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Abstract. Recently, Azam, Arshad and Beg introduced the notion of cone
rectangular metric spaces by replacing the triangular inequality of a cone metric
space by a rectangular inequality. In this paper, we extend the Kannan’s fixed
point theorem in such spaces.

1. Introduction

If (X, d) is a complete metric space and T : X → X is a contraction, i.e.,

d(Tx, Ty) ≤ αd(x, y)

for all x, y ∈ X with α ∈ [0, 1), then the widely known Banach’s contraction map-
ping principle tells that T has a unique fixed point in X. A lot of generalizations
of this theorem have been done, mostly by relaxing the contraction condition
and sometimes by withdrawing the requirement of completeness or even both
[4, 5, 6, 7, 10, 11, 12, 13].

Huang and Zhang [8] have introduced the concept of cone metric space, where
the set of real numbers is replaced by an ordered Banach space, and they have
established some fixed point theorems for contractive type mappings in a normal
cone metric space. The study of fixed point theorems in such spaces is followed
by some other mathematicians, see [1, 9].

Following the idea of Branciari [3], Azam, Arshad and Beg [2] extended the no-
tion of cone metric spaces by replacing the triangular inequality by a rectangular
inequality. The aim of this paper is to extend the Kannan’s fixed point theorem

Date: Received: 10 April 2009 ; Revised 07 June 2009.
∗ Corresponding author.
2000 Mathematics Subject Classification. Primary 47H10; Secondary 54E35, 54E50.
Key words and phrases. Cone rectangular metric space; Kannan’s fixed point theorem.

161



162 M. JLELI, B. SAMET

[11] in such spaces. We start by recalling some definitions introduced in [2, 8]
and preliminary results.

Let E always be a real Banach space and P a subset of E. P is called a cone
if and only if:

(i) P is closed, nonempty, and P 6= {0}.
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax + by ∈ P .
(iii) x ∈ P and −x ∈ P ⇒ x = 0.

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by:

x ≤ y ⇔ y − x ∈ P.

We shall write x < y to indicate that x ≤ y but x 6= y, while x ¿ y will stand
for y − x ∈ int P , int P denotes the interior of P .

The cone P is called normal if there is a number k > 0 such that for all x, y ∈ E,

0 ≤ x ≤ y ⇒ ‖x‖ ≤ k‖y‖,
where ‖ · ‖ is the norm in E. In this case, the number k is called the normal
constant of P .

In the following we always suppose E is a Banach space, P is a cone in E with
int P 6= ∅ and ≤ is partial ordering with respect to P .

Definition 1.1. Let X be a nonempty set. Suppose the mapping d : X×X → E
satisfies:

(a) 0 < d(x, y) for all x, y ∈ X, x 6= y and d(x, y) = 0 if and only if x = y.
(b) d(x, y) = d(y, x) for all x, y ∈ X.
(c) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) for all x, y ∈ X and for all distinct

points u, v ∈ X\{x, y} (rectangular property).

Then d is called a cone rectangular metric on X, and (X, d) is called a cone
rectangular metric space.

Not that any cone metric space is a cone rectangular metric space but the
converse is not true in general.

Example 1.2. Let E = R2, P = {(x, y) ∈ E |x, y ≥ 0}, X = R, d : X ×X → E
such that

d(x, y) =





(0, 0) if x = y,
(3α, 3) if x and y are in {1, 2}, x 6= y,
(α, 1) if x and y can not both at a time in {1, 2}, x 6= y,

where α > 0 is a constant. Then (X, d) is a cone rectangular metric space but it is
not a cone metric space since we have d(1, 2) = (3α, 3) > d(1, 3)+d(3, 2) = (2α, 2).

Example 1.3. Let E = R2, P = {(x, y) ∈ E |x, y ≥ 0}, X = {a, b, c, e} and
d : X ×X → E such that




d(x, x) = (0, 0), ∀x ∈ X,
d(x, y) = d(y, x), ∀x, y ∈ X,
d(a, b) = (3, α),
d(a, c) = d(b, c) = (1, α),
d(a, e) = d(b, e) = d(c, e) = (2, α),
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where α > 0 is a constant. Then (X, d) is a cone rectangular metric space but it is
not a cone metric space since we have d(a, b) = (3, α) and d(a, c)+d(c, b) = (2, 2α)
but (3, α) and (2, 2α) cannot be compared with respect to ≤.

Definition 1.4. Let (X, d) be a cone rectangular metric space. Let (xn) be a
sequence in X and x ∈ X. If for every c ∈ E, c À 0 there is N such that for all
n > N , d(xn, x) ¿ c, then (xn) is said to be convergent to x and x is the limit of
(xn). We denote this by xn → x as n → +∞.

The proof of this result is identical to the proof of ([8]-Lemma 1).

Lemma 1.5. Let (X, d) be a cone rectangular metric space, P be a normal cone.
Let (xn) be a sequence in X. Then,

xn → x as n → +∞⇔ ‖d(xn, x)‖ → 0 as n → +∞.

