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EXISTENCES AND BOUNDARY BEHAVIOR OF BOUNDARY
BLOW-UP SOLUTIONS TO QUASILINEAR ELLIPTIC

SYSTEMS WITH SINGULAR WEIGHTS

QIAOYU TIAN AND SHUIBO HUANG ∗

Abstract. Using the method of explosive sub and supper solution, the exis-
tence and boundary behavior of positive boundary blow up solutions for some
quasilinear elliptic systems with singular weight function are obtained under
more extensive conditions.

1. Introduction and main results

In this paper, we consider the existence and asymptotic behavior of positive
solution to the following elliptic system{

div(|∇u|m−2∇u) = a(x)upvq, x ∈ Ω,
div(|∇v|n−2∇v) = b(x)urvs, x ∈ Ω,

(1.1)

subject to the boundary conditions

u = v = ∞, x ∈ ∂Ω. (1.2)

where p > m− 1, s > n− 1, q, r > 0, m, n > 1, (p−m+1)(s−n+1)− qr > 0, Ω
is bounded C2 domain of RN , N ≥ 1, and the last condition (1.2) u = v = ∞, x ∈
∂Ω means that u → ∞, v → ∞ as d(x) := dist(x, ∂Ω) → 0, and the solution is
called a large solutions or boundary blow-up solution. By a positive boundary
blow-up solutions of (1.1), we mean that (u, v) ∈ W 1,p

loc (Ω)
⋂

C1
loc(Ω) and (u, v)

satisfies

−
∫

Ω

|∇u|m−2∇u∇ϕdx =

∫
Ω

a(x)upvqϕdx, ∀ϕ ∈ C∞
0 (Ω).

−
∫

Ω

|∇v|n−2∇v∇ϕdx =

∫
Ω

b(x)urvsϕdx, ∀ϕ ∈ C∞
0 (Ω).
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and u, v > 0 in Ω, u →∞, v →∞ as d(x) → 0,
The study of the elliptic systems is a classical topic that has attracted the

attention of many researchers because of its interest in applications, which arises
in the theory of quasi-regular and quasi-conformal mappings as well as in the
study of non-Newtonian fluids, in non-Newtonian fluids, the pair (m, n) is a
characteristic of the medium. Media with (m, n) > (2, 2) are called dilatant
fluids and those with (m,n) < (2, 2) are called pseudoplastics. If (m, n) = (2, 2),
they are Newtonian fluids.

There is a large amount of literature on elliptic problems related to problem

∆u = b(x)f(u), x ∈ Ω, x|∂Ω = ∞. (1.3)

for b(x) = 1, f(u) = eu, the problem (1.3) was initiated by Bieberbach [1] for
Ω ⊂ R2. Rademacher[26] extended the results of Bieberbach to Ω ⊂ R3. Later,
Lazer and McKenna [21] generalized the results to the case of bounded domains
in RN and nonlinearities b(x)eu. For b ∈ Cα

loc(Ω), b > 0 in Ω, and provided that b
satisfies the following assumption: there exist constants C1, C2 > 0, κ2 ≥ κ1 > −2
such that

C2(d(x))κ2 ≤ b(x) ≤ C1(d(x))κ1 ,

and f(u) satisfies: f ∈ C1(R) is non-decreasing on R, f(s) ≤ C1e
p1s for all

s ∈ R and f(s) ≥ C2e
p2s for large |s| with p1 ≥ p2 > 0, C1, C2 are positive

constants, Garćıa-Melián[13] showed that problem (1.3) has at least one solution
u ∈ C2(Ω)such that

−m− (2 + γ1)/p1 ln d(x)) ≤ u(x) ≤ M − (2 + γ2)/p2 ln d(x), ∀x ∈ Ω.

where m, M are positive constants. Very recently, Zhang [33] and Yang[23] ex-
tended the above results to the problem (1.3) and gained some new results with
nonlinear gradient terms. Problem (1.3) was discussed in a number of works;
see,[2, 3, 4, 5, 9, 10, 11, 12, 13, 19, 23, 25, 34],

