CONTRACTIONS OVER GENERALIZED METRIC SPACES

I. R. SARMA ${ }^{1}$, J. M. RAO ${ }^{2}$, AND S. S. RAO ${ }^{3 *}$

Abstract

A generalized metric space (g.m.s) has been defined as a metric space in which the triangle inequality is replaced by the 'Quadrilateral inequality', $d(x, y) \leq d(x, a)+d(a, b)+d(b, y)$ for all pairwise distinct points x, y, a and b of $X .(X, d)$ becomes a topological space when we define a subset A of X to be open if to each a in A there corresponds a positive number r_{a} such that $b \in A$ whenever $d(a, b)<r_{a}$. Cauchyness and convergence of sequences are defined exactly as in metric spaces and a g.m.s (X, d) is called complete if every Cauchy sequence in (X, d) converges to a point of X. A.Branciari [1] has published a paper purporting to generalize Banach's Contraction principle in metric spaces to g.m.s. In this paper we present a correct version and proof of the generalization.

1. Main result

In what follows \mathbb{N} denotes the set of natural numbers. The basic terms are already defined in the abstract. We denote $\{y \in X: d(x, y)<r\}$ for x in a g.m.s (X, d) by $B_{r}(x)$. In [1], the following were taken for granted and used:
(1) $\left\{B_{r}(x): r>0, x \in X\right\}$ is a basis for a topology on X
(2) d is continuous in each of the coordinates and
(3) a g.m.s is a Hausdorff space.

The following examples shows that (1), (2)and (3) are false.
Example 1.1. Let $A=\{0,2\}, B=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}, X=A \cup B$. Define d on $X \times X$ as follows: $d(x, y)=0$ if $x=y, d(x, y)=1$ if $x \neq y$ and $\{x, y\} \subseteq A$ or $\{x, y\} \subseteq B$, $d(x, y)=d(y, x)=y$ if $x \in A$ and $y \in B$. Then (X, d) is a complete g .m.s in which

Date: Received: 11 May 2009, Revised: 13 June 2009.

* Corresponding author.

2000 Mathematics Subject Classification. primary 47H10;secondary 54H25.
Key words and phrases. Fixed point, Contraction mapping, Generalized metric spaces.
(a) the sequence $\left(\frac{1}{n}\right)_{n \in \mathbb{N}}$ converges to both 0 and 2 and it is not a Cauchy sequence,
(b) there does not exist $r>0$ such that $B_{r}(0) \cap B_{r}(2)=\emptyset$,
(c) $B_{\frac{2}{3}}\left(\frac{1}{3}\right)=\left\{0,2, \frac{1}{3}\right\}$ and there does not exist $r>0$ such that $B_{r}(0) \subseteq B_{\frac{2}{3}}\left(\frac{1}{3}\right)$,
(d) $\lim d\left(\frac{1}{n}, \frac{1}{2}\right) \neq d\left(0, \frac{1}{2}\right)$.

Remark 1.2. Even Though the sets $B_{r}(x)$ do not form an open basis for a topology on a g.m.s X, the subsets A of X satisfying the following condition form a topology on X : To each a in A there corresponds $r_{a}>0$ such that $B_{r_{a}}(a) \subseteq A$.

Theorem 1.3. (Banach's Contraction principle in a g.m.s). Let (X, d) be a Hausdorff and complete g.m.s and let $f: X \rightarrow X$ be a mapping and $0<\lambda<1$ satisfying the inequality $d(f x, f y) \leq \lambda d(x, y)$ for all x, y in X (such a mapping is called a contraction mapping on X and λ is called the contractive constant of f). Then there is a unique point x in X satisfying $f(x)=x$ (such a point is called a fixed point of f).

Proof. Let $x \in X, a_{n}=f^{n}(x)$ for $n \geq 0$ and $c=\inf S$ where
$S=\left\{d\left(a_{n-1}, a_{n}\right): n \in \mathbb{N}\right\}$. We claim that $c=0$, If $c \neq 0$ then $c<\frac{c}{\lambda}$ and hence there is a positive integer n such $d\left(a_{n-1}, a_{n}\right)<\frac{c}{\lambda}$ so that $\lambda d\left(a_{n-1}, a_{n}\right)<c$. By Contractive property of f we have $d\left(f^{n} x, f^{n+1} x\right)<c$ a contradiction to the minimality of c. Hence $c=0$. The monotonically decreasing property of the sequence $d\left(a_{n}, a_{n+1}\right)$ implies that $d\left(a_{n}, a_{n+1}\right)$ converges to 0 \qquad We claim that f has a periodic point. Suppose, to obtain a contradiction, f has no periodic point. Then $\left\{a_{n}\right\}$ is a sequence of distinct points and for $m>n+1$, we have

