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STABILIZABILITY OF A CLASS OF NONLINEAR SYSTEMS
USING HYBRID CONTROLLERS

XINZHI LIU1∗ AND PETER STECHLINSKI1

Abstract. This paper develops hybrid control strategies for stabilizing a class
of nonlinear systems. Common Lyapunov functions and switched Lyapunov
functions are used to establish easily verifiable criteria for the stabilizability of
weakly nonlinear systems under switched and impulsive control. Three types
of controller switching rules are studied: time-dependent (synchronous), state-
dependent (asynchronous) and average dwell-time satisfying. Conditions are
developed for stabilizability under arbitrary switching, as well as less strict con-
ditions for prespecified switching rules. Examples are given, with simulations,
to illustrate the theorems developed.

1. Introduction

In recent years there has been a wide interest in the study of hybrid dynamical
systems, which combine continuous/discrete dynamics with logic-based switching
[22]. These systems evolve according to mode-dependent continuous/discrete
dynamics, and, triggered by threshold events, experience abrupt changes between
modes [22]. A switched system, which is a type of hybrid system, often arises
in two contexts [5]: The first is when there is an abrupt change in the dynamics
of a natural system, which could be due to, for example, environmental factors.
The second context is when a continuous system is stabilized using switching
controllers. The latter is an interesting and important problem to study, as a
system that cannot be stabilized by a continuous controller may be stabilizable
by a switching controller [15].

Date: Received: 1 October 2010; Revised: 29 October 2010.
∗ Corresponding author

c© 2010 N.A.G.
2000 Mathematics Subject Classification. Primary 93C30; Secondary 37C75, 93D15.
Key words and phrases. Hybrid systems; Switched systems; Stabilizability; Switched control;

Impulsive control; Synchronous switching; State-dependent switching; Dwell-time switching.
203



204 X. LIU, P. STECHLINSKI

Many important and interesting problems, found in areas such as computer sci-
ence, control engineering, and applied mathematics, can be modelled naturally by
hybrid systems [7]. Practical applications of switched systems include many di-
verse areas, for example, mechanical systems, the automotive industry, air traffic
control, robotics, intelligent vehicle/highway systems, robotics, integrated circuit
design, multimedia, manufacturing, power electronics, switched-capacitor net-
works, chaos generators, computer disk drives, automotive engine management,
high-level flexible manufacturing systems, job scheduling, interconnected power
systems, and chemical processes [5, 7, 8, 15]. Switched systems have been shown
to exhibit interesting behaviour, such as the switched and impulsive control of
unstable subsystems that leads to a stable system [8, 9], and the instability of a
switched system comprised solely of stable subsystems [15].

The majority of the work in the switched systems literature pertains to contin-
uous and discrete switched systems, but these systems fail to properly model real
world systems which exhibit an impulsive effect at switching points [8]. There
are currently few reports in the literature that study the stability of switched and
impulsive systems [9]. Examples of switched systems with impulsive effects at
switching instances include biological neural networks, bursting rhythm models
in pathology, and optimal control in economics [8]. Another important reason
for studying switched and impulsive systems stems from a control point of view:
traditional control is not always adequate for the stabilization of complex dy-
namic systems, but switched control may be combined with impulsive control to
increase performance [9].

Some standard techniques to study the stability of switched systems, which is
important in many applications, are common and switched Lyapunov functions
[2, 3, 5, 20], and switched invariance principles [1, 10, 11]. Switched systems
with subsystems that are triangularizable have been studied [17], linear switched
systems with commuting subsystems have been analyzed [19], and switched sys-
tems with average dwell-time satisfying switching rules have been considered
[11, 12, 22]. The control of discrete switched systems has been investigated [4],
the stabilization of nonlinear switched systems using feedback control and control
Lyapunov functions has been studied [18], and the instability of switched systems
under arbitrary switching has been analyzed [21]. For a general overview of hy-
brid and switched systems, as well as a review of current literature in the area,
see [5, 6, 14, 15, 22, 23, 24].

Motivated by the extensive practical applications mentioned earlier, this paper
aims to study weakly nonlinear impulsive and switched systems. This paper’s
objective is to establish new and easily verifiable criteria for the stabilization
of impulsive and weakly nonlinear switched systems under both asynchronous
and synchronous switching. Secondly, this paper aims to extend current results
on switched and impulsive systems with dwell-time satisfying switching rules to
include nonlinear switched control and nonlinear impulsive control. In doing
this, results from [7] and [9] are extended by studying the stabilization of weakly
nonlinear switched and impulsive systems under asynchronous, synchronous, and
dwell-time satisfying switching rules.
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This paper is organized as follows: Section 2 gives a mathematical formula-
tion of the problem. In Section 3, asynchronous switching is introduced and
studied. Criteria are given for the stabilizability of switched systems under a
prespecified asynchronous switching rule. Further, some stricter conditions are
given for stabilizability under arbitrary asynchronous switching. Section 4 inves-
tigates synchronous switching, establishing criteria for stabilizability under both
arbitrary synchronous switching as well as a prespecified synchronous switching
rule. Average dwell-time satisfying switching is studied in Section 5. Examples
are given in Section 6, with simulations using Matlab, to illustrate the various
theorems established in the paper. Finally, some conclusions are made and future
directions are given in Section 7.

