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APPROXIMATION OF MIXED TYPE FUNCTIONAL
EQUATIONS IN p–BANACH SPACES

S. ZOLFAGHARI

Abstract. In this paper, we investigate the generalized Hyers-Ulam stability
of the functional equation

n∑

i=1

f(xi − 1
n

n∑

j=1

xj) =
n∑

i=1

f(xi)− nf(
1
n

n∑

i=1

xi) (n ≥ 2),

in p–Banach spaces.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam
[31] in 1940, concerning the stability of group homomorphisms. Let (G1, .) be a
group and let (G2, ∗) be a metric group with the metric d(., .). Given ε > 0, does
there exist a δ > 0, such that if a mapping h : G1 −→ G2 satisfies the inequality
d(h(x.y), h(x) ∗ h(y)) < δ for all x, y ∈ G1, then there exists a homomorphism
H : G1 −→ G2 with d(h(x), H(x)) < ε for all x ∈ G1? In the other words,
under what condition does there exists a homomorphism near an approximate
homomorphism? The concept of stability for functional equation arises when we
replace the functional equation by an inequality which acts as a perturbation
of the equation. In 1941, D.H. Hyers [15] gave a first affirmative answer to the
question of Ulam for Banach spaces. Let f : X −→ Y be a mapping between
Banach spaces such that

‖f(x + y)− f(x)− f(y)‖ ≤ δ
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for all x, y ∈ X, and for some δ > 0. Then there exists a unique additive mapping
A : X −→ Y such that

‖f(x)− A(x)‖ ≤ δ

for all x ∈ X. Aoki [3] and Rassias [25] provided a generalization of the Hyers
theorem for additive and linear functions, respectively, by allowing the Cauchy
difference to be unbounded.

Theorem 1.1. (Th.M. Rassias). Let f : X → Y be a function from a normed
vector space X into a Banach space Y subject to the inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p) (1.1)

for all x, y ∈ X, where ε and p are constants with ε > 0 and p < 1. Then there
exists a unique additive function A : X → Y satisfying

‖f(x)− A(x)‖ ≤ ε‖x‖p/(1− 2p−1) (1.2)

for all x ∈ X. If p < 0 then inequality (1.1) holds for x, y 6= 0 and (1.2) for x 6= 0.
Also, if for each fixed x ∈ X the function t 7→ f(tx) is continuous in t ∈ R, then
A is linear.

The above Theorem has provided a lot of influence during the last three decades
in the development of a generalization of the Hyers–Ulam stability concept.
This new concept is known as generalized Hyers–Ulam stability or Hyers–Ulam–
Rassias stability of functional equations (see [6, 16]). Furthermore, a generaliza-
tion of Rassias theorem was obtained by Gǎvruta, who replaced ε(‖ x ‖p + ‖ y ‖p)
by a general control function ϕ(x, y) [13]. The functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y) (1.3)

is related to a symmetric bi-additive function [1, 22]. It is natural that this
equation is called a quadratic functional equation. In particular, every solution
of the quadratic equation (1.3) is said to be a quadratic function. It is well known
that a function f between real vector spaces is quadratic if and only if there exists
a unique symmetric bi-additive function B1 such that f(x) = B1(x, x) for all x.
The bi-additive function B1 is given by

B1(x, y) =
1

4
(f(x + y)− f(x− y))

In the paper [6], Czerwik proved the Hyers–Ulam–Rassias stability of the equation
(1.3).

It was shown by Rassias [26] that the norm defined over a real vector space X
is induced by an inner product if and only if for a fixed integer n ≥ 2

n‖ 1

n

n∑
i=1

xi‖2 +
n∑

i=1

‖xi − 1

n

n∑
j=1

xj‖2 =
n∑

i=1

‖xi‖2

for all x1, ..., xn ∈ X (see also [2, 19]). During the last three decades a number of
papers and research monographs have been published on various generalizations
and applications of the generalized Hyers–Ulam stability to a number of functional
equations and functions (see [5]–[14], [17, 18, 21, 22] and [26]–[29]). We also refer
the readers to the books [1, 6, 16, 20, 27].
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We consider some basic concepts concerning p–normed spaces.

