GLOBAL EXISTENCE AND L^{∞} ESTIMATES OF SOLUTIONS FOR A QUASILINEAR PARABOLIC SYSTEM

JUN ZHOU *

Abstract

In this paper, we study the global existence, L^{∞} estimates and decay estimates of solutions for the quasilinear parabolic system $u_{t}=\nabla$. $\left(|\nabla u|^{m} \nabla u\right)+f(u, v), v_{t}=\nabla \cdot\left(|\nabla v|^{n} \nabla v\right)+g(u, v)$ with zero Dirichlet boundary condition in a bounded domain $\Omega \subset R^{N}$.

1. Introduction

In this paper, we are concerned with the global existence, L^{∞} estimates and decay estimates of solutions for the quasilinear parabolic system

$$
\begin{align*}
u_{t}=\nabla \cdot\left(|\nabla u|^{m} \nabla u\right)+f(u, v), & x \in \Omega, t>0 \\
v_{t}=\nabla \cdot\left(|\nabla v|^{n} \nabla v\right)+g(u, v), & x \in \Omega, t>0, \tag{1.1}\\
u(x, 0)=u_{0}(x), \quad v(x, 0)=v_{0}(x), & x \in \Omega, \\
u(x, t)=v(x, t)=0, & x \in \partial \Omega,
\end{align*}
$$

where Ω is a bounded domain in $R^{N}(N>1)$ with smooth boundary $\partial \Omega$ and $m, n>0$.

For $m=n=0, f(u, v)=u^{\alpha} v^{p}, g(u, v)=u^{q} v^{\beta}$ and $u_{0}(x), v_{0}(x) \geq 0$, the problem (1.1) has been investigated extensively and the existence and nonexistence of solutions for (1.1) are well understood (see [3, 5, 6, 13] and the references cited there). We summarize some of the results. Suppose that the initial data $u_{0}(x), v_{0}(x) \geq 0$ and $u_{0}, v_{0} \in L^{\infty}(\Omega)$. Then

Date: Revised: 4 March 2010.

* Corresponding author
(c) 2010 N.A.G.

2000 Mathematics Subject Classification. Primary 35K55; Secondary 35K57.
Key words and phrases. Global existence, quasilinear parabolic system, L^{∞} estimates and decay estimates.
(A1) let $\alpha>1$ or $\beta>1$ or $s_{0}=(1-\alpha)(1-\beta)-p q<0$. Problem (1.1) admits a global solution for small initial data and the solution for (1.1) must blow up in finite time for large initial data;
(A2) all solutions of (1.1) are global if $\alpha, \beta \leq 1$ and $s_{0} \geq 0$.
The case $m>0$ for the single equation

$$
\begin{align*}
u_{t}=\nabla \cdot\left(|\nabla u|^{m} \nabla u\right)+f(x, u), & x \in \Omega, t>0, \\
u(x, 0)=u_{0}(x), & x \in \Omega, \tag{1.2}\\
u(x, t)=0, & x \in \partial \Omega
\end{align*}
$$

has been widely investigated in [1, 2, 4, 7, 9, 11, 12] and the references therein. But the problem (1.1) is not considered sufficiently and there seems to be little results on global existence, L^{∞} estimates and blow-up of solutions for (1.1).

In this paper we are interested in extending the previous results A1 and A2 for $m=n=0$ to $m, n>0$. We consider problem (1.1) for general initial data (try to be more specific here) and obtain sufficient conditions for the global existence of solutions. Furthermore, we obtain L^{∞} and decay estimates for solutions of (1.1), that give the behavior of solutions as $t \rightarrow 0$ and $t \rightarrow \infty$. Our method, very different from that on the basis of comparison principle used in [3, 5, 6, 13, [14, 15, 16], is based on a priori estimates and an improved Moser's technique as in [2, 10]. In contrast with other results (which results [2, 4, 7, 9, 11]), our initial data u_{0}, v_{0} is neither restricted to be bounded nor nonnegative. To drive the L^{∞} estimates for solutions of (1.1), we must treat carefully the parameters m, n, p, q, α and β.

