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EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS
FOR A p-LAPLACIAN BOUNDARY VALUE PROBLEM ON

TIME SCALES

YUANYUAN PANG1,∗ AND ZHANBING BAI 2

Abstract. In this paper, we study the solvability of one-dimensional fourth-
order p-Laplacian boundary value problems on time scales. By using Kras-
nosel’skii’s fixed point theorem of cone expansion-compression type, some exis-
tence and multiplicity results of positive solution have been required according
to different growth condition of nonlinear form f at zero and at infinity.

1. Introduction

The study of dynamic equations on time scales goes back to its founder Stefan
Hilger [14], and is a new area of still fairly theoretical exploration in mathemat-
ics. Recently, there has been much attention paid to the existence of positive
solutions for second-order nonlinear boundary value problems on time scales, see
[1,5,11]. On the one hand, the higher-order nonlinear boundary value problems
have been studied extensively, see [4,9,12,16]. On the other hand, the boundary
value problems with p-Laplacian operator have also been discussed extensively in
the literature, for example, see [6,17,18,20]. However, to the best of our knowl-
edge, there are not many results concerning the fourth-order p-Laplacian dynamic
equations on time scales.

In [10], Bai and Du considered the following second-order four-point boundary
value problems {

− x′′ + λh(t)f(t, x(t)) = 0, 0 < t < 1,

x(0) = ax(ξ), x(1) = bx(η),
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where 0 < ξ < η < 1, 0 ≤ a, b < 1, and h : [0, 1]× [0,∞) → [0,∞) are nonneg-
ative continuous functions. The authors established the existence, nonexistence,
and multiplicity of positive solutions by using the fixed-point index theory, Leray-
Schauder degree and the upper and lower solution method.

In [19], Wang studied the following boundary value problem
{

(g(u′))′ + a(t)f(u) = 0, 0 < t < 1,

u(0) = 0, u(1) = 0,

where, g(v) := |v|p−2v, p > 1. It shows the existence of one positive solution of
this problem by used Cone compression-extension theorem, if

f0 = 0, f∞ = +∞, or f0 = +∞, f∞ = 0,

where

f0 = lim
u→0

f(u)

up−1
, f∞ = lim

u→∞
f(u)

up−1
.

Ma [16] proved the existence of positive solutions of the following beam equation
under above conditions

{
u(4) + a(t)f(u) = 0, 0 < t < 1,

u(0) = u(1) = u
′′
(0) = u

′′
(1) = 0.

In [17], Sun and Li discussed the following p-laplacian m-point BVP on time
scales: 




(ϕp(u
∆(t))∇ + a(t)f(t, u(t)) = 0, t ∈ (0, T ),

u(0) = 0, ϕp(u
∆(T )) =

m−2∑
i=1

aiϕp(u
∆(ξi)).

The authors obtained some new results for the existence of at least twin or triple
positive solutions by applying Avery-Henderson and Leggett-Williams fixed point
theorems respectively.

In this paper, under the assumptions

f0 = f∞ = +∞ or f∞ = f0 = 0,

we are concerned with the existence and multiplicity results of positive solutions
for the following fourth-order p-Laplacian boundary value problem on time scales

{
(ϕp(u

∆∆))∆∆ + λa(t)f(u) = 0, t ∈ (0, T ),

u(0) = u(T ) = u∆∆(0) = u∆∆(T ) = 0,
(1.1)

where ϕp(s) is p-Laplacian operator, i.e., ϕp(s) = |s|p−2s, p > 1, λ > 0 is a
parameter.
A time scales T is a nonempty closed subset of R. We make the blanket assump-
tion that 0, T are points in T, and define the interval in T, [0, T ] := {t ∈ T : 0 ≤
t ≤ T}. Other types of intervals are defined similarly.
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The rest of the paper is arranged as follows. We state some basic time scale
definitions and some preliminary results devoted to some existence and multi-
plicity results of positive solution of BVP (1.1), the main tool being the cone
compression-extension theorem.

2. Some Definitions and Lemmas

To prove the main results in this paper, we will employ several definitions and
lemmas, which are based on the BVP (1.1) and can be found in [2,8,13].

Definition 2.1. A time scales T is a nonempty closed subset of R. For t < supT,
define the forward jump operator σ:

σ(t) = inf{τ ∈ T|τ > t ∈ T},
If σ(t) > t, t is said to be right scattered, and if σ(t) = t, t is said to be right
dense. If T has a right scattered minimum m, define Tk = T−m; otherwise set
Tk = T. The forward graininess is µ(t) = σ(t)− t.

Definition 2.2. For f : T → R and t ∈ Tk , the delta derivative of f at t
, denoted by f∆(t) , is the number (provided it exists) with the property that
given any ε > 0 , there is a neighborhood U ⊂ T of t such that

|f(σ(t))− f(s)− f∆(t)[σ(t)− s]| ≤ ε|σ(t)− s|, ∀s ∈ U.

Definition 2.3. If F∆(t) = f(t), then we define the delta integral by
∫ b

a

f(s)∆s = F (b)− F (a).