2. Problem formulation

Let R+ denote the set of nonnegative real numbers and let Rn denote the Eu-
clidean space of n-dimensions with Euclidean norm ‖ · ‖. Let λmax[Q] (λmin[Q])
denote the maximum (minimum) eigenvalue of a symmetric matrix Q, respec-
tively. Consider the following control system:

ẋ(t) = Ax(t) + F (t, x) + Bu(t) + Cv(t), (2.1)

where x∈Rn is the state vector, u∈Rh, v∈Rh are controllers, t∈R+, A, B and
C are constant matrices of corresponding dimensions, and F (t, x) is a continuous
vector-valued function such that F (t, 0) ≡ 0 for all t ≥ t0.

Extending [7], assume that there are a collection of m basic state feedback
controllers: uL1(t) = L1x(t), . . . , uLm(t) = Lmx(t), where Li are constant control
gain matrices of corresponding dimension, and a collection of m nonlinear state
feedback controllers: uJ1(t) = J1(t, x), . . . , uJm(t) = Jm(t, x), where Ji(t, x) are
piecewise continuous vector-valued functions such that Ji(t, 0) ≡ 0 for all t ≥ t0.
Further, assume that there are a collection of m impulsive controllers: vM1(t) =
M1x(t)δ(t−tk), . . . , vMm(t) = Mmx(t)δ(t−tk), where Mi are constant control gain
matrices and δ(t) is the Dirac delta generalized function. Finally, assume that
there are a collection of m nonlinear impulsive controllers: vQ1(t) = Q1(t, x)δ(t−
tk), . . . , vQm(t) = Qm(t, x)δ(t−tk), where Qi(t, x) are piecewise continuous vector-
valued functions such that Qi(t, 0) ≡ 0 for all t ≥ t0. Following the procedure
of [8], incorporate these controllers into system (2.1) by constructing the control
inputs as follows:

u(t) =
∞∑

k=1

Likx(t)lk(t) +
∞∑

k=1

Jik(t, x)lk(t),

where lk(t) :=

{
1 if t ∈ (tk−1, tk],
0 otherwise,

v(t) =
∞∑

k=1

Mikx(t)δ(t− tk) +
∞∑

k=1

Qik(t, x)δ(t− tk),

with discontinuity points t1 < . . . < tk < . . . → ∞ as k → ∞ and where
ik ∈ {1, 2, . . . ,m}. Following [8], note that based on the definition of lk(t), it is
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apparent that the controller u(t) switches its value at every time t = tk, hence
u(t) is a switching controller. To interpret v(t), observe that x(tk + h)− x(tk) =∫ tk+h

tk
[Ax(s)+F (t, s)+Bu(s)+Cv(s)]ds. As h → 0+, x(t+k )−x(tk) = CMikx(tk)+

CQik(tk, x(tk)), where x(t+k ) := limh→0+ x(tk+h). That is, there is a sudden jump
in the state of the system at each t = tk, hence v(t) is an impulsive controller.

For t0∈R+ and x0∈Rn, system (2.1) can be rewritten as a switched impulsive
system: 




ẋ = (A + BLik)x + F (t, x) + BJik(t, x), t ∈ (tk−1, tk],

∆x = CMikx + CQik(t, x), t = tk,

x(t+0 ) = x0, k = 1, 2, . . .

(2.2)

where ∆x := x(t+k )− x(tk) and ik ∈ {1, 2, . . . , m} follows a switching rule

σ : R+ × Rn → {1, 2, . . . , m}, (2.3)

where σ is a piecewise continuous function assumed to be left-continuous. For
example, a simple switching rule construction is σ : (tk−1, tk] → {1, 2, . . . , m},
k = 1, 2, . . . , which has switch times t = tk where system (2.2) undergoes an
impulsive effect and a switch in the dynamics governing the system. That is,
i = σ(t) for t∈(tk−1, tk] and i = σ(t+k ) immediately after the switch and impulsive
time tk. See Figure 1 for an illustration of this simple switching rule. Under the
general construction (2.3), it is possible the switching rule is time-dependent,
state-dependent, or a combination of both. Note that if the switching times are
not based on the state of the system, it is possible the switching rule is still
state-dependent (see Section 4).
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Figure 1. Example of a switching rule σ with switch times tk = 1, 2, 4.

Given a set of constant control matrices {Li}, {Mi}, and a set of nonlinear
controllers {Ji(t, x)}, {Qi(t, x)}, the objective is to find a switching control time
sequence {tk}, and a switching rule σ such that the trivial solution of system
(2.2) is globally asymptotically stable. The trivial solution is said to be stable
for a switching rule σ if, for any ε > 0, there exists a δ > 0 such that ‖x(t0)‖ < δ
implies ‖x(t)‖ < ε for any t ≥ t0. The trivial solution is asymptotically stable if
it is stable and there exists a β > 0 such that ‖x(t0)‖ < β implies limt→∞x(t) =
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0. Further, the trivial solution is exponentially stable if there exist constants
α, γ, C > 0 such that if ‖x(t0)‖ < α then ‖x(t)‖ < C‖x(t0)‖e−γ(t−t0) for any t ≥
t0. Finally, the trivial solution is globally asymptotically (exponentially) stable
if it is asymptotically (exponentially) stable and β (α) is arbitrary, respectively.
Note that exponential stability implies asymptotic stability.

