The Journal of Nonlinear Sciences and Applications http://www.tjnsa.com

FUZZY MINIMAL SEPARATION AXIOMS

M. ALIMOHAMMADY¹, E. EKICI^{2,*}, S. JAFARI³, M. ROOHI¹

ABSTRACT. In this paper, we deal with some separation axioms in the context of fuzzy minimal structures.

1. Introduction

Zadeh introduced the concept of a fuzzy set in [14]. Subsequently, many attempts have been made to extend many science notions to the fuzzy setting, for example [8, 10, 11]. Fuzzy minimal structure and fuzzy minimal space introduced and investigated in [1–7]. For easy understanding of the material incorporated in this paper, we recall some basic definitions and results. For details on the following notions we refer to [1–14] and the references cited therein.

A fuzzy set in(on) a universe set X is a function with domain X and values in I = [0, 1]. The class of all fuzzy sets on X will be denoted by I^X and symbols A,B,... is used for fuzzy sets on X. 01_X is called *empty fuzzy set* where 1_X is the characteristic function on X. A family \mathcal{M} of fuzzy sets in X is said to be a fuzzy minimal structure in Chang's sense on X if $\{01_X, 1_X\} \subseteq \mathcal{M}$. In this case (X, \mathcal{M}) is called a fuzzy minimal space [2]. A fuzzy set $A \in I^X$ is said to be fuzzy m-open if $A \in \mathcal{M}$. $B \in I_X$ is called a fuzzy m-closed set if $B^c \in \mathcal{M}$. Let

$$m - Int(A) = \bigvee \{ U : U \le A, U \in \mathcal{M} \}$$
 and (1.1)

$$m - Cl(A) = \bigwedge \{F : A \le F, F^c \in \mathcal{M}\}.$$
(1.2)

A fuzzy set in X is called a *fuzzy point* if it takes the value 0 for all $y \in X$ except one, say, $x \in X$. If its value at x is α ($0 < \alpha \leq 1$), we denote this fuzzy point by x_{α} , where the point x is called its *support* [12, 13]. For any fuzzy point

© 2010 N.A.G.

Date: Revised: 03, May, 2010.

^{*} Corresponding author

Key words and phrases. Fuzzy sets, fuzzy topology, fuzzy separation axiom.

 x_{α} and any fuzzy set $A, x_{\alpha} \in A$ if and only if $\alpha \leq A(x)$. A fuzzy point x_{α} is called *quasi-coincident* with a fuzzy set B, denoted by $x_{\alpha}qB$, if $\alpha + B(x) > 1$. A fuzzy set A is called *quasi-coincident* with a fuzzy set B, denoted by AqB, if there exists a $x \in X$ such that A(x) + B(x) > 1 [12, 13]. When they are not quasi-coincident, it will denoted by $A \not AB$. Throughout in this paper we assume that all fuzzy minimal spaces are in the sense of Chang.

Proposition 1.1. [2] For any two fuzzy sets A and B in a fuzzy minimal space (X, \mathcal{M})

(1) $m - Int(A) \leq A$ and m - Int(A) = A if A is a fuzzy m-open set.

(2) $A \leq m - Cl(A)$ and A = m - Cl(A) if A is a fuzzy m-closed set.

(3) $m - Int(A) \le m - Int(B)$ and $m - Cl(A) \le m - Cl(B)$ if $A \le B$.

(4) $(m - Int(A)) \land (m - Int(B)) \le m - Int(A \land B)$ and $(m - Int(A)) \lor (m - Int(B)) \le m - Int(A \lor B)$.

(5) $(m - Cl(A)) \lor (m - Cl(B)) \le m - Cl(A \lor B)$ and $m - Cl(A \land B) \le (m - Cl(A)) \land (m - Cl(B)).$

(6) m - Int(m - Int(A)) = m - Int(A) and m - Cl(m - Cl(B)) = m - Cl(B). (7) $(m - Cl(A))^c = m - Int(A^c)$ and $(m - Int(A))^c = m - Cl(A^c)$.

Definition 1.2. [2] A fuzzy minimal space (X, \mathcal{M}) enjoys the property U if arbitrary union of fuzzy *m*-open sets is fuzzy *m*-open.

Proposition 1.3. [1] For a fuzzy minimal structure \mathcal{M} on a set X, the following statements are equivalent.