Now let us return to problem (1.1).
When m = n = 2, system (1.1) becomes{

∆u = a(x)upvq, x ∈ Ω,
∆v = b(x)urvs, x ∈ Ω,

(1.4)

in the paper [14], when a(x) = 1, b(x) = 1, under Dirichlet boundary conditions
of three different types: both components of (u, v) are bounded on ∂Ω (finite
case); one of them is bounded while the other blows up(semilinear case); or
both components blow up simultaneously(infinite case), under the assumption
that(a−1)(e−1) > bc, necessary and suffcient conditions for existence of positive
solutions were found, and uniqueness or multiplicity were also obtained, together
with the exact boundary behavior of solutions. In addition, they also treated
some existence uniqueness and boundary behavior of solutions of systems (1.4)
under the assumption

a(x) ∼ C1d(x)κ1 , b(x) ∼ C2d(x)κ2 , (1.5)
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when d(x) → 0 for some positive constants C1, C2 and real numbers κ1, κ2 > −2.
Problem(1.4) was later studied in [15] with general form

C1d(x)κ1 ≤ a(x) ≤ C2d(x)κ1 , C3d(x)κ2 ≤ b(x) ≤ C4d(x)κ2 ,

for x ∈ Ω, where a(x), b(x) ∈ Cθ(Ω) for some θ ∈ (0, 1), κ1, κ2 > −2, and
Ci, i = 1, 2, 3, 4, are positive constants. If the weights a(x) and b(x) satisfy the
following two hypotheses:

(I) a(x) ∈ Cη(Ω), b(x) ∈ Cη(Ω), η ∈ (0, 1), a(x) > 0, b(x) > 0;
(II) there exist constants Ci > 0, i = 1, 2, 3, 4 and κ1 ≥ κ2 > −m, κ3 ≥ κ4 >

−n such that, for x ∈ Ω,

C1d(x)κ1 ≤ a(x) ≤ C2d(x)κ2 , C3d(x)κ3 ≤ b(x) ≤ C4d(x)κ4 x ∈ Ω,

Let us mention that under the hypothesis (I) and (II), the weight functions a(x)
and b(x) may be singular near the boundary ∂Ω. Huang [20] showed that problem
(1.4) has unique large solution if and only if κi ∈ R, κ1 ≥ κ2 > −m,κ3 ≥ κ4 > −n
and

q

s− n + 1
<

m + κ1

n + κ4

,
m + κ2

n + κ3

<
p−m + 1

r
.

the solution verifies

D1d(x)−α1 ≤ u(x) ≤ D2d(x)−α2 , D3d(x)−β1 ≤ v(x) ≤ D4d(x)−β2 .

where Di(i = 1, 2, 3, 4) are positive constants , and

α1 =
(m + κ2)(s− n + 1)− (n + κ3)q

(p−m + 1)(s− n− 1)− qr
, α2 =

(m + κ1)(s− 1)− (n + κ4)q

(p−m + 1)(s− n− 1)− qr
,

β1 =
(m + κ3)(p−m + 1)− (n + κ2)r

(p−m + 1)(s− n− 1)− qr
, β1 =

(n + κ4)(p−m + 1)− (m + κ1)r

(p−m + 1)(s− n− 1)− qr
.

Recently, Yang [31] studied the systems (1.1) and showed that if a(x) = b(x) =
1, p > m− 1, s > n− 1, q, r > 0, m, n > 1, (p−m + 1)(s− n + 1)− qr > 0, then
systems (1.1) have boundary blow up solutions, and there exist constants A, B
such that

Ad(x)−α ≤ u(x) ≤ Bd(x)−α, Ad(x)−β ≤ v(x) ≤ Bd(x)−β.

where,

α =
m(s− q − n + 1)

(p−m + 1)(s− n + 1)− qr
, β =

n(p− r −m + 1)

(p−m + 1)(s− n + 1)− qr
.

Furthermore, they also obtained the existence and boundary behavior of solutions
if a(x), b(x) satisfies a(x) ∼ C1d(x)κ1 , b(x) ∼ C2d(x)κ2 , κ1 > −m, κ2 > −n.