Definition 1.1. A pair of functions $(u(x, t), v(x, t))$ is a global weak solution of (1.1) if $(u(x, t), v(x, t)) \in\left(L_{\text {loc }}^{\infty}\left((0, \infty), W_{0}^{1, m+1}(\Omega)\right) \cap L_{l o c}^{m+1}\left(R^{+}, W_{0}^{1, m+1}(\Omega)\right)\right)$ $\times\left(L_{l o c}^{\infty}\left((0, \infty), W_{0}^{1, n+1}(\Omega)\right) \cap L_{l o c}^{n+1}\left(R^{+}, W_{0}^{1, n+1}(\Omega)\right)\right)$ and the following equalities

$$
\begin{gathered}
\int_{0}^{t} \int_{\Omega}\left\{-u \varphi_{t}+|\nabla u|^{m} \nabla u \nabla \varphi-f(u, v) \varphi\right\} d x d t \\
=\int_{\Omega}\left\{u_{0}(x) \varphi(x, 0)-u(x, t) \varphi(x, t)\right\} d x \\
\int_{0}^{t} \int_{\Omega}\left\{-v \varphi_{t}+|\nabla v|^{n} \nabla v \nabla \varphi-g(u, v) \varphi\right\} d x d t \\
\quad=\int_{\Omega}\left\{v_{0}(x) \varphi(x, 0)-u(x, t) \varphi(x, t)\right\} d x
\end{gathered}
$$

are valid for any $t>0$ and $\varphi \in C^{1}\left(R^{+}, C_{0}^{1}(\Omega)\right)$, where $R^{+}=[0, \infty)$.
Our results read as follows.
Theorem 1.2. Suppose that
$\left(H_{1}\right)$ The functions $f(u, v), g(u, v) \in C^{0}\left(R^{2}\right) \cap C^{1}\left(R^{2} \backslash(0,0)\right)$ and

$$
\begin{equation*}
|f(u, v)| \leq K_{1}|u|^{\alpha}|v|^{p}, \quad|g(u, v)| \leq K_{2}|u|^{q}|v|^{\beta}, \quad(u, v) \in R^{2} \tag{1.3}
\end{equation*}
$$

where the parameters α, β, p, q satisfy

$$
\begin{align*}
& 0 \leq \alpha<1+m, \quad 0 \leq \beta<1+n ; \quad m, n, p, q>0 \tag{1.4}\\
& s=(m+1-\alpha)(n+1-\beta)-p q>0
\end{align*}
$$

$\left(H_{2}\right) u_{0}(x) \in L^{p_{0}}(\Omega), v_{0}(x) \in L^{q_{0}}(\Omega)$ with

$$
p_{0}>\max \{1, q+1-\alpha\}, \quad q_{0}>\max \{1, p+1-\beta\} .
$$

Then problem (1.1) admits a global weak solution $u(x, t), v(x, t)$ which satisfies

$$
u \in L^{\infty}\left(R^{+}, L^{p_{0}}(\Omega)\right), \quad v \in L^{\infty}\left(R^{+}, L^{q_{0}}(\Omega)\right)
$$

and the following estimates hold for any $T>0$

$$
\begin{gather*}
\|u\|_{\infty} \leq C t^{-\sigma}, \quad\|v\|_{\infty} \leq C t^{-\sigma}, \quad 0 \leq t \leq T \tag{1.5}\\
\|u\|_{m+2}^{m+2}+\|v\|_{n+2}^{n+2} \leq C\left(t^{-1-\sigma}+t^{1-2(p+\alpha) \sigma}+t^{1-2(q+\beta) \sigma}\right), \quad 0 \leq t \leq T \tag{1.6}
\end{gather*}
$$