Definition 1.2. (See [4, 30]). Let X be a real linear space. A function ‖ . ‖ :
X → R is a quasi-norm (valuation) if it satisfies the following conditions:

(QN1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0;

(QN2) ‖λ. x‖ = |λ|.‖x‖ for all λ ∈ R and all x ∈ X;

(QN3) There is a constant M ≥ 1: ‖x + y‖ ≤ M(‖x‖+ ‖y‖) for all x, y ∈ X.
Then (X, ‖ . ‖) is called a quasi-normed space. The smallest possible M is called
the modulus of concavity of ‖ . ‖. A quasi-Banach space is a complete quasi-
normed space.

A quasi-norm ‖ . ‖ is called a p–norm (0 < p ≤ 1) if

‖x + y‖p ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X. In this case, a quasi-Banach space is called a p–Banach space.
By the Aoki-Rolewicz Theorem [30], each quasi-norm is equivalent to some

p–norm (see also [4]). Since it is much easier to work with p–norms, henceforth
we restrict our attention mainly to p–norms.

Employing the above identity, we introduce the following functional equation
deriving from additive and quadratic functions:

n∑
i=1

f(xi − 1

n

n∑
j=1

xj) =
n∑

i=1

f(xi)− nf(
1

n

n∑
i=1

xi) (1.4)

where n ≥ 2 is a fixed integer. It is easy to see that the function f(x) = ax2+bx
is a solution of the functional equation (1.4). A. Najati and Th. M. Rassias [23]
investigated the general solution of the functional equation (1.4).

This paper is organized as follows: In Section 2, we prove the generalized
Hyers–Ulam stability of the functional equation (1.4) in p–Banach spaces, for
odd functions. The generalized Hyers–Ulam stability of the functional equation
(1.4) in p–Banach spaces, for even functions is discussed in Section 3. Finally, in
Section 4, we show that the generalized Hyers–Ulam stability of a mixed additive
and quadratic functional equation (1.4) in p–Banach spaces.

2. Stability of the functional equation (1.4) in p–Banach spaces:
for odd functions

In the rest of this paper, we will assume that X be a p–normed space and Y
be a p–Banach space. For convenience, we use the following abbreviation for a
given function f : X → Y,

Df (x1, ..., xn) =
n∑

i=1

f(xi − 1

n

n∑
j=1

xj)−
n∑

i=1

f(xi) + nf(
1

n

n∑
i=1

xi)

for all x1, ..., xn ∈ X, where n ≥ 2 is a fixed integer. We now investigate the
generalized Hyers-Ulam stability problem for functional equation (1.4).



APPROXIMATION OF MIXED TYPE FUNCTIONAL EQUATIONS... 113

Lemma 2.1. ([24]) Let 0 < p ≤ 1 and let x1, x2, . . . , xn be non-negative real
numbers. Then

(
n∑

i=1

xi)
p ≤

n∑
i=1

xi
p.

Theorem 2.2. Let ` ∈ {−1, 1} be fixed, X be a p–normed space, Y be a p–Banach
space and ϕ : Xn → [0,∞) be a function such that

lim
m→∞

2m`ϕ(
x1

2m`
, ...,

xn

2m`
) = 0 (2.1)

for all x1, ..., xn ∈ X, and

∞∑

ı= 1+`
2

2ıp`ϕp(
u1

2ı`
, ...,

un

2ı`
) < ∞ (2.2)

for all u1 ∈ {−x, x, 2x} and all u2, ..., un ∈ {−x, 0, x} (denoted (ϕ(x1, ..., xn))p by
ϕp(x1, ..., xn)). Suppose that an odd function f : X → Y satisfies the inequality

‖Df(x1, ..., xn)‖ ≤ ϕ(x1, ..., xn) (2.3)

for all x1, ..., xn ∈ X. Furthermore, assume that f(0) = 0 in (2.3) for the case
` = 1. Then the limit