Note that if (X, d) is a cone metric space and (xn) is a convergent sequence in
X, then the limit of (xn) is unique ([8]-Lemma 2). In our case, the uniqueness of
the limit is not satisfied in general. We give an example to illustrate this remark.

Example 1.6. We take E = R and P = {x ∈ R |x ≥ 0}. Let (xn)n∈N∗ be a
sequence in Q and a, b ∈ R\Q, a 6= b. We put X = {x1, x2, · · · , xn, · · · } ∪ {a, b}
and we consider d : X ×X → R defined by





d(x, x) = 0, ∀x ∈ X,
d(x, y) = d(y, x), ∀x, y ∈ X,
d(xn, xm) = 1, ∀n,m ∈ N∗, n 6= m,
d(xn, b) = 1

n
, ∀n ∈ N∗,

d(xn, a) = 1
n
, ∀n ∈ N∗,

d(a, b) = 1.

We remark that (X, d) is not a cone metric space because we have

d(x2, x3) = 1 > d(x2, a) + d(a, x3) =
1

2
+

1

3
=

5

6
.

However, (X, d) is a cone rectangular metric space. Now, since d(xn, a) = 1
n
→ 0

as n → +∞, we obtain that xn → a as n → +∞. Also, we have d(xn, b) = 1
n
→ 0

as n → +∞ and then xn → b as n → +∞.

Definition 1.7. Let (X, d) be a cone rectangular metric space, (xn) be a sequence
in X. If for any c ∈ E with 0 ¿ c, there is N such that for all n,m > N ,
d(xn, xm) ¿ c, then (xn) is called a Cauchy sequence in X.

The proof of the following result is similar to the proof of ([8]-Lemma 4).

Lemma 1.8. Let (X, d) be a cone rectangular metric space and P be a normal
cone. Let (xn) be a sequence in X. Then (xn) is a Cauchy sequence if and only
if d(xn, xm) → 0 as n,m → +∞.

Note that if (X, d) is a cone metric space and (xn) is a convergent sequence in
X, then (xn) is a Cauchy sequence ([8]-Lemma 3). In our case, this result is not
true in general. In fact, in Example 1.6, the sequence (xn) is convergent but we
have d(xn, xm) → 1 as n,m → +∞.
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Definition 1.9. Let (X, d) be a cone rectangular metric space. If every Cauchy
sequence is convergent in X, then X is called a complete cone rectangular metric
space.

In this particular case, the uniqueness of the limit is satisfied.

Lemma 1.10. Let (X, d) be a complete cone rectangular metric space, P be a
normal cone with normal constant k. Let (xn) be a Cauchy sequence in X and
suppose that there is N such that

(i) xn 6= xm for all n,m > N .
(ii) xn, x are distinct points in X for all n > N .
(iii) xn, y are distinct points in X for all n > N .
(iii) xn → x and xn → y as n → +∞.

Then x = y.

Proof. For any c ∈ E with 0 ¿ c, there is ν such that

d(xn, x) ¿ c, d(xn, y) ¿ c and d(xn, xm) ¿ c

for all n,m > ν. For all n,m > max(N, ν), We have

d(x, y) ≤ d(x, xn) + d(xn, xm) + d(xm, y) ≤ 3c.

Hence, ‖d(x, y)‖ ≤ 3k‖c‖. Since c is arbitrary d(x, y) = 0; therefore x = y. ¤

2. Main result

In this section, we derive a fixed point theorem in a cone rectangular metric
space. Our obtained result generalizes the well known Kannan’s theorem.

Theorem 2.1. Let (X, d) be a complete cone rectangular metric space, P be a
normal cone with normal constant k. Suppose a mapping T : X → X satisfies
the contractive condition

d(Tx, Ty) ≤ α(d(Tx, x) + d(Ty, y)), ∀x, y ∈ X, (2.1)

where α ∈ [0, 1/2). Then,

(i) T has a unique fixed point in X.
(ii) For any x ∈ X, the iterative sequence (T nx) converges to the fixed point.

Proof. Let x ∈ X. We have

d(Tx, T 2x) ≤ α(d(Tx, x) + d(Tx, T 2x)),

i.e.,

d(Tx, T 2x) ≤ α

1− α
d(x, Tx).

Again

d(T 2x, T 3x) ≤ α(d(Tx, T 2x) + d(T 2x, T 3x))

i.e.,

d(T 2x, T 3x) ≤ α

1− α
d(Tx, T 2x) ≤

(
α

1− α

)2

d(x, Tx).
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Thus in general, if n is a positive integer, then

d(T nx, T n+1x) ≤
(

α

1− α

)n

d(x, Tx) = rnd(x, Tx),

where r = α
1−α

∈ [0, 1).
We divide the proof into two cases.

First case: Let Tmx = T nx for some m,n ∈ N, m 6= n. Let m > n. Then
Tm−n(T nx) = T nx, i.e. T py = y where p = m − n, y = T nx. Now since p > 1,
we have

d(y, Ty) = d(T py, T p+1y)

≤ rpd(y, Ty).