where $C=C\left(T,\left\|u_{0}\right\|_{p_{0}},\|v\|_{q_{0}}\right), \sigma=\min \left\{\frac{N}{p_{0}(m+2)+m N}, \frac{N}{q_{0}(n+2)+n N}\right\}$.
Theorem 1.3. Suppose $s<0$. Then there exist $p_{0}, q_{0}>1$, $d_{0}>0$ such that if $u_{0}(x) \in L^{p_{0}}(\Omega), v_{0}(x) \in L^{q_{0}}(\Omega)$ and $\left\|u_{0}\right\|_{p_{0}}+\left\|v_{0}\right\|_{q_{0}}<d_{0}$ the problem (1.1) admits a global weak solution $(u(x, t), v(x, t))$ that

$$
\begin{array}{r}
u(x, t) \in L_{l o c}^{\infty}\left((0, \infty), W_{0}^{1, m+1}(\Omega)\right) \cap L_{l o c}^{m+1}\left(R^{+}, W_{0}^{1, m+1}(\Omega)\right) \tag{1.7}\\
v(x, t) \in L_{l o c}^{\infty}\left((0, \infty), W_{0}^{1, n+1}(\Omega)\right) \cap L_{l o c}^{n+1}\left(R^{+}, W_{0}^{1, n+1}(\Omega)\right)
\end{array}
$$

satisfying

$$
\begin{equation*}
\|u\|_{p_{0}} \leq C(1+t)^{-\frac{1}{v}}, \quad\|v\|_{q_{0}} \leq C(1+t)^{-\frac{1}{v}}, \quad t \geq 0 \tag{1.8}
\end{equation*}
$$

where $\vartheta=\min \left\{m / p_{0}, n / q_{0}\right\}$.
To derive Theorem 1.2 and 1.3, we will use the following lemmas.
Lemma 1.4. [9] Let $\beta \geq 0, N>p \geq 1, \beta+1 \leq q$, and $1 \leq r \leq q \leq$ $(\beta+1) N p /(N-p)$. Then for $|u|^{\beta} u \in W^{1, p}(\Omega)$, we have

$$
\|u\|_{q} \leq\left. C^{1 /(\beta+1)}\|u\|_{r}^{1-\theta}\| \| u\right|^{\beta} u \|_{1, p}^{\theta /(\beta+1)}
$$

with $\theta=(\beta+1)\left(r^{-1}-q^{-1}\right) /\left(N^{-1}-p^{-1}+(\beta+1) r^{-1}\right)^{-1}$, where C is a constant depending only on N, p and r.
Lemma 1.5. [11] Let $y(t)$ be a nonnegative differentiable function on $(0, T]$ satisfying

$$
y^{\prime}(t)+A t^{\lambda \theta-1} y^{1+\theta}(t) \leq B t^{-k} y(t)+C t^{\delta}
$$

with $A, \theta>0, \lambda \theta \geq 1, B, C \geq 0, k \leq 1$. Then we have

$$
y(t) \leq A^{-1 / \theta}\left(2 A+2 B T^{1-k}\right)^{1 / \theta} t^{-\lambda}+2 C\left(\lambda+B T^{1-k}\right)^{-1} t^{1-\delta} \quad 0<t \leq T
$$

This paper is organized as follows. In Section 2, we apply Lemmas 1.4 and 1.5 to establish L^{∞} estimates for solutions of problem (1.1). The proof of Theorem 1.3 will be given in Section 3.

2. Proof of Theorem 1.2

For $j=1,2, \ldots$, we choose $f_{j}(u, v), g_{j}(u, v) \in C^{1}$ in such a way $f_{j}(u, v)=$ $f(u, v), g_{j}(u, v)=g(u, v)$ when $u^{2}+v^{2} \geq j^{-2},\left|f_{j}(u, v)\right| \leq \eta,\left|g_{j}(u, v)\right| \leq \eta$ when $u^{2}+v^{2} \leq j^{-2}$ with some $\eta>0$ and $\left(f_{j}(u, v), g_{j}(u, v)\right) \rightarrow(f(u, v), g(u, v))$ uniformly in R^{2} as $j \rightarrow \infty$.