A(x) := lim
m→∞

2m`f(
x

2m`
) (2.4)

exists for all x ∈ X and A : X → Y is a unique additive function satisfying

‖f(x)− A(x)‖ ≤ 1

2
(ψ̃o(x))

1
p (2.5)

for all x ∈ X, where

ψ̃o(x) :=
∞∑

ı= 1+`
2

2ıp`{ϕp(
2x

2ı`
, 0, ..., 0) +

1

2p
[npϕp(

x

2ı`
,

x

2ı`
, 0, ..., 0)

+ ϕp(
−x

2ı`
,

x

2ı`
, ...,

x

2ı`
) + ϕp(

x

2ı`
,
−x

2ı`
, ...,

−x

2ı`
)]}. (2.6)

Proof. For ` = 1, letting x1 = nx, x2 = −ny and xi = 0 (i = 3, ..., n) in (2.3) and
using the oddness of f, we get

‖f((n− 1)x + y)− f(x + (n− 1)y)− f(nx) + f(ny) + 2f(x− y)‖
≤ ϕ(nx,−ny, 0, ..., 0) (2.7)

for all x, y ∈ X. Letting y = 0 in (2.7), we get

‖f(nx)− f((n− 1)x)− f(x)‖ ≤ ϕ(nx, 0, ..., 0) (2.8)

for all x ∈ X. Setting x1 = ny, x2 = ... = xn = nx in (2.3) and using the oddness
of f, we get

‖(n− 1)f(x− y)− f((n− 1)(x− y))− (n− 1)f(nx) + nf((n− 1)x + y)

− f(ny)‖ ≤ ϕ(ny, nx, ..., nx) (2.9)
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for all x, y ∈ X. Interchange x with y in (2.9) and using the oddness of f, we get

‖f((n− 1)(x− y))− (n− 1)f(x− y)− (n− 1)f(ny)− f(nx)

+ nf(x + (n− 1)y)‖ ≤ ϕ(nx, ny, ..., ny) (2.10)

for all x, y ∈ X. Using (2.7), we get from (2.9) and (2.10) that

‖f((n− 1)(x− y)) + f(x− y)− f(nx) + f(ny)‖
≤ 1

2
[nϕ(nx,−ny, 0, ..., 0) + ϕ(ny, nx, ..., nx) + ϕ(nx, ny, ..., ny)] (2.11)

for all x, y ∈ X. It follows from (2.8) and (2.11) that

‖f(n(x− y))− f(nx) + f(ny)‖ ≤ ϕ(n(x− y), 0, ..., 0)

+
1

2
[nϕ(nx,−ny, 0, ..., 0) + ϕ(ny, nx, ..., nx) + ϕ(nx, ny, ..., ny)] (2.12)

for all x, y ∈ X. Replacing x by x
n

and y by −x
n

in (2.12) and using the oddness
of f, we get

‖f(2x)− 2f(x)‖ ≤ 1

2
[nϕ(x, x, 0, ..., 0) + ϕ(−x, x, ..., x) + ϕ(x,−x, ...,−x)]

+ ϕ(2x, 0, ..., 0) (2.13)

for all x ∈ X. Let

ψo(x) :=
1

2
[nϕ(x, x, 0, ..., 0) + ϕ(−x, x, ..., x) + ϕ(x,−x, ...,−x)]

+ ϕ(2x, 0, ..., 0) (2.14)

for all x ∈ X. Thus (2.13) means that

‖f(2x)− 2f(x)‖ ≤ ψo(x) (2.15)

for all x ∈ X. If we replace x in (2.15) by x
2m+1 and multiply both sides of (2.15)

by 2m, we see that

‖2m+1f(
x

2m+1
)− 2mf(

x

2m
)‖ ≤ 2mψo(

x

2m+1
) (2.16)

for all x ∈ X and all non-negative integers m. Hence

‖2m+1f(
x

2m+1
)− 2kf(

x

2k
)‖p ≤

m∑

ı=k

‖2ı+1f(
x

2ı+1
)− 2ıf(

x

2ı
)‖p

≤
m∑

ı=k

2ıpψp
o(

x

2ı+1
) (2.17)

for all non-negative integers m and k with m ≥ k and all x ∈ X. Since 0 < p ≤ 1,
so by Lemma 2.1 and (2.14), we get