- (1) (X, \mathcal{M}) has the property U.
- (2) If m Int(A) = A, then $A \in \mathcal{M}$.
- (3) If m Cl(B) = B, then $B^c \in \mathcal{M}$.

Fuzzy minimal continuous functions was introduced and studied in [3].

Definition 1.4. [3] Let (X, \mathcal{M}) and (Y, \mathcal{N}) be two fuzzy minimal spaces. We say that a fuzzy function $f : (X, \mathcal{M}) \to (Y, \mathcal{N})$ is fuzzy minimal continuous (briefly fuzzy *m*-continuous) if $f^{-1}(B) \in \mathcal{M}$, for any $B \in \mathcal{N}$.

Theorem 1.5. [3] Consider the following properties for a fuzzy function f: $(X, \mathcal{M}) \to (Y, \mathcal{N})$ between two fuzzy minimal spaces.

- (1) f is a fuzzy m-continuous function.
- (2) $f^{-1}(B)$ is a fuzzy m-closed set for each fuzzy m-closed set $B \in I^Y$.
- (3) $m Cl(f^{-1}(B)) < f^{-1}(m Cl(B))$ for each $B \in I^Y$.
- (4) $f(m Cl(A)) \le m Cl(f(A))$ for any $A \in I^X$.

(5) $f^{-1}(m - Int(B)) \leq m - Int(f^{-1}(B))$ for each $B \in I^Y$.

Then $(1) \Leftrightarrow (2) \Rightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5)$. Moreover, if (X, \mathcal{M}) satisfies in the property U, then all of the above statements are equivalent.

2. Fuzzy minimal separation axioms

Definition 2.1. A fuzzy set N in a fuzzy minimal space (X, \mathcal{M}) is said to be a *fuzzy minimal neighborhood* of a fuzzy point x_{α} if there is a fuzzy *m*-open set μ in X with $x_{\alpha} \in \mu$ and $\mu \leq N$.

Definition 2.2. Suppose (X, \mathcal{M}) is a fuzzy minimal space. A fuzzy set N in X is said to be a *fuzzy minimal q-neighborhood* of a fuzzy point x_{α} if there is a fuzzy *m*-open set μ in X with $x_{\alpha}q\mu$ and $\mu \leq A$.

Definition 2.3. Suppose (X, \mathcal{M}) is a fuzzy minimal space. A fuzzy point x_{α} in X is said to be *fuzzy minimal cluster point* of a fuzzy set A if every fuzzy minimal q-neighborhood of x_{α} is q-coincident with A.

Theorem 2.4. Suppose (X, \mathcal{M}) is a fuzzy minimal space. A fuzzy point x_{α} is a fuzzy minimal cluster point of a fuzzy set A if and only if $x_{\alpha} \in m - Cl(A)$.

Proof. Suppose $x_{\alpha} \notin m - Cl(A)$. Then, one can easily see that there exists m-closed set F in X with $A \leq F$ and $F(x) < \alpha$. Therefore, $x_{\alpha}qF^{c}$ and $A \not qF^{c}$; i.e., x_{α} is not a fuzzy minimal cluster point of A. Conversely, suppose x_{α} is not a fuzzy minimal cluster point of A. There exists a fuzzy minimal q-neighborhood N of x_{α} for which $N \not qA$. Then there exists a fuzzy m-open set μ in X with $x_{\alpha}q\mu$ and $\mu \leq N$. Therefore, $\mu \not qA$ which implies that $A \leq \mu^{c}$. Since μ^{c} is m-closed, so (1.2) implies that $m - Cl(A) \leq \mu^{c}$. That $x_{\alpha} \notin m - Cl(A)$ follows from the fact that $x_{\alpha} \notin \mu^{c}$.

