k) \in F(y_n).$

Note that z_0^k, \dots, z_n^k are some vertices of subsimplex T_{i_k} , so that $d(z_i^k, z_j^k) \leq 1/2^k$, $i, j \in \{0, 1, \dots, n\}$. Since Δ_N is compact, we may assume that there

is $y^* \in \Delta_N$ such that $z_i^k \to y^*$, $i = 0, 1, \dots, n$. Then $f(z_i^k) \to f(y^*)$. It follows from the closeness of each $F(y_i)$ that $f(y^*) \in F(y_i)$, $i = 0, 1, \dots, n$, and $\bigcap_{i \in N} F(y_i) \neq \emptyset$. This completes the proof. \Box

Theorem 2.4. Let a finite dimensional B-space Y satisfying H-condition, X is a convex compact subset of Y, and $F : X \to 2^X$ a multivalued mapping with nonempty convex images and preimages relatively open in X. Then F has a fixed point.

Proof. Since X is compact and $X = \bigcup_{x \in X} F^{-1}(x)$, there exists a finite subset $\{x_0, x_1, \cdots, x_n\}$ of X such that $X = \bigcup_{i=0}^n F^{-1}(x_i)$. Then $\bigcap_{i=0}^n [X \setminus F^{-1}(x_i)] = \emptyset$. Let

$$G(x) = [X \setminus F^{-1}(x)], \quad \forall x \in X.$$

With Theorem 2.3, we know that G is not a KKM-mapping, so that there exists a finite subset $\{y_0, y_1, \dots, y_n\}$ such that

$$[\{y_0, y_1, \cdots, y_n\}] \not\subset \bigcup_{i=0}^m G(y_i).$$

Then there is some $y^* \in [\{y_0, y_1, \cdots, y_n\}]$ such that $y^* \notin G(y_i)$ for all $i = 0, 1, \cdots m$, that is

$$y^* \in F^{-1}(y_i), \quad \forall i = 0, 1, \cdots, m.$$

Consequently

$$y^i \in F^*(y), \quad \forall i = 0, 1, \cdots, m.$$

Therefore

$$y^* \in [\{y_0, y_1, \cdots, y_m\}] \subset F(y^*).$$

Which complete the proof.

Theorem 2.5. Let X be a compact topological space, a finite dimensional Bspace Y satisfying H-condition, and $F : X \to 2^Y$ a multivalued mapping with nonempty convex images and preimages relatively open in X. Then F has a continuous selection.

Proof. Since X is compact and $X = \bigcup_{y \in Y} F^{-1}(y)$, there exists a finite subset $\{y_0, y_1, \dots, y_m\}$ of X such that $X = \bigcup_{i=0}^n F^{-1}(y_i)$. Now let $\{p_i : i = 0, 1, \dots, n\}$ be a partition of unity subordinate to the finite covering $\{F^{-1}(y_i) : i = 0, 1, \dots, n\}$. Define a mapping $\phi : X \to \Delta_N$ by

$$\phi(x) = \sum_{i=0}^{n} p_i(x)e^i, \quad \forall x \in X.$$

On the other hand, since Y satisfies H-condition, there exists a singlevalued continuous mapping $f : \Delta_N \to [\{y_0, y_1, \dots, y_n\}]$ such that $s(\Delta_J) \subset [y_j : j \in J]$ for each nonempty subset $J \subset N$.

Now our desired mapping g is given by

$$g = f \circ \phi$$
.

In fact, it is easy to verify that $\phi(x) \in \Delta_{J(x)}$ for each $x \in X$, where $J(x) = \{i \in N : p_i(x) \neq 0\}$. By the convexity of F(x), we do have that $\{y_j : J(x)\} \subset F(x)$ and thus

 $g(x) = f(\phi(x)) \subset f(\Delta_{J(x)}) \subset [y_j : j \in J] \subset [y_j, p_j(x) \neq 0] \subset [y_j : y_j \in F(x)] \subset F(x).$ This complete the proof. \Box

References

- 1. W. Briec and C.D. Horvath, B-convexity, Optimization. 53 (2004), 103–127.
- W. Briec and C.D. Horvath, Nash points, Ky Fan inequality and equilibria of abstract economies in Max-Plus and B-convexity, J. Math. Anal. Appl. Vol 341, Issue 1 (2008), 188– 199.
- M. van de Vel, Theory of Convex Structures, North-Holland Mathematical Library. Vol.50, North-Holland Publishing Co., Amsterdam, 1993. 1, 1, 1.1
- C.D. Horvath, Contractibility and general convexity, J. Math. Anal. Appl, 156 (1991), 341–357. 1, 1, 1
- S. Park, Fixed point theorems in locally G-convex spaces, Nonlinear Anal., 48 (2002), 868–879. 1, 1
- X.P. Ding and W.A. Kim and K.K. Tan, A New minimax inequality on G-spaces with applications, Bull. Austra. Math. Soc. 41 (1990), 457–473.
- C. Horvath, Some results on multivalued mappings and inequalities without convexity, in nonlinear and convex analysis, (Ed.B.L.Lin and S.Simons), Lecture Notes in Pure and Applied Math, Marcel Dekker 1987, 99–106.
- S.-S. Chang, G. X.-Z. Yuan, G.-M. Lee, and Xiao-Lan Zhang, Saddle points and minimax theorems for vector-valued multifunctions on *H*-spaces. Appl. Math. Lett. 11 (1998), 101– 107. 1, 1

¹School of Mathematics and Computer Science, GuiZhou University for Nationalities, 550025, Guiyang, Guizhou, China.

²School of Mathematics and Statistics, Southwest University, 400715, Chongqing, China.

E-mail address: gzmysxx88@sina.com

^{1, 1}