3. Asynchronous controller switching

Consider system (2.2) and suppose that the switching rule takes the following
form:

σ(x(t)) : Rn → {1, 2, . . . ,m}, (3.1)

which is called asynchronous controller switching [7]. This switching rule implic-
itly defines the switch times tk when the state crosses a switching threshold that
is based on the state of the system. Under this construction the switched system
is, 




ẋ = (A + BLik)x + F (t, x) + BJik(t, x), t ∈ (tk−1, tk],

∆x = CMikx + CQik(t, x), t = tk,

x(t+0 ) = x0, k = 1, 2, . . . ,

(3.2)

where ik ∈ {1, 2, . . . , m} follows an asynchronous switching rule σ(x). When a
certain state threshold is reached (corresponding to a switching time tk), the
switching rule σ(x) selects the next subsystem to switch to based on the system
state x(tk). Extending some results from [7], consider the following stabilizability
theorem for a prespecified asynchronous switching rule.

Theorem 3.1. Assume that there exists matrices G, Hi, Ki = KT
i , positive defi-

nite matrix P = P T , and constants µi which satisfy,

2F T (t, x)Px ≤ xT Gx, (3.3)

2Ji
T (t, x)BT Px ≤ xT Hix, (3.4)

2xT (I + CMi)
T PCQi(t, x) + QT

i (t, x)CT PCQi(t, x) ≤ xT Kix, (3.5)

λmax[P
−1((I + CMi)

T P (I + CMi) + Ki)] ≤ µi, (3.6)

for x ∈ Rn, t ≥ t0, and i = 1, . . . , m. Assume that there exists constants τ1 ≥
0, . . . , τm ≥ 0 and D > 0 such that

∑m
i=1 τi = 1,

∑m
i=1 τiΥi < 0, where Υi =

(A + BLi)
T P + P (A + BLi) + Hi + G, and

∑∞
k=1(µik − 1) < D. Define the

switching regions Ωi = {x∈Rn : xT Υix ≤ xT Υjx, j = 1, 2, . . . , m}, define ∂Ωi

to be the boundary of Ωi, and define the minimum rule f(x) = arg mini x
T Υix. If

the asynchronous switching rule follows the algorithm,

(i) set σ = f(x(t0)) for t = t0; (3.7)

(ii) maintain σ = i in the region Ωi until x(t1)∈∂Ωi at t = t1; (3.8)

(iii) apply an impulse and let t0 = t+1 then go to step (3.7); (3.9)

then the trivial solution of system (3.2) is globally exponentially stable.
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Proof. Following [7], consider the common Lyapunov function V = xT Px and
take the time-derivative along solutions of (3.2) for t∈(tk−1, tk],

V̇ (x(t)) = [(A + BLik)x + F (t, x) + BJik(t, x)]T Px

+ xT P [(A + BLik)x + F (t, x) + BJik(t, x)],

= xT [(A + BLik)
T P + P (A + BLik)]x + F T (t, x)Px + xT PF (t, x)

+ JT
ik

(t, x)BT Px + xT PBJik(t, x),

≤ xT [(A + BLik)
T P + P (A + BLik)]x + xT Hikx + xT Gx,

= xT Υikx. (3.10)

The condition τ1x
T Υ1x + . . . + τmxT Υmx < 0 implies that for any x∈ Rn \ {0},

there exists an index i ∈ {1, . . . , m} such that xT Υix < 0. As in [7], define
α(x) := min∀i xT Υix for x 6= 0 and α0 := maxx:‖x‖=1 α(x) which is achieved
on this compact set since α(x) is continuous. Since there exists an i for any
x ∈ Rn \ {0} such that xT Υix < 0, it follows that α(x) < 0 for all x 6= 0, and
hence α0 < 0. Since the switching rule follows (3.7)-(3.9), it follows from (3.10)
that, for t 6= tk,

V̇ (x(t)) ≤ α0‖x(t)‖2 ≤ α0

λmin[P ]
xT Px = −εV (x(t)),

with ε = −α0/λmin[P ] > 0. Suppose that, without loss of generality, the switch
and impulsive times given by the asynchronous rule σ(x) are tk, k = 1, 2, . . . ,
with tk > tk−1, and tk →∞ as k →∞, then for t∈(tk−1, tk],

V (x(t)) ≤ V (x(t+k )) exp[−ε(t− tk−1)]. (3.11)

Immediately after the time t = tk an impulse is applied:

V (x(t+k )) = xT (t+k )Px(t+k ),

= [(I + CMik)x(tk) + CQik(tk, x(tk))]
T P [(I + CMik)x(tk)

+ CQik(tk, x(tk))],

= xT (tk)(I + CMik)
T P (I + CMik)x(tk)

+ QT
ik

(tk, x(tk))C
T P (I + CMik)x(tk)

+ xT (tk)(I + CMik)
T PCQik(tk, x(tk))

+ QT
ik

(tk, x(tk))C
T PCQik(tk, x(tk)),

≤ xT (tk)[(I + CMik)
T P (I + CMik) + Kik ]x(tk),

≤ λmax[P
−1((I + CMik)

T P (I + CMik) + Kik)]x
T (tk)Px(tk),

≤ µikV (x(tk)), (3.12)

since for any positive definite P ∈ Rn×n and symmetric Q ∈ Rn×n, xT Qx ≤
λmax[P

−1Q]xT Px. Apply (3.11) and (3.12) successively on each interval. Let
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V (x(t0)) = V0, then for t∈(t0, t1], V (x(t)) ≤ V0 exp[−ε(t− t0)]. For t∈(t1, t2],

V (x(t)) ≤ V (x(t+1 )) exp[−ε(t− t1)],

≤ µi1V (x(t1)) exp[−ε(t− t1)],

≤ µi1(V0 exp[−ε(t1 − t0)]) exp[−ε(t− t1)],

= µi1V0 exp[−ε(t− t0)].