Definition 2.5. A fuzzy minimal space (X, \mathcal{M}) is said to be

(1) fuzzy minimal T_0 if for every pair of distinct fuzzy points x_{α} and x_{β} ,

when $x \neq y$ either x_{α} has a fuzzy minimal neighborhood which is not q-coincident with y_{β} or y_{β} has a fuzzy minimal neighborhood which is not q-coincident with x_{α} ,

when x = y and $\alpha < \beta$ (say), there is a fuzzy minimal q-neighborhood of y_{β} which is not q-coincident with x_{α} ,

(2) fuzzy minimal T_1 if for every pair of distinct fuzzy points x_{α} and x_{β} ,

when $x \neq y$ there is a fuzzy minimal neighborhood μ of x_{α} and a fuzzy minimal neighborhood ν of y_{β} with $\mu \not A y_{\beta}$ and $x_{\alpha} \not A \nu$,

when x = y and $\alpha < \beta$ (say), y_{β} has a fuzzy minimal q-neighborhood which is not q-coincident with x_{α} ,

(3) fuzzy minimal T_2 if for every pair of distinct fuzzy points x_{α} and x_{β} ,

when $x \neq y$, x_{α} and y_{β} have fuzzy minimal q-neighborhoods which are not q-coincident,

when x = y and $\alpha < \beta$ (say), x_{α} has a fuzzy minimal neighborhood μ and y_{β} has a fuzzy minimal q-neighborhood ν in which $\mu \not \mu \nu$.

In short fuzzy $m - T_i$ (i=0,1,2) spaces are used for fuzzy minimal T_i spaces.

Theorem 2.6. Every fuzzy $m - T_2$ space is a fuzzy $m - T_1$ space and also every fuzzy $m - T_1$ space is a fuzzy $m - T_0$ space.

Proof. Obvious.

Theorem 2.7. A fuzzy minimal space (X, \mathcal{M}) is fuzzy $m - T_1$ if every fuzzy point x_{α} is fuzzy m-closed in X.

Proof. Suppose x_{α} and y_{β} are distinct fuzzy points in X, there are two cases (i) $x \neq y$

(ii) x = y and $\alpha < \beta$ (say).

Assume that $x \neq y$. By hypothesis x_{α}^{c} and y_{β}^{c} are fuzzy *m*-open sets. It is easy to see that $x_{\alpha} \in y_{\beta}^{c}, y_{\beta} \in x_{\alpha}^{c}, x_{\alpha} \not/\!\!\!/ x_{\alpha}^{c}$ and $y_{\beta} \not/\!\!/ y_{\beta}^{c}$. In case that x = y and $\alpha < \beta$, one can deduce that x_{α}^{c} is a fuzzy *m*-open set with $y_{\beta}qx_{\alpha}^{c}$ and $x_{\alpha} \not/\!\!/ x_{\alpha}^{c}$ which implies that (X, \mathcal{M}) is fuzzy $m - T_{1}$.

Theorem 2.8. Let (X, \mathcal{M}) be a fuzzy minimal space. Then (X, \mathcal{M}) is fuzzy minimal T_1 if for each $x \in X$ and each $\alpha \in [0, 1]$ there exists a fuzzy minimal open set μ such that $\mu(x) = 1 - \alpha$ and $\mu(y) = 1$ for $y \neq x$.

Proof. Let x_{α} be an arbitrary fuzzy point of X. We shall show that the fuzzy point x_{α} is fuzzy minimal closed. By hypothesis, there exists a fuzzy minimal open set μ such that $\mu(x) = 1 - \alpha$ and $\mu(y) = 1$ for $y \neq x$. We have $\mu^c = x_{\alpha}$. Thus, the fuzzy point x_{α} is fuzzy minimal closed and hence by Theorem 2.7 the fuzzy minimal space X is fuzzy minimal T_1 .

Theorem 2.9. Suppose i = 0, 1, 2. A fuzzy minimal space (X, \mathcal{M}) is fuzzy $m - T_i$ if and only if for any pair of distinct fuzzy points x_{α} and y_{β} with distinct supports, there exists a fuzzy m-continuous mapping f from X into a fuzzy $m - T_i$ space (Y, \mathcal{N}) such that $f(x) \neq f(y)$.

Proof. We only prove the case that i = 2 and others are similar. Suppose (X, \mathcal{M}) is fuzzy $m - T_2$ space. Let $(Y, \mathcal{N}) := (X, \mathcal{M})$ and $f := id_X$. Clearly, (Y, \mathcal{N}) and f have the required properties. Conversely, suppose x_{α} and y_{β} are distinct fuzzy points in X. There are two cases

(i) $x \neq y$

(ii) x = y and $\alpha < \beta$ (say).

