The Journal of Nonlinear Sciences and Applications http://www.tjnsa.com

CONTRACTIONS OVER GENERALIZED METRIC SPACES

I. R. SARMA¹, J. M. RAO², AND S. S. RAO^{3*}

ABSTRACT. A generalized metric space (g.m.s) has been defined as a metric space in which the triangle inequality is replaced by the 'Quadrilateral inequality', $d(x, y) \leq d(x, a) + d(a, b) + d(b, y)$ for all pairwise distinct points x, y, aand b of X. (X, d) becomes a topological space when we define a subset A of X to be open if to each a in A there corresponds a positive number r_a such that $b \in A$ whenever $d(a, b) < r_a$. Cauchyness and convergence of sequences are defined exactly as in metric spaces and a g.m.s (X, d) is called complete if every Cauchy sequence in (X, d) converges to a point of X. A.Branciari [1] has published a paper purporting to generalize Banach's Contraction principle in metric spaces to g.m.s. In this paper we present a correct version and proof of the generalization.

1. Main result

In what follows \mathbb{N} denotes the set of natural numbers. The basic terms are already defined in the abstract. We denote $\{y \in X : d(x, y) < r\}$ for x in a g.m.s (X, d) by $B_r(x)$. In [1], the following were taken for granted and used:

- (1) $\{B_r(x): r > 0, x \in X\}$ is a basis for a topology on X
- (2) d is continuous in each of the coordinates and
- (3) a g.m.s is a Hausdorff space.

The following examples shows that (1), (2) and (3) are false.

Example 1.1. Let $A = \{0, 2\}$, $B = \{\frac{1}{n} : n \in \mathbb{N}\}$, $X = A \cup B$. Define d on $X \times X$ as follows: d(x, y) = 0 if x = y, d(x, y) = 1 if $x \neq y$ and $\{x, y\} \subseteq A$ or $\{x, y\} \subseteq B$, d(x, y) = d(y, x) = y if $x \in A$ and $y \in B$. Then (X, d) is a complete g.m.s in which

* Corresponding author.

Date: Received: 11 May 2009, Revised: 13 June 2009.

²⁰⁰⁰ Mathematics Subject Classification. primary 47H10; secondary 54H25.

Key words and phrases. Fixed point, Contraction mapping, Generalized metric spaces.

(a) the sequence $(\frac{1}{n})_{n\in\mathbb{N}}$ converges to both 0 and 2 and it is not a Cauchy sequence,

(b) there does not exist r > 0 such that $B_r(0) \cap B_r(2) = \emptyset$,

(c) $B_{\frac{2}{3}}(\frac{1}{3}) = \{0, 2, \frac{1}{3}\}$ and there does not exist r > 0 such that $B_r(0) \subseteq B_{\frac{2}{3}}(\frac{1}{3})$,

(d) $\lim d(\frac{1}{n}, \frac{1}{2}) \neq d(0, \frac{1}{2}).$

Remark 1.2. Even Though the sets $B_r(x)$ do not form an open basis for a topology on a g.m.s X, the subsets A of X satisfying the following condition form a topology on X : To each a in A there corresponds $r_a > 0$ such that $B_{r_a}(a) \subseteq A$.

Theorem 1.3. (Banach's Contraction principle in a g.m.s). Let (X, d) be a Hausdorff and complete g.m.s and let $f: X \to X$ be a mapping and $0 < \lambda < 1$ satisfying the inequality $d(fx, fy) \leq \lambda d(x, y)$ for all x, y in X (such a mapping is called a contraction mapping on X and λ is called the contractive constant of f). Then there is a unique point x in X satisfying f(x) = x (such a point is called a fixed point of f).

Proof. Let $x \in X$, $a_n = f^n(x)$ for $n \ge 0$ and $c = \inf S$ where

 $S = \{d(a_{n-1}, a_n) : n \in \mathbb{N}\}$. We claim that c = 0, If $c \neq 0$ then $c < \frac{c}{\lambda}$ and hence there is a positive integer n such $d(a_{n-1}, a_n) < \frac{c}{\lambda}$ so that $\lambda d(a_{n-1}, a_n) < c$. By Contractive property of f we have $d(f^n x, f^{n+1} x) < c$ a contradiction to the minimality of c. Hence c = 0. The monotonically decreasing property of the sequence $d(a_n, a_{n+1})$ implies that $d(a_n, a_{n+1})$ converges to 0(*).