More results to system with boundary blow up, we refer reader to [6, 7, 8, 16,
17, 18, 22, 24, 28, 29, 31, 32] and references therein.

The main purpose of the present paper is to investigate the influence of the
weights a(x) and b(x) on the existence and boundary behavior of solutions of
systems (1.1).

The main results of the present paper are the following.
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Theorem 1.1. Assume that a(x), b(x) satisfy (I) and (II), p > m− 1, s > n− 1,
m > 1, n > 1, (p−m + 1)(s− n + 1)− qr > 0, Then systems (1.1) has at least a
positive solution (u, v) if and only if κi ∈ R, κ1 ≥ κ2 > −m, κ3 ≥ κ4 > −n and

q

s− n + 1
<

m + κ1

n + κ4

,
m + κ2

n + κ3

<
p−m + 1

r
. (1.6)

This solution verifies

D1d(x)−α1 ≤ u(x) ≤ D2d(x)−α2 , D3d(x)−β1 ≥ v(x) ≥ D4d(x)−β2 . (1.7)

where Di(i = 1, 2, 3, 4) are positive constants, and

α1 =
(m + κ2)(s− n + 1)− (n + κ3)q

(p−m + 1)(s− n− 1)− qr
, α2 =

(m + κ1)(s− n + 1)− (n + κ4)q

(p−m + 1)(s− n− 1)− qr
,

(1.8)

β1 =
(m + κ3)(p−m + 1)− (n + κ2)r

(p−m + 1)(s− n− 1)− qr
, β2 =

(n + κ4)(p−m + 1)− (m + κ1)r

(p−m + 1)(s− n− 1)− qr
.

(1.9)

As a straight forward consequence, we obtain

Corollary 1.2. If d(x) → 0, a(x) ∼ C1d(x)κ1 , b(x) ∼ C2d(x)κ2 then systems
(1.1) have at least a positive solution (u, v) if and only if κi ∈ R, κ1 > −m, κ2 >
−n and

q

s− n + 1
<

m + κ1

n + κ2

<
p−m + 1

r
.

This solution verifies

D1d(x)−α ≤ u(x) ≤ D2d(x)−α, D3d(x)−β ≤ v(x) ≤ D4d(x)−β.

where Di(i = 1, 2, 3, 4) are positive constants, and

α =
(m + κ1)(s− n + 1)− (n + κ2)q

(p−m + 1)(s− n− 1)− qr
, β =

(m + κ2)(p−m + 1)− (n + κ1)r

(p−m + 1)(s− n− 1)− qr
.

2. Proof of Theorem 1.1

We now ready to prove Theorem 1.1, whose proof will be split in several lemma.
we begin by showing the definitions of blow up supper and subsolutions to systems
(1.1).

Definition 2.1. (u, v) ∈ (C2(Ω))
2
, is called blow up upper solution of systems

(1.1), provided that div(|∇u|m−2∇u) ≤ a(x)upvq, x ∈ Ω,
div(|∇v|n−2∇v) ≥ b(x)urvs, x ∈ Ω,
u = v = ∞, x ∈ ∂Ω,

As always, a blow up subsolution (u, v) is defined by reversing the inequalities.
We now recall some already know results which will be used in the proof of

Theorem 1.1. Consider

div(|∇u|m−2∇u) = d(x)κup, x ∈ Ω, u = ∞, x ∈ ∂Ω, (2.1)
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Here d(x) stands for the distance of a point x ∈ Ω to the boundary ∂Ω. This
problem has been recently considered in [11], where all issues concerning existence,
uniqueness and asymptotic behavior near the boundary of positive solutions were
obtained. The following Lemma 2.1 contains the basic feature of problem (2.1),
refer the reader to [11] for a proof.

Lemma 2.2. Assume that p > m − 1 and κ > −m, then problem (2.1) has a
unique positive solution, which will be denoted by Um,p,κ. Moreover,

D1d(x)−α ≤ Um,p,κ ≤ D2d(x)−α, (2.2)

where D1, D1 > 0, α = (m + κ)/(p−m + 1).