ψp
o(x) ≤ 1

2p
[npϕp(x, x, 0, ..., 0) + ϕp(−x, x, ..., x) + ϕp(x,−x, ...,−x)]

+ ϕp(2x, 0, ..., 0) (2.18)
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for all x ∈ X. Therefore it follows from (2.1), (2.2) and (2.18) that
∞∑
ı=1

2ıpψp
o(

x

2ı
) < ∞, lim

m→∞
2mψo(

x

2m
) = 0 (2.19)

for all x ∈ X. It follows from (2.17) and (2.19) that the sequence {2mf( x
2m )} is

a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence {2mf( x
2m )}

converges for all x ∈ X. Therefore, one can define a function A : X → Y by

A(x) := lim
m→∞

2mf(
x

2m
) (2.20)

for all x ∈ X. Letting k = 0 and passing the limit m →∞ in (2.17), we get

‖f(x)− A(x)‖p ≤
∞∑
ı=0

2ıpψp
o(

x

2ı+1
) =

1

2p

∞∑
ı=1

2ıpψp
o(

x

2ı
) (2.21)

for all x ∈ X. Therefore (2.5) follows from (2.18) and (2.21). Now we show that
A is additive. It follows from (2.1), (2.3) and (2.20) that

‖DA(x1, ..., xn)‖ = lim
m→∞

2m‖Df(
x1

2m
, ...,

xn

2m
)‖ ≤ lim

m→∞
2mϕ(

x1

2m
, ...,

xn

2m
) = 0

for all x1, ..., xn ∈ X. Hence the function A satisfies (1.4). Since f is an odd
function, then (2.20) implies that the function A : X → Y is odd. Therefore by
Lemma 2.1 of [23], we see that the function A : X → Y is additive.

To prove the uniqueness property of A, let A′ : X → Y be another additive
function satisfying (2.5). Since

lim
m→∞

2mp

∞∑
ı=1

2ıpϕp(
u1

2m+ı
, ...,

un

2m+ı
) = lim

m→∞

∞∑
ı=m+1

2ıpϕp(
u1

2ı
, ...,

un

2ı
) = 0

for all u1 ∈ {−x, x, 2x} and all u2, ..., un ∈ {−x, 0, x}. Hence

lim
m→∞

2mpψ̃o(
x

2m
) = 0 (2.22)

for all x ∈ X. It follows from (2.5) and (2.22) that

‖A(x)− A′(x)‖p = lim
m→∞

2mp‖f(
x

2m
)− A′(

x

2m
)‖p ≤ 1

2p
lim

m→∞
2mpψ̃o(

x

2m
) = 0

for all x ∈ X. So we can conclude that A(x) = A′(x) for all x ∈ X. This proves
the uniqueness of A.

For ` = −1, we can prove the theorem by a similar technique. ¤
Corollary 2.3. Let ε, λi (1 ≤ i ≤ n) be non-negative real numbers such that
λi < 1 or λi > 1 (1 ≤ i ≤ n). Suppose that a function f : X → Y with f(0) = 0
satisfies

‖Df(x1, ..., xn)‖ ≤ ε

n∑
i=1

‖xi‖λi (2.23)

for all x1, ..., xn ∈ X. Then there exists a unique additive function A : X → Y
such that

‖f(x)− A(x)‖ ≤ ε

2
[αp

1‖x‖λ1p + αp
2‖x‖λ2p + αp

3‖x‖λ3p + ... + αp
n‖x‖λnp]

1
p
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for all x ∈ X, where

α1 = [
2p(1+λ1) + np + 2

|2p − 2λ1p| ]
1
p , α2 = [

np + 2

|2p − 2λ2p| ]
1
p , αi = [

2p+1

|2p − 2λip| ]
1
p (3 ≤ i ≤ n).