In general, for t∈(tk−1, tk], V (x(t)) ≤ V0

[
Πk−1

j=1µij

]
exp[−ε(t−t0)]. Without loss of

generality, assume that Πk−1
j=1µij = Πk+

j=1µ
+
ij
Πk−

j=1µ
−
ij
, with 0 ≤ µ−ij ≤ 1, µ+

ij
> 1, and

k++k− = k−1. Note that for an ≥ 0, the infinite product satisfies ΠN
n=1(1+an) ≤

exp[
∑N

n=1 an]. Hence, V (x(t)) ≤ V0

[
Πk−

j=1µ
−
ij

]
exp[−ε(t − t0) +

∑k−1
j=1(µ

+
ij
− 1)].

This implies that V (x(t)) ≤ V0D
[
Πk−

j=1µ
−
ij

]
exp[−ε(t− t0)], and hence the trivial

solution is globally exponentially stable under the asynchronous switching rule
(3.7)-(3.9). ¤

The switching rule algorithm (3.7)-(3.9) is motivated by the switching rule
constructions in [13, 16]. Note that if there are two or more arguments which
minimize f(x1) for some x1, for example if xT

1 Υi1x1 = · · · = xT
1 Υirx1, then any of

i1, . . . , ir can be chosen for the next switch (for completeness, assume that f(x)
select the smallest index, i = min{i1, . . . , ir}). In the case that the switching rule
is arbitrary, sufficient conditions for stabilizability become stricter.

Corollary 3.2. Assume that there exists matrices G = GT , Hi = HT
i , Ki = KT

i ,
positive definite matrix P = P T , and constants µi such that (3.3)-(3.6) hold for
x ∈ Rn, t ≥ t0, i = 1, 2, . . . ,m. Assume that λmax[P

−1Υi] < 0, where Υi =
(A + BLi)

T P + P (A + BLi) + Hi + G, for i = 1, 2 . . . ,m, and that there exists
D > 0 such that

∑∞
k=1(µik − 1) < D. Then, the trivial solution of system (3.2)

is globally exponentially stable under an arbitrary asynchronous switching rule.

Proof. Consider the common Lyapunov function V = xT Px, then it follows from
equation (3.10) that,

V̇ (x(t)) ≤ xT Υikx ≤ λmax[P
−1Υik ]V (x(t)),

for t 6= tk. Hence, there exists ε > 0 such that V̇ (x(t)) ≤ −εV (x(t)), then
it follows from the proof of Theorem 3.1 that the trivial solution is globally
exponentially stable under arbitrary asynchronous switching. ¤

In Theorem 3.1, it is possible for some of the matrices Υi to be unstable (at
least one eigenvalue has positive real part), which corresponds to growth of the
system state in certain subregions of Rn. However, since a convex combination
of the matrices Υi is negative definite, in any region in Rn there exists at least
one mode such that ‖x(t)‖ decays. In order to exploit this characteristic, the
asynchronous switching rule σ(x) must follow the index rule (3.7)-(3.9) outlined
above. On the other hand, Corollary 3.2 requires stronger conditions, specifically,
that P−1Υi are Hurwitz matrices (all eigenvalues have negative real part), but
ensures stability for arbitrary asynchronous switching and is easier to verify.
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4. Synchronous controller switching

Consider system (2.2) and suppose that the system can switch only at prespec-
ified times t = kh, k = 1, 2, . . ., where h > 0 is the switching interval time. More
specifically, the switching rule maps the interval to a certain controller at every
switching time [7]:

σk : ((k − 1)h, kh] → {1, 2, . . . , m}. (4.1)

This is called synchronous controller switching. Note that although the switching
times are not state-dependent, the switching rule σ may be based on the current
state of the system at the time kh (for example, x(kh)− x(0) [7]). Assume that
F (t, x) ≡ 0, Ji(t, x) ≡ 0, and Qi(t, x) ≡ 0 for all x ∈ Rn, t ≥ 0 (assume that
t0 = 0, without loss of generality), i = 1, 2, . . . , m, then the system is,





ẋ = (A + BLik)x, t ∈ ((k − 1)h, kh],

∆x = CMikx, t = kh,

x(t+0 ) = x0, k = 1, 2, . . .

(4.2)

where ik∈{1, 2, . . . , m} follows a synchronous switching rule σk. Since the impul-
sive switched system is linear, define φi := exp((A+BLi)h) as the state transition
matrix under switched controller i between the times t1 and t2 = t1 + h. That is,
x(kh) = φix((k − 1)h+). Hence,

γ = max
i=1,2,...,n

exp[(A + BLi)h] (4.3)

is a bound on the growth of the switched system, in between impulses, due to
the switched linear controller.

Suppose that there exists a positive definite matrix P = P T and ε > 0 such
that the Lyapunov function V = xT Px satisfies,

V (x(kh+))− V (x((k − 1)h+)) ≤ −ε‖x((k − 1)h+)‖2
, (4.4)

along solutions of (4.2) for k = 1, 2, . . ., then system (4.2) is said to be quadrati-
cally stabilizable via synchronous controller switching [7]. This condition ensures
that the impulsive effects combined with the switching controller results in a
decrease of the Lyapunov function at the switch times t = kh.