Lemma 2.4. ([15]) Let B be a Banach space and P ⊂ B be a cone in B. Assume
Ω1, Ω2 are open subsets of B with 0 ∈ Ω1, Ω̄1 ⊂ Ω2, and let T : P ∩(Ω̄2\Ω1) → P
be a completely continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1; and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2, or
(ii) ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1; and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2,

then T has a fixed point in P ∩ (Ω̄2 \ Ω1).

Now, let the Banach space E = C[0, T ] be endowed with the norm ‖u‖ =
sup

t∈[0,T ]

|u(t)|, and choose the cone P ⊂ E defined by

P = {u ∈ E : u(t) ≥ 0 for t ∈ [0, T ] and u(0) = u(T ) = 0, u(t) is concave}.
Lemma 2.5. ([17]) If u ∈ P , then u(t) ≥ t

T
‖u‖, for t ∈ [0, T ].

3. Main results

In this section, we impose growth conditions on f which allow us to apply
Lemma 2.1 to establish some results of existence and multiplicity of positive
solutions for BVP (1.1).

The following assumptions will be assumed throughout
(H1) f : [0,∞) → [0,∞) is continuous,



BOUNDARY VALUE PROBLEM 35

(H2) a(t) is nonnegative continuous in (0,T) and does not vanish identically on
any subinterval, such that

T
2∫

0

T
2∫

s

ϕq




r∫

0

T
2∫

R

a(x)∆x∆R


 ∆r∆s+

T∫

T
2

s∫

T
2

ϕq




T∫

r

R∫

T
2

a(x)∆x∆R


 ∆r∆s < +∞,

here ϕq(ω) = |ω| 1
p−1 sgn(ω) is inverse function of ϕp(s).

Then as δ ∈ (0, T/2), we have u(t) ≥ δ
T
‖u‖ by lemma 2.2. The function

y(x) :=

x∫

δ

x∫

s

ϕq




r∫

0

x∫

R

a(x)∆x∆R


 ∆r∆s+

T−δ∫

x

s∫

x

ϕq




T∫

r

R∫

x

a(x)∆x∆R


 ∆r∆s

is positive and continuous in [δ, T − δ].
Now we define an operator Φ : P → P
W (t) = (Φu)(t) :=




∫ t

0

∫ σ

s

ϕq

(
λ

∫ r

0

∫ σ

R

a(x)f(u(x))∆x∆R

)
∆r∆s, t ∈ [0, σ],

∫ T

t

∫ s

σ

ϕq

(
λ

∫ T

r

∫ R

σ

a(x)f(u(x))∆x∆R

)
∆r∆s, t ∈ [σ, T ],

(3.1)

σ is a solution of the following function∫ x

0

∫ x

s

ϕq

(
λ

∫ r

0

∫ x

R

a(y)f(u(y))∆y∆R

)
∆r∆s

=

∫ T

x

∫ s

x

ϕq

(
λ

∫ T

r

∫ R

x

a(y)f(u(y))∆y∆R

)
∆r∆s.

With the monotonicity we known σ ∈ (0, T ) is existence and unique.
It is easy to check that Φ : P → P is a completely continuous operator on [0,T]

by applying the Arzela-Ascoli theorem on time scales[3], and using Lebesgue’s
dominated convergence theorem on time scales[7].

W (σ) is maximum of W in [0, T ], because

W∆(σ) = 0,

W∆∆(t) =





− ϕq

(∫ t

0

∫ σ

R

λa(r)f(u(r))∆r∆R

)
≤ 0, t ∈ [0, σ],

− ϕq

(∫ T

t

∫ R

σ

λa(r)f(u(r))∆r∆R

)
≤ 0, t ∈ [σ, T ].

Now note M = min
x∈[δ,T−δ]

y(x), N = ϕq

(∫ T

0

∫ T

s
a(t)∆t∆s

)
.

Theorem 3.1. Assume (H1) and (H2) are holding for λ > 0, if there exists two
different positive constants h, k and δ ∈ (0, T

2
) such that

(A1) f(u) ≤ 1
λ
( h

N
)p−1, u ∈ [0, h],

(A2) f(u) ≥ 1
λ
(2k

M
)p−1, u ∈ [δk, k].
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Then the BVP (1.1) has a positive solution u such that ‖u‖ is between h and
k.