Lemma 2.3. Assume that (u, v) ∈ (C2(Ω))
2
, (u, v) ∈ (C2(Ω))2 are upper solution

and subsolution of systems div(|∇u|m−2∇u) = a(x)upvq, x ∈ Ω,
div(|∇v|n−2∇v) = b(x)urvs, x ∈ Ω,
u = f(x), v = g(x), x ∈ ∂Ω,

(2.3)

and u ≤ f(x) ≤ u, v ≥ g(x) ≥ v, x ∈ ∂Ω, u ≤ u, v ≥ v, x ∈ Ω, here, f, g ∈
Cη(Ω)(η ∈ (0, 1)). Then systems (2.3) has at least a solution (u, v), and u ≤ u ≤
u, v ≥ v ≥ v, x ∈ Ω, in particular, u = f(x), v = g(x), x ∈ ∂Ω.

Proof. Let u1 (the existence and uniqueness of u1 see Remark 3 of [11]) is the
unique positive solution of

div(|∇u|m−2∇u) = a(x)vqup, x ∈ Ω, u = f(x), x ∈ ∂Ω, (2.4)

Clearly, u and u are the upper solution and subsolution of (2.4), thanks to unique-
ness of u1 , we have u ≤ u1 ≤ u. now assume that v1 is the unique positive solution
of

div(|∇u|n−2∇u) = b(x)ur
1v

s, x ∈ Ω, v = g(x), x ∈ ∂Ω, (2.5)

It following similarly that v ≥ v1 ≥ v. We can continue in this way by defin-
ing un to be the unique solution to (2.4) whit v replaced by vn−1 and vn the
unique solution to (2.5) with u1 replaced by un. We obtain unique positive so-
lution sequences {un}, {vn}, such that u ≤ un ≤ u, v ≥ vn ≥ v. Moreover, un

is increasing and vnis decreasing. From standard regularity and compactly em-
bedding theory, it following that there exist subsequence {unk

}, {vnk
}, such that

unk
→ u(x), vnk

→ v(x), x ∈ Cη(Ω)
⋂

C1
loc(Ω), where {u(x), v(x)} is the solution

of (2.3), moreover, u(x) = f(x), v(x) = g(x) and u ≤ u ≤ u, v ≥ v ≥ v. �

Lemma 2.4. Set (u, v) and (u, v) are blow up upper solution and subsolution
of (1.1) with u = u = v = v = ∞, x ∈ ∂Ω and u ≤ u, v ≥ v, x ∈ Ω. Then
systems (1.1)+(1.2) have at least positive solution (u, v) such that u ≤ u ≤ u,
v ≥ v ≥ v, x ∈ Ω, in particular, u = v = ∞, x ∈ ∂Ω.

Proof. Set Ωδ = {x ∈ Ω : d(x) > δ}, where δ > 0, d(x) := dist(x, ∂Ω), and
consider the problem div(|∇u|m−2∇u) = a(x)upvq, x ∈ Ωδ,

div(|∇v|n−2∇v) = b(x)urvs, x ∈ Ωδ,
u = fδ, v = gδ, x ∈ ∂Ωδ,

(2.6)
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where fδ, gδ are are smooth functions defined on ∂Ωδ with u ≤ fδ ≤ u, v ≥
gδ ≥ v, x ∈ Ω, in view of Lemma 2.2 and standard regularity theory, it following
that systems (2.6) have a bounded solution (uδ, vδ) in C1,η

loc (Ω), so that we obtain
subsequence (uδk

, vδk
) → (u, v), x ∈ C1

loc(Ω), where (u, v) is a positive solution of
(1.1) with u ≤ u ≤ u, v ≥ v ≥ v, x ∈ Ω and u = v = ∞, x ∈ ∂Ω. �

Lemma 2.5. Assume κi ∈ R, κ1 ≥ κ2 > −m, κ3 ≥ κ4 > −n and (1.6) holds,
Then system (1.1)+(1.2) admits at least one positive solution.