Proof. In Theorem 2.2, put ϕ(x1, ..., xn) := ε
∑n

i=1 ‖xi‖λi for all x1, ..., xn ∈
X. ¤

3. Stability of the functional equation (1.4) in p–Banach spaces:
for even functions

In this section, we prove the generalized Hyers–Ulam–Rassias stability of the
functional equation (1.4) in p–Banach spaces for quadratic functions.

Theorem 3.1. Let ` ∈ {−1, 1} be fixed, X be a p–normed space, Y be a p–Banach
space and ϕ : Xn → [0,∞) be a function such that

lim
m→∞

22m`ϕ(
x1

2m`
, ...,

xn

2m`
) = 0 (3.1)

for all x1, ..., xn ∈ X, and
∞∑

ı= 1+`
2

22ıp`ϕp(
u1

2ı`
, ...,

un

2ı`
) < ∞ (3.2)

for all u1 ∈ {0, x, nx}, u2 ∈ {0, (n− 1)x, nx} and all u3, ..., un ∈ {0, nx} (denoted
(ϕ(x1, ..., xn))p by ϕp(x1, ..., xn)). Suppose that an even function f : X → Y
satisfies the inequality

‖Df(x1, ..., xn)‖ ≤ ϕ(x1, ..., xn) (3.3)

for all x1, ..., xn ∈ X. Furthermore, assume that f(0) = 0 in (3.3) for the case
` = 1. Then the limit

Q(x) := lim
m→∞

22m`f(
x

2m`
) (3.4)

exists for all x ∈ X and Q : X → Y is a unique quadratic function satisfying

‖f(x)−Q(x)‖ ≤ 1

22
(ψ̃e(x))

1
p (3.5)

for all x ∈ X, where

ψ̃e(x) :=
∞∑

ı= 1+`
2

22ıp`{ 1

(2n− 2)p
[ϕp(

nx

2ı`
,
nx

2ı`
, 0, ..., 0) + (2n + 4)pϕp(

nx

2ı`
, 0, ..., 0)

+ 2pϕp(0,
nx

2ı`
, ...,

nx

2ı`
) + 2pϕp(

x

2ı`
,
(n− 1)x

2ı`
, 0, ..., 0)]}. (3.6)

Proof. For ` = 1, letting x1 = nx, x2 = −ny and xi = 0 (i = 3, ..., n) in (3.3) and
using the evenness of f, we get

‖f((n− 1)x + y) + f(x + (n− 1)y)− f(nx)− f(ny) + (2n− 2)f(x− y)‖
≤ ϕ(nx,−ny, 0, ..., 0) (3.7)

for all x, y ∈ X. Putting y = 0 in (3.7) and using the evenness of f, we get

‖f(nx)− f((n− 1)x)− (2n− 1)f(x)‖ ≤ ϕ(nx, 0, ..., 0) (3.8)
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for all x ∈ X. Letting y = (1− n)x in (3.7) and replacing x by x
n

in the obtained
inequality, we get

‖f((n− 1)x)− f((n− 2)x)− (2n− 3)f(x)‖ ≤ ϕ(x, (n− 1)x, 0, ..., 0) (3.9)

for all x, y ∈ X. Letting x1 = nx, x2 = ... = xn = ny in (3.3) and using the
evenness of f, we get

‖f((n− 1)(x− y)) + (n− 1)f(x− y)− (n− 1)f(ny)− f(nx)

+ nf(x + (n− 1)y)‖ ≤ ϕ(nx, ny, ..., ny) (3.10)

for all x, y ∈ X. Since f is even, it follows from (3.10) that

‖f((n− 1)(x− y)) + (n− 1)f(x− y)− (n− 1)f(nx)− f(ny)

+ nf((n− 1)x + y)‖ ≤ ϕ(ny, nx, ..., nx) (3.11)

for all x, y ∈ X. Applying (3.7), (3.10) and (3.11), we get

‖f((n− 1)(x− y))− (n− 1)2f(x− y)‖ ≤ 1

2
[nϕ(nx,−ny, 0, ..., 0)