Since r ∈ [0, 1), we obtain −d(y, Ty) ∈ P and d(y, Ty) ∈ P which implies that
‖d(y, Ty)‖ = 0, i.e., Ty = y.
Second case: Assume that Tmx 6= T nx for all m,n ∈ N, m 6= n. Clearly, we have

d(T nx, T n+1x) ≤ rnd(x, Tx) ≤ rn

1− r
d(x, Tx)

and

d(T nx, T n+2x) ≤ α(d(T n−1x, T nx) + d(T n+1x, T n+2x))

≤ α(rn−1d(x, Tx) + rn+1d(x, Tx))

≤ rnd(x, Tx) + rn+1d(x, Tx)

≤ rn

1− r
d(x, Tx).

Now if m > 2 is odd then writing m = 2` + 1, ` ≥ 1 and using the fact that
T px 6= T rx for p, r ∈ N, p 6= r, we can easily show that

d(T nx, T n+mx) ≤ d(T nx, T n+1x) + d(T n+1x, T n+2x) + · · ·+ d(T n+2`x, T n+2`+1x)

≤ rnd(x, Tx) + rn+1d(x, Tx) + · · ·+ rn+2`d(x, Tx)

≤ rn

1− r
d(x, Tx).

Again if m > 2 is even then writing m = 2`, ` ≥ 2 and using the same arguments
as before, we can get

d(T nx, T n+mx)

≤ d(T nx, T n+2x) + d(T n+2x, T n+3x) + d(T n+3x, T n+4x) + · · ·+ d(T n+2`−1x, T n+2`x)

≤ rnd(x, Tx) + rn+2d(x, Tx) + rn+3d(x, Tx) + · · ·+ rn+2`−1d(x, Tx)

≤ rn

1− r
d(x, Tx).

Thus combining all the cases we have

d(T nx, T n+mx) ≤ rn

1− r
d(x, Tx), ∀m,n ∈ N.
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Hence, we get

‖d(T nx, T n+mx)‖ ≤ k
rn

1− r
‖d(x, Tx)‖, ∀m,n ∈ N.

Since k rn

1−r
‖d(x, Tx)‖ → 0 as n → +∞, (T nx) is a Cauchy sequence. By the

completeness of X, there is x∗ ∈ X such that T nx → x∗ as n → +∞.
We shall now show that Tx∗ = x∗. Without any loss of generality, we can

assume that T rx 6= x∗, Tx∗ for any r ∈ N. We have

d(x∗, Tx∗) ≤ d(x∗, T nx) + d(T nx, T n+1x) + d(T n+1x, Tx∗)

≤ d(x∗, T nx) + d(T nx, T n+1x) + α(d(T nx, T n+1x) + d(x∗, Tx∗))

which implies that

d(x∗, Tx∗) ≤ 1

1− α
(d(x∗, T nx) + (1 + α)d(T nx, T n+1x)).

Hence,

‖d(x∗, Tx∗)‖ ≤ k

1− α
(‖d(x∗, T nx)‖+ (1 + α)‖d(T nx, T n+1x)‖) → 0 as n → +∞.

So we obtain d(Tx∗, x∗) = 0, i.e., x∗ = Tx∗.
Now, if y∗ is another fixed point of T , then

d(x∗, y∗) = d(Tx∗, T y∗) ≤ α(d(x∗, Tx∗) + d(y∗, T y∗)) = 0

which implies that ‖d(x∗, y∗)‖ = 0, i.e., x∗ = y∗. ¤
To illustrate Theorem 2.1, we give the following example.

Example 2.2. Let E = C and P = {x + iy |x, y ∈ R, x, y ≥ 0} a normal cone in
E. Let X = {1, 2, 3, 4}. Define d : X ×X → E by

d(x, x) = 0

d(1, 2) =d(2, 1) = 3 + 9i

d(2, 3) =d(3, 2) =d(1, 3) =d(3, 1) = 1 + 3i

d(1, 4) =d(4, 1) =d(2, 4) =d(4, 2) =d(3, 4) =d(4, 3) =4 + 12i.

Then (X, d) is a complete cone rectangular metric space but (X, d) is not a cone
metric space because it lacks the triangular property

3 + 9i = d(1, 2) > d(1, 3) + d(3, 2) = 2 + 6i.

Now, define a mapping T : X → X as follows

Tx =

{
3 if x 6= 4
1 if x = 4.

We remark that T is not a contractive mapping with respect to the standard
metric in X because we have

|T4− T2| = 2 = |4− 2|.
However, T satisfies

d(Tx, Ty) ≤ α(d(x, Tx) + d(y, Ty)), ∀x, y ∈ X
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with α = 1
3
. Applying Theorem 2.1, we obtain that T admits a unique fixed

point, that is x∗ = 3.
Note that in this example, results of Huang and Zhang [8] are not applicable to

obtain the fixed point of the mapping T on X, since (X, d) is not a cone metric
space.
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