Proof. We use the method of blow up sub and super solution. Let (u, v) =
(εUm,p,τ1 , ε

−δUn,s,δ1), where the functions Um,p,τ1 , Un,s,δ1 are as introduced above,
ε is small enough, τ1, δ1, δ are to be chosen such that (u, v) is the blow up sub
solution of system (1.1).

Combining with (2.1), (2.2) and the definition of blow up sub and super solu-
tion, if we select

τ1 = (p−m + 1)α1 −m > −m, δ1 = (s− n + 1)β1 − n > −n,

r/(s− n + 1) < δ < (p−m + 1)/q.

α1, β1 are gave by (1.8) and (1.9). A simple calculation show that

div
(
|∇(εUm,p,τ1)|m−2∇(εUm,p,τ1)

)
= εm−1div

(
|∇Um,p,τ1 |m−2∇Um,p,τ1

)
= εm−1d(x)τ1Up

m,p,τ1
≥ C2d(x)κ2εp−qδUp

m,p,τ1
U q

n,s,δ1
,

div
(
|∇(ε−δUn,s,δ1)|n−2∇(ε−δUn,s,δ1)

)
= ε−δ(n−1)div

(
|∇Un,s,δ1|n−2∇Un,s,δ1

)
= ε−δ(n−1)d(x)δ1U s

n,s,δ1
≤ C3d(x)κ3εr−sδU r

m,p,τ1
U s

n,s,δ1
,

which leads to (εUm,p,τ1 , ε
−δUn,s,δ1) is the sub solution of system (1.1). similarity,

we can select τ2 = (p−m+1)α2−m > −m, δ2 = (s−n+1)β2−n > −n, α2, β2 are
gave by (1.8) and (1.9), if M is large enough, then (u, v) = (MUm,p,τ2 , M

−δUn,s,δ2)
is the super solution of system (1.1).

By κ1 ≥ κ2 > −m, κ3 ≥ κ4 > −n and the definition of αi, βi, obtain α1 ≤ α2,
β1 ≥ β2, then we get u ≤ u and v ≥ v, x ∈ Ω, according to Lemma 2.3, there
exist a positive solution (u, v) of system (1.1)+(1.2) with u ≤ u ≤ u and v ≥ v ≥
v, x ∈ Ω, in particular, u = v = ∞, x ∈ ∂Ω. �

Lemma 2.6. Let (u, v) be a positive solution to system (1.1)+(1.2). Then there
exist constants Di(i = 1, 2, 3, 4) such that (1.7) holds,

Proof. By the definition of Um,p,τi
, Un,s,δi

and (2.2), we infer that there exist
positive constants Ei, Fi, E

′
i, F

′
i (i = 1, 2) such that

Eid(x)−αi ≤ Um,p,τi
≤ E ′

id(x)−αi , Fid(x)−βi ≤ Un,s,δi
≤ F ′

id(x)−βi .

Since εUm,p,τ1 = u ≤ u ≤ u = MUm,p,τ2 , ε−δUn,s,δ1 = v ≥ v ≥ v = M−δUn,s,δ2 , x ∈
Ω and α1 ≤ α2, β1 ≥ β2, this implies that (1.7) holds. �

We finally show that the conditions κi ∈ R, κ1 ≥ κ2 > −m, κ3 ≥ κ4 > −n and
(1.6) are necessary for problem (1.1)+(1.2) to have a positive solution.

Lemma 2.7. Assume problem (1.1)+(1.2) has a positive solution (u, v). Then
κi ∈ R, κ1 ≥ κ2 > −m,κ3 ≥ κ4 > −n and (1.6) holds.
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Proof. If (m+κ1)/(n+κ4) ≤ q/(s−n+1), by the definition of α2, we have α2 ≤ 0,
then (1.7)implies u is bounded. Similarity, if (m+κ2)/(n+κ3) ≥ (p−m+1)/r, we
also obtain v is bounded by (1.7), which are contradiction to u = v = ∞, x ∈ ∂Ω.
This finishes the proof. �
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