+ ϕ(nx, ny, ..., ny) + ϕ(ny, nx, ..., nx)]

for all x, y ∈ X. Therefore

‖f((n−1)x)−(n−1)2f(x)‖ ≤ 1

2
[(n+1)ϕ(nx, 0, ..., 0)+ϕ(0, nx, ..., nx)] (3.12)

for all x ∈ X. So we get from (3.8) and (3.9)

‖f(nx)− n2f(x)‖ ≤ 1

2
[(n + 3)ϕ(nx, 0, ..., 0) + ϕ(0, nx, ..., nx)] (3.13)

and

‖f((n− 2)x)− (n− 2)2f(x)‖ ≤ 1

2
[(n + 1)ϕ(nx, 0, ..., 0) + ϕ(0, nx, ..., nx)]

+ ϕ(x, (n− 1)x, 0, ..., 0) (3.14)

for all x ∈ X. Letting y = −x in (3.7) and using (3.13) and (3.14), we get

‖f(2x)− 4f(x)‖ ≤ 1

(2n− 2)
[ϕ(nx, nx, 0, ..., 0) + (2n + 4)ϕ(nx, 0, ..., 0)

+ 2ϕ(0, nx, ..., nx) + 2ϕ(x, (n− 1)x, 0, ..., 0)] (3.15)

for all x ∈ X. Let

ψe(x) :=
1

(2n− 2)
[ϕ(nx, nx, 0, ..., 0) + (2n + 4)ϕ(nx, 0, ..., 0) + 2ϕ(0, nx, ..., nx)

+ 2ϕ(x, (n− 1)x, 0, ..., 0)] (3.16)

for all x ∈ X. Thus (3.15) means that

‖f(2x)− 4f(x)‖ ≤ ψe(x) (3.17)

for all x ∈ X. If we replace x in (3.17) by x
2m+1 and multiply both sides of (3.17)

by 22m, then we have

‖22(m+1)f(
x

2m+1
)− 22mf(

x

2m
)‖ ≤ 22mψe(

x

2m+1
) (3.18)
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for all x ∈ X and all non-negative integers m. Hence

‖22(m+1)f(
x

2m+1
)− 22kf(

x

2k
)‖p ≤

m∑

ı=k

‖22(ı+1)f(
x

2ı+1
)− 22ıf(

x

2ı
)‖p

≤
m∑

ı=k

22ıpψp
e(

x

2ı+1
) (3.19)

for all non-negative integers m and k with m ≥ k and all x ∈ X. Since 0 < p ≤ 1,
so by Lemma 2.1 and (3.16), we get

ψp
e(x) ≤ 1

(2n− 2)p
[ϕp(nx, nx, 0, ..., 0) + (2n + 4)pϕp(nx, 0, ..., 0)

+ 2pϕp(0, nx, ..., nx) + 2pϕp(x, (n− 1)x, 0, ..., 0)] (3.20)

for all x ∈ X. Therefore by (3.1), (3.2) and (3.20) we have
∞∑
ı=1

22ıpψp
e(

x

2ı
) < ∞, lim

m→∞
22mψe(

x

2m
) = 0 (3.21)

for all x ∈ X. Therefore we conclude from (3.19) and (3.21) that the sequence
{22mf( x

2m )} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence
{22mf( x

2m )} converges for all x ∈ X. So one can define the function Q : X → Y
by (3.4) for all x ∈ X. Letting k = 0 and passing the limit m →∞ in (3.19), we
get

‖f(x)−Q(x)‖p ≤
∞∑
ı=0

22ıpψp
e(

x

2ı+1
) =

1

22p

∞∑
ı=1

22ıpψp
e(

x

2ı
) (3.22)

for all x ∈ X. Therefore (3.5) follows from (3.20) and (3.22). Now we show that
Q is quadratic. It follows from (3.1), (3.3) and (3.4) that

‖DQ(x1, ..., xn)‖ = lim
m→∞

22m‖Df(
x1

2m
, ...,

xn

2m
)‖ ≤ lim

m→∞
22mϕ(

x1

2m
, ...,

xn

2m
) = 0

for all x1, ..., xn ∈ X. Therefore the function Q satisfies (1.4). Since f is an even
function, then (3.4) implies that the function Q : X → Y is even. Therefore by
Lemma 2.2 of [23], we get that the function Q : X → Y is quadratic.