Using the growth bound (4.3) and condition (4.4), it follows from the proof
of Theorem 2.5.2 in [14] (using w(t+ik+1

) ≤ Lw(t+ik) instead of w(tik+1
) ≤ Lw(tik)

in the proof’s comparison system) that quadratic stabilizability via synchronous
controller switching implies global asymptotic stability of the trivial solution.
From this, it is possible to extend the results of [7] to include impulsive control
with synchronous switching.

Theorem 4.1. Assume that there exists a positive definite matrix P = P T and
constants τ1 ≥ 0, . . . , τm ≥ 0 such that

∑m
i=1 τi = 1 and

∑m
i=1 τiΨi < 0, where

Ψi = φT
i (I + CMi)

T P (I + CMi)φi − P . Define the switching regions Ωi = {x∈
Rn : xT Ψix ≤ xT Ψjx, j = 1, 2, . . . , m} and define the minimum rule f(x) =
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arg mini x
T Ψix. If the synchronous switching rule follows the algorithm,

(i) set σ = f(x(t0)) for t0 ≤ t ≤ t0 + h; (4.5)

(ii) apply an impulse and let t0 = t0 + h+ then go to step (4.5); (4.6)

then the trivial solution of system (4.2) is globally asymptotically stable.

Proof. Consider the common Lyapunov function V = xT Px, then along solutions
of system (4.2),

V (x(kh+)) = xT (kh+)Px(kh+),

= ((I + CMik)x(kh))T P ((I + CMik)x(kh)),

= ((I + CMik)φikx((k − 1)h+))T P ((I + CMik)φikx((k − 1)h+)),

= xT ((k − 1)h+)φT
ik

(I + CMik)
T P (I + CMik)φikx((k − 1)h+).

It follows that,

V (x(kh+))− V (x((k − 1)h+))

= xT ((k − 1)h+)φT
ik

(I + CMik)
T P (I + CMik)φikx((k − 1)h+)

− xT ((k − 1)h+)Px((k − 1)h+),

= xT ((k − 1)h+)Ψikx((k − 1)h+). (4.7)

The condition τ1x
T Ψ1x + . . . + τmxT Ψmx < 0 implies that at the times t =

(k−1)h+ immediately after the impulse, for any x∈ Rn\{0}, there exists an index
i∈{1, . . . , m} such that xT Ψix < 0. Following [7], define α(x) := min∀i xT Υix for
x 6= 0 and α0 := maxx:‖x‖=1 α(x), which is achieved on this compact set since α(x)
is continuous. Since there exists an i for any x∈ Rn \ {0} such that xT Ψix < 0,
it follows that α(x) < 0 for all x 6= 0, and hence α0 < 0. Since the switching rule
follows (4.5)-(4.6), then it follows from (4.7) that V (x(kh+))−V (x((k−1)h+)) ≤
−ε‖x((k − 1)h+)‖2 with α0 = −ε < 0. Thus, system (4.2) is quadratically
stabilizable under the synchronous switching rule (4.5)-(4.6), and so the trivial
solution is globally asymptotically stable. ¤

Immediately after each impulse t = (k−1)h+, the switching rule σ for the next
interval ((k − 1)h, kh] is determined by evaluating the minimum rule f(x((k −
1)h+)), which is the index that minimizes xT Ψix. Again the switching rule al-
gorithm (4.5)-(4.6) is motivated by those found in [13, 16]. As in Section 3, if
f(x1) is minimized by multiple indices i1, . . . , ir for some x1, select the smallest
index i = min{i1, . . . , ir}. To prove stability for arbitrary switching, more strict
criteria need to be imposed.

Corollary 4.2. Assume that there exists a positive definite matrix P = P T

such that λmax[Ψi] < 0, where Ψi = φT
i (I + CMi)

T P (I + CMi)φ
T
i − P , for

i = 1, 2, . . . , m, then the trivial solution of system (4.2) is globally asymptoti-
cally stable under arbitrary synchronous switching.
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Proof. Consider the common Lyapunov function V = xT Px, and begin from
equation (4.7),

V (x(kh+))− V (x((k − 1)h+)) ≤ xT ((k − 1)h+)Ψikx((k − 1)h+),

≤ λmax[Ψik ]x
T ((k − 1)h+)x((k − 1)h+),

= −ε‖x((k − 1)h+)‖2,

where ε = −λmax[Ψi] > 0. Hence, system (4.2) is quadratically stabilizable under
any synchronous switching rule, and so the trivial solution is globally asymptot-
ically stable. ¤

Note that Theorem 4.1 has less strict criteria since it is not required for every
matrix Ψi to be Hurwitz, instead, only a convex combination is required to be
negative definite. The trade-off is that the prespecified switching rule σ must
be used which follows the index rule (4.5)-(4.6). Corollary 4.2 requires stronger
conditions, but is easier to verify and ensures stability for arbitrary synchronous
switching.

5. Average dwell-time controller switching

Consider a special class of switching rules that satisfy an average dwell-time
condition. Let Nσ(t0, t) be the number of discontinuities of a switching rule
σ over [t0, t) and let Sa[τa, N0] denote the set of all switching rules satisfying [9]:

Nσ(t0, t) ≤ N0 +
t− t0

τa

, (5.1)

where N0 > 0 is known as the chatter bound and τa > 0 is called the average
dwell-time. If σ ∈ Sa, the average time spent in each subsystem can be no less
than τa > 0, that is, the switch times satisfy tk − tk−1 > τa on average. This can
be seen by noting that (t − t0)/Nσ is the average time spent in each subsystem,
which arises in the definition of average dwell-time in the limit as N0 → 0. When
N0 > 0, the average time spent in each subsystem must be greater than or equal to
τa. Note that a synchronous switching rule (4.1) satisfies a dwell-time condition
(for example, with τa = h), and it is also possible, but not necessary, for an
asynchronous switching rule (3.1) to satisfy an average dwell-time condition. In
the next theorem, some results of [9] are extended to include weakly nonlinear
impulsive control and weakly nonlinear switched control.

