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Abstract. In this paper we apply the Bishop-Phelps Theorem to show that
if X is a Banach space and G ⊆ X is a maximal subspace so that G⊥ = {x∗ ∈
X∗|x∗(y) = 0; ∀y ∈ G} is an L−summand in X∗, then L1(Ω, G) is contained
in a maximal proximinal subspace of L1(Ω, X).

1. Introduction

To follow the note we need some definitions and notations which are following.
Let (Ω, Σ, µ) be a measure space with nonnegative complete σ-finite measure µ
and σ-algebra Σ of µ-measurable sets. We denote by Lp(Ω, Σ, µ : X) = Lp(Ω, X)
the Banach space of all equivalence classes of all Bochner integrable functions
f : Ω → X with norm

‖f‖ = (

∫

Ω

‖f(t)‖pdµ)
1
p ; 1 ≤ p < ∞,

‖f‖∞ = ess sup
t∈Ω

‖f(t)‖; p = ∞.

A subset A ⊆ X is decomposable if for any two elements f , g in A and E ⊆ Σ,
we get χEf + χX\Eg ∈ A. Where χA is the characteristic function. Let X be a
real or complex Banach space and C be a closed convex subset of X. The set of
support points of C, is the collection of all points z ∈ C for which there exists
nontrivial f ∈ X∗ such that supx∈C |f(x)| = |f(z)|. Such an f is called support
functional. The support point z is said to be exposed, if Ref(x) < Ref(z), for
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x(6= z) ∈ C. We denote by SuppC and ΣC the set of support points and support
functionals, respectively. Bishop and Phelps [1, 7] have shown that if C is a
closed convex and bounded subset of X then SuppC is dense in the boundary of
C and ΣC is dense in X∗. The complex case of the Bishop-Phelps Theorem is
also studied in [6, 8] and some results are given.

Let X be a Banach space and G a closed subspace of X. The subspace G is
called proximinal in X if for every x ∈ X there exists at least one y ∈ G such
that

‖x− y‖ = inf{‖x− z‖ : z ∈ G}.
A linear projecton P : X −→ Y is called an L− projecton if

‖x‖ = ‖Px‖+ ‖x− Px‖; ∀x ∈ X.

A closed subspace Y ⊂ X is called an L − summand if it is the range of
an L − projection. The natural question is that, whether or not L1(Ω, G) is
proximinal in L1(Ω, X) if G is proximinal in X [4]. We will show that if G⊥ is
an L− summand then L1(Ω, G) is contained in a maximal proximinal subspace
of L1(Ω, X).

2. The main results

Theorem 2.1. [5] If X is a Banach space and T ∈ X∗, then kerT is a proximinal
set in X if and only if T supports some points of the closed unit ball of X.

Lemma 2.2. Let X be a Banach space and G a support set in X. Suppose
L1(Ω, G) is a decomposable set. Then each constant function of L1(Ω, G) is a
support point for L1(Ω, G).

Proof. Let g0 ∈ L1(Ω, G) be a constant function, then there exists a point x0 ∈ G
such that g0(t) = x0. Since G is a support set, we have

∃T0 ∈ X∗ s.t. infGT0 = T0(x0).

We define F0 : L1(Ω, X) → R as follows:

F0(g) =

∫

Ω

T0(g(t))dµ.

It is obvious that F0 ∈ L1(Ω, X)∗, because if

gn → g (‖gn − g‖ → 0),

then

|F0(gn)− F0(g)| = |
∫

Ω

T0(gn(t)− g(t))dµ|

≤
∫

Ω

|T0(gn(t)− g(t))|dµ

≤
∫

Ω

‖T0‖‖gn(t)− g(t)‖dµ

= ‖T0‖‖gn − g‖ → 0. (2.1)
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hence F0(gn) → F0(g) therefore F0 ∈ L1(Ω, X)∗.
Now by Theorem 2.2 [3], we have

infL1(Ω,G)F0 = infL1(Ω,G)

∫

Ω

T0(g(t))dµ

=

∫

Ω

T0(x0)dµ = T0(x0).

(2.2)

Note that the middle equality is true, because L1(Ω, G) is a decomposable set.
By letting g0(t) = x0 we get that g0 ∈ L1(Ω, G), and the required result follows:

infL1(Ω,G)F0 = F0(g0) = T0(x0) = infGT0.

Therefore, g0 ∈ L1(Ω, G) is a support point for L1(Ω, G). ¤

Theorem 2.3. (See Proposition 1.1 of [2]). Let G be a subspace of a Banach
space X such that G⊥ = {x∗ ∈ X∗|x∗(y) = 0; ∀y ∈ G} be an L − summand in
X∗, then G is proximinal in X.

By applying the above results we will have the following theorem.

Theorem 2.4. Let X be a Banach space and G ⊂ X be a maximal subspace
such that G⊥ = {x∗ ∈ X∗|x∗(y) = 0; ∀y ∈ G} be an L − summand in X∗, then
L1(Ω, G) is contained in a maximal proximinal subspace of L1(Ω, X).

Proof. Since G⊥ is an L− summand in Banach space X∗ then by theorem 2.3, G
is proximinal in X. On the other hand G is a maximal subspace, so there exists
T ∈ X∗ such that kerT = G. Applying Theorem 2.1, there exists a point x0 in
the closed unit ball of X such that T supports x0. It is trivial that

F (g) =

∫

Ω

T (g(t))dµ

is a continuous linear functional on L1(Ω, X). Since T is a support functional
by the proof of Lemma 2.2, that F is also a support functional for the closed
unit ball of L1(Ω, X) (by choosing g0(t) = x0), therefore kerF is proximinal in
L1(Ω, X) It is obvious that L1(Ω, G) ⊆ kerF and kerF is a maximal subspace,
so L1(Ω, G) is contained in maximal proximinal subspace of L1(Ω, X). ¤

Remark 2.5. It is easy to see that if x0 is a support point for a closed convex
subset C of a Banach space (X, ‖.‖1) then it may not be a support point for
C ⊆ (X, ‖.‖2) even when ‖.‖2 is equivalent norm to ‖.‖1. Now from above results
we conclude that the proximinality of a subset of a Banach space does not hold
with two equivalent norm in general.
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