When $x \neq y$, by assumption there is fuzzy *m*-continuous mapping f from (X, \mathcal{M}) into a fuzzy $m - T_2$ space (Y, \mathcal{N}) with $f(x) \neq f(y)$. Since (Y, \mathcal{N}) is fuzzy $m - T_2$ space and $(f(x))_{\alpha}$ and $(f(y))_{\beta}$ are distinct fuzzy points in Y, so there are fuzzy minimal neighborhoods μ and ν of $(f(x))_{\alpha}$ and $(f(y))_{\beta}$ respectively for which $\mu \not \mu \nu$. It follows from *m*-continuity of f that $f^{-1}(\mu)$ and $f^{-1}(\nu)$ are fuzzy minimal neighborhoods of x_{α} and y_{β} respectively. Since $\mu \not \mu \nu$, so $f^{-1}(\mu) \not (qf^{-1}(\nu))$. In case that x = y and $\alpha < \beta$ (say), $(f(x))_{\alpha}$ and $(f(y))_{\beta}$ are fuzzy points in Y with f(x) = f(y). Since (Y, \mathcal{N}) is fuzzy $m - T_2$ space, so $(f(x))_{\alpha}$ has a fuzzy minimal neighborhood μ and $(f(y))_{\beta}$ has a fuzzy minimal q-neighborhoods ν for which $\mu \not q \nu$. Then $f^{-1}(\mu)$ is a fuzzy minimal q-neighborhood of x_{α} and $f^{-1}(\nu)$ is a fuzzy minimal q-neighborhood of y_{β} with $f^{-1}(\mu) \not qf^{-1}(\nu)$. Therefore, (X, \mathcal{M}) is fuzzy $m - T_2$ space.

Corollary 2.10. Suppose (X, \mathcal{M}) and (Y, \mathcal{N}) are fuzzy minimal spaces and $f : X \longrightarrow Y$ is injective and fuzzy m-continuous. (X, \mathcal{M}) is fuzzy $m - T_i$ space if (Y, \mathcal{N}) is fuzzy $m - T_i$ space.

Proof. It is an immediate consequence of Theorem 2.9.

Theorem 2.11. Let (X, \mathcal{M}) be a fuzzy minimal space. If (X, \mathcal{M}) is fuzzy minimal T_2 , then for any two distinct fuzzy points x_{α} and y_{β} , the following properties hold:

(1) If $x \neq y$, then there exist fuzzy open neighborhoods μ and ν of x_{α} and y_{β} , respectively, such that $m - Cl(\nu) \leq \mu^{c}$ and $m - Cl(\mu) \leq \nu^{c}$,

(2) If x = y and $\alpha < \beta$ (say), then there exists a fuzzy open neighborhood μ of x_{α} such that $y_{\beta} \notin m - Cl(\mu)$.

Proof. (1) : Let $x \neq y$. Then there exist fuzzy *m*-open neighborhoods μ and ν of x_{α} and y_{β} , respectively, such that $\mu \not \mu \nu$. Since $\mu \not \mu \nu$, then $\mu(z) \leq 1 - \nu(z)$ and $\nu(z) \leq 1 - \mu(z)$ for all $z \in X$. Since μ^c and ν^c are fuzzy *m*-closed, then $m - Cl(\nu) \leq \mu^c$ and $m - Cl(\mu) \leq \nu^c$.

(2): Let x = y. Then there exist a fuzzy minimal q-neighborhood λ of y_{β} and a fuzzy open neighborhood μ of x_{α} such that $\lambda \not \mu$. Now, let ν be a fuzzy m-open set in X such that $y_{\beta}q\nu$ and $\nu \leq \lambda$. Since $\beta > 1 - \nu(y) = (m - Cl(\nu^c))(y), \nu \leq \lambda$ and $\mu \leq \lambda^c$, then $\beta > m - Cl(\mu)(y)$ for all $y \in X$. Thus, $y_{\beta} \notin m - Cl(\mu)$.

Theorem 2.12. Let (X, \mathcal{M}) be a fuzzy minimal space. Suppose that (X, \mathcal{M}) enjoys the property U. Then (X, \mathcal{M}) is fuzzy minimal T_2 if and only if for any two distinct fuzzy points x_{α} and y_{β} , the following properties hold:

(1) If $x \neq y$, then there exist fuzzy m-open neighborhoods μ and ν of x_{α} and y_{β} , respectively, such that $m - Cl(\nu) \leq \mu^{c}$ and $m - Cl(\mu) \leq \nu^{c}$,

(2) If x = y and $\alpha < \beta$ (say), then there exists a fuzzy m-open neighborhood μ of x_{α} such that $y_{\beta} \notin m - Cl(\mu)$.