Theorem 5.1. Assume that there exists continuous functions φi(t), ξi(t), ζi(t),
constants λi, βi, and positive definite matrices Pi = P T

i such that,

2F T (t, x)Pix ≤ ξi(t)x
T Pix, (5.2)

2Ji
T (t, x)BT Pix ≤ φi(t)x

T Pix, (5.3)

2xT (I + CMi)
T CQi(t, x) + QT

i (t, x)CT CQi(t, x) ≤ ζi(t)x
T Pix, (5.4)

λmax[Pi
−1((A + BLi)

T Pi + Pi(A + BLi))] + ξi(t) + φi(t) ≤ λi, (5.5)

λmax[(I + CMi)
T (I + CMi)] + ζi(t) ≤ βi, (5.6)

for x∈Rn, t ≥ t0, and i = 1, 2, . . . , m. Assume that, without loss of generality,
λ1 < 0, . . . , λr < 0, λr+1 ≥ 0, . . . , λm ≥ 0. Define λ− := max1≤i≤r{λi}, λ+ :=
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minr+1≤i≤m{λi}, β := max∀i{βi}, ρ := max∀i{λmax[Pi]/λmin[Pi]}. Let T−(t0, t)
and T+(t0, t) be the total activation times in the subsystems corresponding to
λ1, . . . , λr < 0 and λr+1, . . . , λm ≥ 0, respectively. If T+(t0, t) ≤ qT−(t0, t) for all
t ≥ t0, where q ≥ 0 is a constant, and if any of the following conditions hold:

(i) 0 < ρβ ≤ 1, tk − tk−1 ≤ η for η > 0, and ln(ρβ)
η

+ λ− + qλ+ < 0;

(ii) ρβ > 1, tk − tk−1 ≥ δ for δ > 0, and ln(ρβ)
δ

(1 + q) + λ− + qλ+ < 0;

(iii) ρβ > 1, σ ∈ Sa and ln(ρβ)
τa

(1 + q) + λ− + qλ+ < 0;

then the trivial solution of system (2.2) is globally exponentially stable.

Proof. As in [9], consider the switched Lyapunov function Vik = xT Pikx where
ik ∈ {1, 2, . . . , m} follows the switching rule σ. For t ∈ (tk−1, tk],

V̇ik(x(t)) = [(A + BLik)x + F (t, x) + BJik(t, x)]T Pikx

+ xT Pik [(A + BLik)x + F (t, x) + BJik(t, x)],

= xT [(A + BLikx)T Pik + Pik(A + BLikx)]x

+ Jik
T (t, x)BT Pikx + xT PikBJik(t, x)

+ F T (t, x)Pikx + xT PikF (t, x),

≤ {λmax[Pik
−1((A + BLik)

T Pik + Pik(A + BLik))}xT Pikx

+ (ξi(t) + φi(t))x
T Pikx,

≤ λikVik(x(t)).

This implies that,

Vik(x(t)) ≤ Vik(x(t+k−1)) exp [λik(t− tk−1)] ,

from which it follows that,

λmin[Pik ]x
T (t)x(t) ≤ λmax[Pik ]x

T (tk−1
+)x(tk−1

+) exp [λik(t− tk−1)] ,

and thus,

‖x(t)‖2 ≤ ρ‖x(tk−1
+)‖2 exp [λik(t− tk−1)] . (5.7)

Equation (5.7) is a bound based on the effects of the switching control. After
each time t = tk, an impulse is applied:

‖x(tk
+)‖2 = [(I + CMik)x(tk) + CQik(tk, x(tk))]

T [(I + CMik)x(tk)

+ CQik(tk, x(tk))],

= xT (tk)[(I + CMik)
T (I + CMik)]x(tk)

+ xT (tk)(I + CMik)
T CQik(tk, x(tk))

+ QT
ik

(tk, x(tk))C
T (I + CMik)x(tk)

+ QT
ik

(tk, x(tk))C
T CQik(tk, x(tk)),

≤ βik‖x(tk)‖2. (5.8)

Apply (5.7) and (5.8) successively on each subinterval as in the proof of Theorem
1 in [9], and the rest of the proof follows for the three cases. ¤
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Intuitively, in case (i) the impulsive control is a stabilizing force and is applied
often enough so as to counteract any growth in ‖x(t)‖ between switching times.
Cases (ii) and (iii) represent the scenarios where the impulses are a destabilizing
force, but the system is stabilized by the switching control and by guaranteeing
the impulses are not applied too often.

6. Examples

Example 6.1. Consider system (3.2) with ik∈{1, 2}, t0 = 0,

A =

(
0 1

−1.25 1

)
, B =

(
0
1

)
, C =

(
1 0
0 1

)
.

F (t, x) =

(−x2y − 7/6xy2

19/8x2y + xy2

)
.

Consider the switched and impulsive controllers,

LT
1 =

(
3
−6

)
, LT

2 =

(−2
1

)
, M1 =

(−0.4 0.1
0.1 −0.5

)
, M2 =

(−0.3 0
0 −0.4

)
,

J1(t, x) = −0.5sign(y)|x|, J2(t, x) = 0,

Q1(t, x) =

(−0.25sign(x)|y|
0

)
, Q2(t, x) = 0,

where,

sign(y) :=





1, for y > 0,

0, for y = 0,

−1, for y < 0.