Proof. Without loss of generality, we assume that h < k, consider the integral
operator Φ defined as (3.1). We known the fixed point of Φ just is solution of
(1.1). Now for complete the proof, divide it into two steps.
Step 1. Let Ω1 = {u ∈ P : ‖u‖ ≤ h}, for u ∈ ∂Ω1, by (A1)

‖Φu‖ = ‖W‖ = W (σ) ≤ ϕq

(∫ T

0

∫ T

s

λa(r)f(u(r))∆r∆s

)
≤ h = ‖u‖,

so ‖Φu‖ ≤ ‖u‖ for u ∈ ∂Ω1.
Step 2. Let Ω2 = {u ∈ P : ‖u‖ ≤ k}, then for u ∈ ∂Ω2, there is u(t) ∈ [δk, k],
t ∈ [δ, T − δ], therefore by condition (A2), if σ ∈ (δ, T − δ), then

‖Φu‖ = ‖W‖ = W (σ)

≥ 1

2

[∫ σ

0

∫ σ

s

ϕq

(
λ

∫ r

0

∫ σ

R

a(x)f(u(x))∆x∆R

)
∆r∆s

+

∫ T

σ

∫ s

σ

ϕq

(
λ

∫ T

r

∫ R

σ

a(x)f(u(x))∆x∆R

)
∆r∆s

]

≥ 1

2

[∫ σ

δ

∫ σ

s

ϕq

(
λ

∫ r

δ

∫ σ

R

a(x)f(u(x))∆x∆R

)
∆r∆s

+

∫ T−σ

σ

∫ s

σ

ϕq

(
λ

∫ T−δ

r

∫ R

σ

a(x)f(u(x))∆x∆R

)
∆r∆s

]

≥ 1

2
· 2k

M
y(σ) ≥ k = ‖u‖.

If σ ≥ T − δ, then

‖W‖ ≥
∫ T−δ

0

∫ T−δ

s

ϕq

(
λ

∫ r

0

∫ T−δ

R

a(x)f(u(x))∆x∆R

)
∆r∆s

≥
∫ T−δ

δ

∫ T−δ

s

ϕq

(
λ

∫ r

δ

∫ T−δ

R

a(x)f(u(x))∆x∆R

)
∆r∆s

≥ 2k > k = ‖u‖.
If σ ≤ δ, then

‖W‖ ≥
∫ T

δ

∫ s

δ

ϕq

(
λ

∫ T

r

∫ R

δ

a(x)f(u(x))∆x∆R

)
∆r∆s

≥
∫ T−δ

δ

∫ s

δ

ϕq

(
λ

∫ T

r

∫ R

δ

a(x)f(u(x))∆x∆R

)
∆r∆s

≥ 2k

M
y(σ) > 2k > k = ‖u‖.

So we conclude that ‖Φu‖ ≥ ‖u‖ for u ∈ ∂Ω2. Then according to the Lemma
2.1, this complete the proof. ¤
Corollary 3.2. If (H1) and (H2) hold, and f∞ = f0 = +∞, then there exist
λ∗ > 0 such that for every λ ∈ (0, λ∗), BVP (1.1) have two positive solutions.
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Proof. Let λ∗ = sup
h∗>0

[1/B(h∗)], where B(h∗) := [h∗/N ]1−p · sup
u∈[0,h∗]

f(u) for λ ∈
(0, λ∗), there is h̄ > 0, such that λ ≤ [1/B(h̄)]. Furthermore,

f(u) ≤ 1

λ

(
h̄

N

)p−1

, u ∈ [0, h̄].

This satisfies assumption (A1) of Theorem 3.1.
On the other hand, because f∞ = f0 = +∞, there exists k1, k2 > 0, k1 > h̄ > k2

such that

f(u)

up−1
≥ 1

λ

(
2

M

)p−1

, u ∈ [δk1, k1] ⊆ [δk1, +∞),

f(u)

up−1
≥ 1

λ

(
2

M

)p−1

, u ∈ [δk2, k2] ⊆ (0, k2].

Then k1, k2 satisfy the assumption (A1) of Theorem 3.1, respectively. This com-
plete the proof. ¤

Corollary 3.3. If (H1) and (H2) hold, and f∞ = f0 = 0, then there exist λ′ > 0
such that for every λ ∈ (λ′, +∞), BVP (1.1) have two positive solutions.

Proof. Let λ′ = inf
k
′
>0

[(k
′
)(p−1)/A(k

′
)], where A(k

′
) := (2/M)1−p · inf

u∈[δk
′
,k
′
]

f(u),

because λ > k
′
, so there exists k̄ such that λ > [k̄p−1/A(k̄)]. So

f(u) >
1

λ

(
2k̄

M

)p−1

, u ∈ [δk̄, k̄].

This satisfies the assumption (A2) of Theorem 3.1.
On the other hand, by f∞ = f0 = 0, combined the continuity of f we known

there exist two constants h1, h2 > 0, h1 < k̄ < h2 such that

f(u)

hp−1
1

≤ 1

λ
N1−p, u ∈ [0, h1],

f(u)

hp−1
2

≤ 1

λ
N1−p, u ∈ [0, h2].

(We are able to do it because if let f ∗(u) = max
t∈[0,u]

f(t), then f∞ = 0 ⇔ f ∗∞ =

0). Then h1, h2 satisfy the assumption (A2) of Theorem 3.1, this complete the
proof. ¤

It is easy to acquire the following conclusion according the proves of corollary
(3.1) and (3.2).

Corollary 3.4. Assume (H1) and (H2) hold, if f∞ = ∞, f0 = 0 or f∞ = 0,
f0 = ∞, then for every λ ∈ (0, +∞), BVP (1.1) has a positive solution.
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