Proof. (\Rightarrow) : It follows from Theorem 2.11.

 (\Leftarrow) : Let x_{α} and y_{β} be distinct fuzzy points in X and let $x \neq y$. Then there exist fuzzy *m*-open neighborhoods μ and ν of x_{α} and y_{β} , respectively, such that $m - Cl(\nu) \leq \mu^c$. This implies that for all $z \in X$, $\mu(z) + \nu(z) \leq (m - Cl(\nu))(z) + \mu(z) \leq 1$. Hence, $\mu \not q\nu$. Now, let x = y and $\alpha < \beta$. Then there exists a fuzzy *m*-open neighborhood μ of x_{α} such that $y_{\beta} \notin m - Cl(\mu)$. Let $\lambda = (m - Cl(\mu))^c$. Since for all $z \in X$, $\lambda(z) + \mu(z) \leq 1$, then $\lambda \not q\mu$. On the other hand, λ is a fuzzy open set and $\beta + \lambda(y) > \alpha + \lambda(y) \geq 1$. Hence, λ is a fuzzy minimal q-neighborhood of y_{β} such that $\lambda \not q\mu$.

Theorem 2.13. Let (X, \mathcal{M}) be a fuzzy minimal space. If (X, \mathcal{M}) is fuzzy minimal T_2 , then the following hold:

(1) for every fuzzy point x_{α} in X, $x_{\alpha} = \bigwedge \{m - Cl(\nu) : \nu \text{ is a fuzzy minimal neighborhood of } x_{\alpha} \}.$

(2) for every $x, y \in X$ with $x \neq y$, there exist a fuzzy minimal neighborhood μ of x_1 such that $y \notin supp(m - Cl(\mu))$.

Proof. (1) : Let $y_{\beta} \notin x_{\alpha}$. We shall show the existence of a fuzzy minimal neighborhood of x_{α} such that $y_{\beta} \notin m - Cl(\nu)$.

Let $x \neq y$. Then there exist fuzzy minimal open sets μ and ν containing y_1 and x_{α} , respectively such that $\mu \not \mu \nu$. Then ν is fuzzy minimal neighborhood of x_{α} and μ is a fuzzy minimal q-neighborhood of y_{β} such that $\mu \not \mu \nu$. Hence, by using Theorem 2.4 we get $y_{\beta} \notin m - Cl(\nu)$. Let x = y. Then $\alpha < \beta$ and there exist a fuzzy minimal q-neighborhood μ of y_{β} and fuzzy minimal neighborhood ν of x_{α} such that $\mu \not \mid \mu$. Thus, $y_{\beta} \notin m - Cl(\nu)$.

(2): For every $x, y \in X$ with $x \neq y$, since (X, \mathcal{M}) is fuzzy minimal T_2 , then there exist fuzzy minimal open sets μ and ν such that $x_1 \in \mu$, $y_1 \in \nu$ and $\mu \not/\mu$. Then $\nu^c(y) = 0$ and $\mu \leq \nu^c$. Since ν^c is fuzzy minimal closed, $m - Cl(\mu) \leq \nu^c$. Thus, $m - Cl(\mu)(y) = 0$ and hence, $y \notin supp(m - Cl(\mu))$.

Theorem 2.14. Let (X, \mathcal{M}) be a fuzzy minimal space with property U. Then (X, \mathcal{M}) is fuzzy minimal T_2 if and only if

(1) for every fuzzy point x_{α} in X, $x_{\alpha} = \bigwedge \{m - Cl(\nu) : \nu \text{ is a fuzzy minimal neighborhood of } x_{\alpha} \}$.

(2) for every $x, y \in X$ with $x \neq y$, there exist a fuzzy minimal neighborhood μ of x_1 such that $y \notin supp(m - Cl(\mu))$.

Proof. (\Rightarrow) : It follows from Theorem 2.13.

 (\Leftarrow) : Let x_{α} and y_{β} be two distinct fuzzy points in X.