$$
\begin{array}{r}
d\left(a_{n}, a_{m}\right)=d\left(f^{n} x, f^{m} x\right) \leq d\left(f^{n} x, f^{n+1} x\right)+d\left(f^{n+1} x, f^{m+1} x\right)+d\left(f^{m+1} x, f^{m} x\right) \\
\leq\left(\lambda^{n}+\lambda^{m}\right) d(x, f x)+\lambda d\left(f^{n} x, f^{m} x\right) \\
(\text { By Quadrilateral inequality })
\end{array}
$$

which implies $(1-\lambda) d\left(a_{n}, a_{m}\right) \leq\left(\lambda^{n}+\lambda^{m}\right) d(x, f x)$ and hence $\left\{a_{n}\right\}$ is a Cauchy sequence in (X, d) (in view of $(*))$. By Completeness, $a_{n} \rightarrow a$ for some a in X. Also $d\left(f a_{n}, f a\right) \leq \lambda d\left(a_{n}, a\right)$ and $d\left(a_{n}, a\right) \rightarrow 0$. So $d\left(f a_{n}, f a\right)=d\left(a_{n+1}, f a\right) \rightarrow 0$. Hence $a_{n} \rightarrow a$ and $a_{n+1} \rightarrow f a$. Since (X, d) is Hausdorff it follows that $a=f a$, a contradiction to the assumption that f has no periodic point. Thus f has a periodic point say a of period n. Suppose if possible $n>1$. Then $d(a, f a)=$ $d\left(f^{n} a, f^{n+1} a\right)<\lambda^{n} d(a, f a)$, a contradiction. So $n=1$ and a is a fixed point of f. If a, b are fixed points of f then $d(a, b)=d(f a, f b) \leq \lambda d(a, b)$. Since $0<\lambda<1$, we have $a=b$.

Remark 1.4. Several publications attempting to generalize fixed point theorems in metric spaces to g.m.s are plagued by the use of (1), (2), and (3) above (see for example [2], [3], [4], [5] and [6]). Valid proofs for many of them can be offered as in theorem1.3 which will be communicated soon by the authors for publication.

Further general topological properties of a g.m.s have been extensively studied by us and will be communicated in a forthcoming paper.

References

1. A. Branciari, A fixed point theorem of Banach-Caccippoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 (2000), 31-37.
2. A. Azam and M. Arshad, Kannan fixed point theorem on generalized metric spaces, J. Nonlinear Sci. Appl., 1 (2008), 45-48.
3. M. Akram and Akhlaq A. Siddiqui,A fixed point theorem for A-Contractions on a class of generalized metric spaces, Korean J. Math. Sciences. 10 (2003), 1-5.
4. B. K. Lahiri and P. Das, tFixed point of a Ljubomir Ciric's quasi-contraction mapping in a generalized metric spaces, Publ. Math. Debrecen, 61 (2002), 584-594.
5. Pratulananda Das and L.K. Dey, A fixed point theorem in a Generalized metric space, Soochow Journal of Mathematics, 33 (2007), 33-39.
6. P.a Das, A fixed point theorem on a class of Generalized metric spaces, Korean J.Math.Scienes, 9 (2002), 29-33.
${ }^{1}$ FED-II, K.L. University, Vaddeswaram-522502, Guntur district, Andhra Pradesh, India

E-mail address: irbsarma44@gmail.com
${ }^{2}$ Principal, Vijaya Engineering College, Wrya Road, Khammam-507305, Andhra Pradesh, India

E-mail address: jampalamadhu@yahoo.com
${ }^{3}$ Department of Basics Sciences and Humanities, Joginpally B.R. Engineering College, Yenkapally(V), Moinabad(M), Ranga Reddy Distric, Andhra Pradesh500075 , India.

E-mail address: ssrao.siginam@gmail.com

* Address for Correspondence: S. Sambasiva Rao, Plot No. 118, Vaidehi Nagar, Vanasthalipuram, Hyderabad- 500070 , Andhra Pradesh, India.

E-mail address: ssrao.siginam@gmail.com