We claim that f has a periodic point. Suppose, to obtain a contradiction, f has no periodic point. Then $\{a_n\}$ is a sequence of distinct points and for m > n + 1, we have

$$d(a_n, a_m) = d(f^n x, f^m x) \le d(f^n x, f^{n+1} x) + d(f^{n+1} x, f^{m+1} x) + d(f^{m+1} x, f^m x)$$
$$\le (\lambda^n + \lambda^m) d(x, fx) + \lambda d(f^n x, f^m x)$$
$$(By \ Quadrilateral \ inequality)$$

which implies $(1 - \lambda)d(a_n, a_m) \leq (\lambda^n + \lambda^m)d(x, fx)$ and hence $\{a_n\}$ is a Cauchy sequence in (X, d) (in view of (*)). By Completeness, $a_n \to a$ for some a in X. Also $d(fa_n, fa) \leq \lambda d(a_n, a)$ and $d(a_n, a) \to 0$. So $d(fa_n, fa) = d(a_{n+1}, fa) \to 0$. Hence $a_n \to a$ and $a_{n+1} \to fa$. Since (X, d) is Hausdorff it follows that a = fa, a contradiction to the assumption that f has no periodic point. Thus f has a periodic point say a of period n. Suppose if possible n > 1. Then d(a, fa) = $d(f^n a, f^{n+1}a) < \lambda^n d(a, fa)$, a contradiction. So n = 1 and a is a fixed point of f. If a, b are fixed points of f then $d(a, b) = d(fa, fb) \leq \lambda d(a, b)$. Since $0 < \lambda < 1$, we have a = b.

Remark 1.4. Several publications attempting to generalize fixed point theorems in metric spaces to g.m.s are plagued by the use of (1), (2), and (3) above (see for example [2],[3],[4],[5] and [6]). Valid proofs for many of them can be offered as in theorem 1.3 which will be communicated soon by the authors for publication.

Further general topological properties of a g.m.s have been extensively studied by us and will be communicated in a forthcoming paper.

References

- A. Branciari, A fixed point theorem of Banach-Caccippoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 (2000), 31–37.
- A. Azam and M. Arshad, Kannan fixed point theorem on generalized metric spaces, J. Nonlinear Sci. Appl., 1 (2008), 45–48.
- M. Akram and Akhlaq A. Siddiqui, A fixed point theorem for A-Contractions on a class of generalized metric spaces, Korean J. Math. Sciences. 10 (2003), 1–5.
- 4. B. K. Lahiri and P. Das, tFixed point of a Ljubomir Ciric's quasi-contraction mapping in a generalized metric spaces, Publ. Math. Debrecen, 61 (2002), 584-594.
- 5. Pratulananda Das and L.K. Dey, A fixed point theorem in a Generalized metric space, Soochow Journal of Mathematics, 33 (2007), 33–39.
- P.a Das, A fixed point theorem on a class of Generalized metric spaces, Korean J.Math.Scienes, 9 (2002), 29–33.

 1 FED-II, K.L. University, Vaddeswaram-522502, Guntur district, Andhra Pradesh, India

E-mail address: irbsarma440gmail.com

 2 Principal, Vijaya Engineering College, Wry
a Road, Khammam-507305, Andhra Pradesh, India

E-mail address: jampalamadhu@yahoo.com

 3 Department of Basics Sciences and Humanities, Joginpally B.R. Engineering College, Yenkapally(V), Moinabad(M), Ranga Reddy Distric, Andhra Pradesh500075, India.

E-mail address: ssrao.siginam@gmail.com

* Address for Correspondence: S. Sambasiva Rao, Plot No. 118, Vaidehi Nagar, Vanasthalipuram, Hyderabad-500070, Andhra Pradesh, India.

E-mail address: ssrao.siginam@gmail.com