Let $x \neq y$. Suppose that $0 < \alpha < 1$. There exists a real number δ such that $0 < \alpha + \delta < 1$. By hypothesis, there exists a fuzzy minimal neighborhood μ of y_{β} such that $x_{\delta} \notin m - Cl(\mu)$. Then x_{δ} has a fuzzy minimal q-neighborhood ν such that $\mu \not/\mu \nu$. On the other hand, $\delta + \nu(x) > 1$ and $\nu(x) > 1 - \delta > \alpha$ and hence ν is a fuzzy minimal neighborhood of x_{α} such that $\mu \not/\mu \nu$, where μ is a fuzzy minimal neighborhood of x_{β} . If $\alpha = \beta = 1$, by hypothesis there exists a fuzzy minimal neighborhood μ of x_1 such that $m - Cl(\mu)(y) = 0$. Thus, $\nu = (m - Cl(\mu))^c$ is a fuzzy minimal neighborhood of y_1 such that $\mu \not/\mu \nu$.

Let x = y and $\alpha < \beta$. Then there exists a fuzzy minimal neighborhood of x_{α} such that $y_{\beta} \notin m - Cl(\mu)$. Thus, there exists a fuzzy minimal q-neighborhood ν of y_{β} such that $\mu \not \mu \nu$. Hence, (X, \mathcal{M}) is fuzzy minimal T_2 .

3. Acknowledgements:

This paper is supported by the Research Center in Algebraic Hyperstructures and Fuzzy Mathematics, University of Mazandaran, Babolsar, Iran.

References

- M. Alimohammady, S. Jafari and M. Roohi, Fuzzy minimal connected sets, Bull. Kerala Math. Assoc., 5 (2008), 1–15.
- [2] M. Alimohammady and M. Roohi, Compactness in fuzzy minimal spaces, Chaos, Solitons & Fractals, 28 (2006), 906–912.
- [3] M. Alimohammady and M. Roohi, Fuzzy minimal structure and fuzzy minimal vector spaces, Chaos, Solitons & Fractals, 27 (2006), 599–605.
- M. Alimohammady and M. Roohi, Fuzzy transfer minimal closed multifunctions, Ital. J. Pure Appl. Math., 22 (2007), 67–74.
- [5] M. Alimohammady and M. Roohi, Fuzzy U_m sets and fuzzy (U, m)-continuous functions, Chaos, Solitons, & Fractals 28 (2006), 20–25.
- [6] M. Alimohammady and M. Roohi, Λ_m -Set in fuzzy minimal space, Journal of Basic Science, 3 (2006), 11–17.
- [7] M. Alimohammady and M. Roohi, Separation of fuzzy sets in fuzzy minimal spaces, Chaos, Solitons & Fractals, 31 (2007), 155–161.

- [8] A. Azam, M. Arshad and I. Beg, Common fixed point theorems in cone metric spaces, J. Nonlinear Sci. Appl., 2 (2009), 204–213.
- B. Ghosh, Semi-continuous and semi-closed mappings and semi-connectedness in fuzzy setting, Fuzzy sets syst. 35 (1990), 345–355.
- [10] I. M. Hanafy, βS*-compactness in L-fuzzy topological spaces, J. Nonlinear Sci. Appl., 2 (2009), 27–37.
- [11] S. Jafari, K. Viswanathan, M. Rajamani and S. Krishnaprakash, On decomposition of fuzzy A-continuity, J. Nonlinear Sci. Appl., 1 (2008), 236–240.
- [12] P. Pao-Ming and L. Ying-Ming, Fuzzy topology I. neighborhood structure of a fuzzy point and and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980), 571–599.
- [13] P. Pao-Ming and L. Ying-Ming, Fuzzy Topology II. Product and quotient spaces, J. Math. Anal. Appl., 77 (1980), 20–37.
- [14] L. A. Zadeh, Fuzzy sets, Inf. control, 8 (1965), 338–353.

¹ DEPARTMENT OF MATHEMATICS, FACULTY OF BASIC SCIENCES, UNIVERSITY OF MAZAN-DARAN, BABOLSAR 47416 – 1468, IRAN

E-mail address: amohsen@umz.ac.ir *E-mail address*: mehdi.roohi@gmail.com

² Department of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canakkale, Turkey

E-mail address: eekici@comu.edu.tr

³ DEPARTMENT OF ECONOMICS, COPENHAGEN UNIVERSITY, OESTER FARIMAGSGADE 5, BUILDING 26, 1353 COPENHAGEN K, DENMARK

E-mail address: jafari@stofanet.dk