To prove the uniqueness property of Q, let Q′ : X → Y be another quadratic
function satisfying (3.5). Since

lim
m→∞

22mp

∞∑
ı=1

22ıpϕp(
u1

2m+ı
, ...,

un

2m+ı
) = lim

m→∞

∞∑
ı=m+1

22ıpϕp(
u1

2ı
, ...,

un

2ı
) = 0

for all u1 ∈ {0, x, nx}, u2 ∈ {0, (n− 1)x, nx} and all u3, ..., un ∈ {0, nx}, then

lim
m→∞

22mpψ̃e(
x

2m
) = 0

for all x ∈ X. Therefore it from (3.5) and the last equation that

‖Q(x)−Q′(x)‖p = lim
m→∞

22mp‖f(
x

2m
)−Q′(

x

2m
)‖p ≤ 1

22p
lim

m→∞
22mpψ̃e(

x

2m
) = 0

for all x ∈ X. So we can conclude that Q(x) = Q′(x) for all x ∈ X. This proves
the uniqueness of Q.
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For ` = −1, we can prove the theorem by a similar technique. ¤
Corollary 3.2. Let ε, λi (1 ≤ i ≤ n) be non-negative real numbers such that
λi < 2 or λi > 2 (1 ≤ i ≤ n). Suppose that a function f : X → Y with f(0) = 0
satisfies

‖Df(x1, ..., xn)‖ ≤ ε

n∑
i=1

‖xi‖λi (3.23)

for all x1, ..., xn ∈ X. Then there exists a unique quadratic function Q : X → Y
such that

‖f(x)−Q(x)‖ ≤ ε

(2n− 2)
[βp

1‖x‖λ1p + ... + βp
n‖x‖λnp]

1
p

for all x ∈ X, where

β1 = [
npλ1 + (2n + 4)pnpλ1 + 2p

|22p − 2pλ1| ]
1
p , β2 = [

npλ2 + 2pnpλ2 + 2p(n− 1)pλ2

|22p − 2pλ1| ]
1
p ,

βi = [
2pnpλi

|22p − 2pλ1| ]
1
p (3 ≤ i ≤ n).

4. Stability of a mixed quadratic and additive functional
equation (1.4) in p–Banach space

Now, we are ready to prove the main theorem concerning the stability problem
for functional equation (1.4) in p–Banach spaces.

Theorem 4.1. Let ϕ : Xn → [0,∞) be a function which satisfies (2.1) for all
x1, ..., xn ∈ X and (2.2) for all u1 ∈ {−x, x, 2x}, u2, ..., un ∈ {−x, 0, x} and
satisfies (3.1) for all x1, ..., xn ∈ X and (3.2) for all u1 ∈ {0, x, nx}, u2 ∈ {0, (n−
1)x, nx} and all u3, ..., un ∈ {0, nx}. Suppose that a function f : X → Y with
f(0) = 0 satisfies the inequality (2.3) for all x1, ..., xn ∈ X. Then there exist a
unique quadratic function Q : X → Y and a unique additive function A : X → Y
such that

‖f(x)−A(x)−Q(x)‖ ≤ 1

23
{[ψ̃e(x)+ψ̃e(−x)]

1
p}+ 1

22
{[ψ̃o(x)+ψ̃o(−x)]

1
p} (4.1)

for all x ∈ X, where ψ̃e(x) and ψ̃o(x) are defined as in equations (2.6) and (3.6).