The constant matrices A,B,C, L1, L2 are taken from [7]. The matrices A + BL1

and A+BL2 have eigenvalues with positive real part, and so both linear controllers
lead to unstable subsystems. The impulsive controllers help in stabilizing the
system. With the switched and impulsive controllers applied to system (3.2), it
becomes,




ẋ = y − x2y − 7xy2/6, t ∈ (tk−1, tk],

ẏ = 1.75x− 5y + 19x2y/8 + xy2 − 0.5sign(y)|x|,
∆x = −0.4x + 0.1y − 0.25sign(x)|y|, t = tk, k = 1, 2, . . . ,

∆y = 0.1x− 0.5y,

for i = 1, and,




ẋ = y − x2y − 7xy2/6, t ∈ (tk−1, tk],

ẏ = −3.25x + 2y + 19x2y/8 + xy2,

∆x = −0.3x, t = tk, k = 1, 2, . . . ,

∆y = −0.4y,

for i = 2. Choose G = 0, H2 = 0, K2 = 0, µ1 = 0.9042, µ2 = 0.5093,

H1 =

(
2/3 7/18
7/18 0

)
, K1 =

(
0 0.2542

0.2542 0.4262

)
, P =

(
19/12 2/3
2/3 7/9

)
.
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Then,

Υ1 =

(
3 0
0 −6.4444

)
, Υ2 =

(−4.3333 0.3889
0.3889 4.4444

)
.

Take τ1 = τ2 = 0.5 and D = 0 then the conditions of Theorem 3.1 are satisfied.
Therefore, the trivial solution of system (3.2) is globally exponentially stable
under the asynchronous switching rule (3.7)-(3.9) where,

Ω1 = {(x, y)∈R2 : 3x2 − 6.4444y2 ≤ −4.3333x2 + 0.7778xy + 4.4444y2},
Ω2 = {(x, y)∈R2 : 3x2 − 6.4444y2 > −4.3333x2 + 0.7778xy + 4.4444y2}.

That is, choose i = 1 whenever 7.3333x2 − 0.7778xy − 10.8888y2 < 0, otherwise
choose i = 2. See Figure 2 for a simulation. Note that because λmax[P

−1Ψ1] =
2.0402 and λmax[P

−1Ψ2] = 7.3538, the stricter conditions of Corollary 3.2 are not
satisfied in this example.
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(b) (x0, y0) = (−3, 4)

Figure 2. Simulation of Example 6.1.

Example 6.2. Consider system (3.2) with ik∈{1, 2}, t0 = 0,

A =

(
0 1

−2.25 −1

)
, B =

(
0
1

)
, C =

(
1 0
0 1

)
,

F (t, x) =

(−x2y − 7/6xy2

19/8x2y + xy2

)
,

and switched and impulsive controllers,

LT
1 =

(−1
−6

)
, LT

2 =

( −3
−1.5

)
, J1(t, x) = −0.5sign(y)|x|, J2(t, x) = 0,

M1 =

(
0.4 0.1
0.1 0.5

)
, M2 =

(
0.3 0
0 0.4

)
,

Q1(t, x) = H(t− 10)

(−1.4x− 0.1y
−0.1x− 1.5y

)
,

Q2(t, x) = H(t− 20)

(−1.3x
−1.4y

)
,
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where H(t) is the Heaviside function. That is, after t = 10, no impulsive controller
is applied when the system is in the first subsystem and crosses a switch threshold.
Further, after t = 20, no impulsive controller is applied when the system is in the
second subsystem and crosses a switch threshold. Hence, the impulsive control is
switched off for t ≥ 20. Choose G = 0, K1 = 0, K2 = 0, H2 = 0,

H1 =

(
2/3 7/18
7/18 0

)
, P =

(
19/12 2/3
2/3 7/9

)
.

Then,

Υ1 =

(−3.6667 −5.2222
−5.2222 −9.5556

)
, Υ2 =

(−7.0000 −4.1667
−4.1667 −2.5556

)
.

Hence, λmax[P
−1Ψ1] = −0.7443 and λmax[P

−1Ψ2] = −0.1379. Take µ1 = 2.5332,
µ2 = 1.9968, then, since there are a finite number of impulses, say ν, it follows
that there exists a D > 0 such that Πν

k=1(µik − 1) < D. Take τ1 = τ2 = 0.5 then
the conditions of Corollary 3.2 are satisfied, and so, the trivial solution of system
(3.2) is globally exponentially stable under arbitrary asynchronous switching. See
Figure 3 for a simulation with the switching rule σ(x) of Example 6.1.
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Figure 3. Simulation of Example 6.2.

Example 6.3. Consider system (4.2) with ik ∈{1, 2}, t0 = 0, and A, B, C, L1,
L2, M1, M2 the same as in Example 6.1. Choose h = 0.2 and,

P =

(
19/12 2/3
2/3 7/9

)
,

then,

Ψ1 =

(−0.7208 −0.4116
−0.4116 −0.6920

)
, Ψ2 =

(−1.1521 −0.4896
−0.4896 0.0115

)
.

If τ1 = τ2 = 0.5 then all the conditions of Theorem 4.1 are satisfied. Hence,
the trivial solution of system (4.2) is globally asymptotically stable under the
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synchronous switching rule (4.5)-(4.6) where,

Ω1 = {(x, y)∈R2 : −0.7208x2 − 0.8233xy − 0.6920y2

≤ −1.1521x2 − 0.9793xy + 0.0115y2},
Ω2 = {(x, y)∈R2 : −0.7208x2 − 0.8233xy − 0.6920y2

> −1.1521x2 − 0.9793xy + 0.0115y2}.
That is, whenever t = kh+, evaluate f(x, y) = 0.4313x2 + 0.0780xy − 0.7035y2,
if it is less than zero choose i = 1, otherwise choose i = 2. See Figure 4 for a
simulation. Note that in this example, it is possible to construct a stabilizing
synchronous switching rule as long as the switching interval satisfies 0 < h ≤
0.2422. This is because the impulses are stabilizing forces, and hence need to be
applied often enough to stabilize the system. Since λmax[Ψ2] = 0.1901, the more
strict conditions of Corollary 4.2 are not satisfied in this example.
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Figure 4. Simulation of Example 6.3.

Example 6.4. Consider system (4.2) with ik∈{1, 2}, t0 = 0,

A =

(−1 0
−1 −1

)
, B =

(
0
1

)
, C =

(
1 0
0 1

)
,

and switched and impulsive controllers,

LT
1 =

(
1.25
−4

)
, LT

2 =

(
1.25
−2

)
, M1 =

(
0.1 0.1
0.1 0.1

)
, M2 =

(
0.3 0
0 0.4

)
.

Choose the switching interval time h = 0.5 and,

P =

(
19/12 2/3
2/3 7/9

)
,

then,

Ψ1 =

(−0.7779 −0.6103
−0.6103 −0.7703

)
, Ψ2 =

(−0.5249 −0.4862
−0.4862 −0.7019

)
.
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Hence, λmax[Ψ1] = −0.1638 and λmax[Ψ2] = −0.1192, and so the conditions of
Corollary 4.2 are satisfied. Hence, the trivial solution of system (4.2) is globally
asymptotically stable under arbitrary synchronous switching. The impulses are
destabilizing forces but are not applied too often. See Figure 5 for a simulation
with the synchronous switching rule,

σk =

{
1 if t∈(k, k + 0.5], k = 0, 1, 2, . . .

2 if t∈(k + 0.5, k + 1].
(6.1)
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Figure 5. Simulation of Example 6.4.

Example 6.5. Consider system (2.2) with ik∈{1, 2}, t0 = 0,

A =

(−1 0
−1 −1

)
, B =

(
0
1

)
, C =

(
1 0
0 1

)
,

F (t, x) =

(−x2y − 7/6xy2

19/8x2y + xy2

)
,

and switched and impulsive controllers,

LT
1 =

( −2
−3.5

)
, LT

2 =

(
1.25
1.25

)
, M1 =

(
0.2 0.1
0.1 0.2

)
, M2 =

(
0.3 0
0 0.4

)
,

J1(t, x) = −0.5sign(y)|x|, J2(t, x) = 0,

Q1(t, x) =

(−0.1sign(x)|y|
0

)
, Q2(t, x) = 0.

Note that A+BL1 is unstable and A+BL2 is stable (all eigenvalues have negative
real part), and the impulses are destabilizing forces. Take φ1(t) = 0.45, φ2(t) = 0,
ξ1(t) = 0, ξ2(t) = 0, ζ1(t) = 0.4, ζ2(t) = 0, λ1 = −1.5500, λ2 = 0.6926, β1 =
2.0900, β2 = 1.9600,

P1 = P2 =

(
19/12 2/3
2/3 7/9

)
.
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Then, (5.2)-(5.6) are satisfied and λ− = −1.5500, λ+ = 0.6926, β = 2.0900,
ρ = 4.8783. Assume that the switching rule is,

σk =

{
1 if t∈(5k, 5k + 1], k = 0, 1, 2, . . .

2 if t∈(5k + 1, 5k + 5].
(6.2)

Take q = 1/3, τa = 2.3470, then ρβ = 10.1957, (1 + q) ln(ρβ)/τa + λ− + qλ+ =
−0.0807, and so the conditions of case (iii) in Theorem 5.1 are satisfied, and
hence the trivial solution of system (2.2) is globally exponentially stable. Note
that τa ≥ 2.4825 is required for stabilization with these parameters. See Figure
6 for a simulation.
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Figure 6. Simulation of Example 6.5.

7. Conclusion

In this paper, switching control strategies for a class of switched impulsive non-
linear systems are developed. Both common Lyapunov functions and switched
Lyapunov functions are used to give criteria for the stabilizability of systems
under switched and impulsive control. First, asynchronous switching is studied
and some criteria are established which guarantee the trivial solution is expo-
nentially stable for a prespecified switching rule. Next, some more strict criteria
are outlined for the exponential stability of the trivial solution under arbitrary
asynchronous switching. Synchronous switching is investigated and sufficient con-
ditions are established for the asymptotic stability of the trivial solution under
both arbitrary synchronous switching and a prespecified synchronous switching
rule. Finally, some results for average dwell-time satisfying switching are ex-
tended to include weakly nonlinear switching controllers and weakly nonlinear
impulsive controllers. Examples are given, with simulations using Matlab, to
illustrate the theorems developed.

One possible future direction is extending the results for synchronous controller
switching to the nonlinear case. Another possibility is to extend the results to
switched and impulsive systems which exhibit stronger nonlinearities.
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