Proof. Assume that ϕ : Xn → [0,∞) satisfies (3.1) for all x1, ..., xn ∈ X and
(3.2) for all u1 ∈ {0, x, nx}, u2 ∈ {0, (n − 1)x, nx} and all u3, ..., un ∈ {0, nx}.
Let fe(x) = 1

2
(f(x) + f(−x)) for all x ∈ X, then fe(0) = 0, fe(−x) = fe(x), and

‖Dfe(x1, ..., xn)‖ ≤ ϕ̃(x1, ..., xn)

for all x1, ..., xn ∈ X, where ϕ̃(x1, ..., xn) := 1
2
(ϕ(x1, ..., xn) + ϕ(−x1, ...,−xn)). So

lim
m→∞

22m`ϕ̃(
x1

2m`
, ...,

xn

2m`
) = 0

for all x1, ..., xn ∈ X. Since

ϕ̃p(x1, ..., xn) ≤ 1

2p
(ϕp(x1, ..., xn) + ϕp(−x1, ...,−xn))
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for all x1, ..., xn ∈ X, then

∞∑

ı= 1+`
2

22ıp`ϕ̃p(
u1

2ı`
, ...,

un

2ı`
) < ∞

for all u1 ∈ {0, x, nx}, u2 ∈ {0, (n − 1)x, nx} and all u3, ..., un ∈ {0, nx}. Hence
from Theorem 3.1, there exists a unique quadratic function Q : X → Y such that

‖fe(x)−Q(x)‖ ≤ 1

22
(
˜̃
ψe(x))

1
p (4.2)

for all x ∈ X, where

˜̃
ψe(x) :=

∞∑

ı= 1+`
2

22ıp`{ 1

(2n− 2)p
[ϕ̃p(

nx

2ı`
,
nx

2ı`
, 0, ..., 0) + (2n + 4)pϕ̃p(

nx

2ı`
, 0, ..., 0)

+ 2pϕ̃p(0,
nx

2ı`
, ...,

nx

2ı`
) + 2pϕ̃p(

x

2ı`
,
(n− 1)x

2ı`
, 0, ..., 0)]}

for all x ∈ X. It is clear that

˜̃
ψe(x) ≤ 1

2p
[ψ̃e(x) + ψ̃e(−x)]

for all x ∈ X. Therefore it follows from (4.2) that

‖fe(x)−Q(x)‖ ≤ 1

23
[ψ̃e(x) + ψ̃e(−x)]

1
p (4.3)

for all x ∈ X.
Also, let fo(x) = 1

2
(f(x)−f(−x)) for all x ∈ X, by using the above method and

Theorem 2.2, it follows that there exist a unique additive function A : X → Y
such that

‖fo(x)− A(x)‖ ≤ 1

22
[ψ̃o(x) + ψ̃o(−x)]

1
p (4.4)

for all x ∈ X. Hence (4.1) follows from (4.3) and (4.4). Now, if ϕ : Xn → [0,∞)
satisfies (2.1) for all x1, ..., xn ∈ X and (2.2) for all u1 ∈ {−x, x, 2x} and all
u2, ...un ∈ {−x, 0, x}, we can prove the theorem by a similar technique. ¤

Corollary 4.2. Let ε, λi (1 ≤ i ≤ n) be non-negative real numbers such that
1 < λi < 2 or λi > 2 or λi < 1 (1 ≤ i ≤ n). Suppose that a function f : X → Y

satisfies the inequality ‖Df(x1, ..., xn)‖ ≤ ε
∑n

i=1 ‖xi‖λi for all x1, ..., xn ∈ X.
Furthermore, assume that f(0) = 0 for the case f is even. Then there exist a
unique quadratic function Q : X → Y and a unique additive function A : X → Y
such that

‖f(x)−Q(x)− A(x)‖ ≤ ε

(2n− 2)
[βp

1‖x‖λ1p + ... + βp
n‖x‖λnp]

1
p

+
ε

2
[αp

1‖x‖λ1p + ... + αp
n‖x‖λnp]

1
p

for all x ∈ X, where αi and βi (1 ≤ i ≤ n) are defined as in Corollaries (2.3) and
(3.2).
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Proof. put ϕ(x1, ..., xn) := ε
∑n

i=1 ‖xi‖λi , Since

‖Dfe(x1, ..., xn)‖ ≤ ϕ(x1, ..., xn), ‖Dfo(x1, ..., xn)‖ ≤ ϕ(x1, ..., xn)

for all x1, ..., xn ∈ X. Thus the result follows from Corollaries (2.3) and (3.2). ¤
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