Let $\left(u_{0, j}, v_{0, j}\right) \in C_{0}^{2}(\Omega)$ and $u_{0, j} \rightarrow u_{0}$ in $L^{p_{0}}(\Omega), v_{0, j} \rightarrow v_{0}$ in $L^{q_{0}}(\Omega)$ as $j \rightarrow \infty$. We consider the approximate problem of (1.1)

$$
\begin{align*}
u_{t}=\nabla \cdot\left(\left(|\nabla u|^{2}+j^{-1}\right)^{m / 2} \nabla u\right)+f_{j}(u, v), & x \in \Omega, t>0, \\
v_{t}=\nabla \cdot\left(\left(|\nabla v|^{2}+j^{-1}\right)^{n / 2} \nabla v\right)+g_{j}(u, v), & x \in \Omega, t>0, \tag{2.1}\\
u(x, 0)=u_{0, j}(x), \quad v(x, 0)=v_{0, j}(x), & x \in \Omega, \\
u(x, t)=v(x, t)=0, & x \in \partial \Omega,
\end{align*}
$$

The problem (2.1) is a standard quasilinear parabolic system and admits a unique smooth solution $\left(u_{j}(x, t), v_{j}(x, t)\right)$ on $[0, T)$ for each $j=1,2, \ldots$, see [7, 8]. Furthermore, if $T<\infty$, then

$$
\limsup _{t \rightarrow T}\left(\left\|u_{j}(\cdot, t)\right\|_{\infty}+\left\|v_{j}(\cdot, t)\right\|_{\infty}\right)=+\infty
$$

In the sequel, we will always write (u, v) instead of $\left(u_{j}, v_{j}\right)$ and $\left(u^{p}, v^{p}\right)$ for $\left(|u|^{p-1} u,|v|^{p-1} v\right)$ where $p>0$. Also, let C and C_{i} be the generic constants independent of j and p changeable from line to line.
Lemma 2.1. Let $\left(H_{1}\right)$ and $\left(H_{2}\right)$ hold. If $(u(x, t), v(x, t))$ is the solution of problem (2.1). Then $u \in L^{\infty}\left(R^{+}, L^{p_{0}}(\Omega)\right), v \in L^{\infty}\left(R^{+}, L^{q_{0}}(\Omega)\right)$.

Proof. Let $p_{0}, q_{0}>1$. Multiplying the first equation in (2.1) by $|u|^{p_{0}-2} u$, we obtain that

$$
\begin{equation*}
\frac{1}{p_{0}} \frac{d}{d t}\|u\|_{p_{0}}^{p_{0}}+\frac{\left(p_{0}-1\right)(m+2)^{m+2}}{\left(p_{0}+m\right)^{m+2}}\left\|\nabla u^{\frac{p_{0}+m}{m+2}}\right\|_{m+2}^{m+2} \leq \int_{\Omega} f_{j}(u, v)|u|^{p_{0}-2} u d x \tag{2.2}
\end{equation*}
$$

Notice that

$$
\begin{equation*}
\int_{\Omega} f_{j}(u, v)|u|^{p_{0}-2} u d x \leq \eta j^{1-p_{0}}|\Omega|+C_{1} \int_{\Omega}|u|^{\alpha+p_{0}-1}|v|^{p} d x . \tag{2.3}
\end{equation*}
$$

Similarly, we have

$$
\begin{gather*}
\frac{1}{q_{0}} \frac{d}{d t}\|v\|_{q_{0}}^{q_{0}}+\frac{\left(q_{0}-1\right)(n+2)^{n+2}}{\left(q_{0}+n\right)^{n+2}}\left\|\nabla v^{\frac{q_{0}+n}{n+2}}\right\|_{n+2}^{n+2} \tag{2.4}\\
\leq \eta j^{1-q_{0}}|\Omega|+C_{2} \int_{\Omega}|v|^{\beta+q_{0}-1}|u|^{q} d x
\end{gather*}
$$

with $C_{1}, C_{2}>0$.
By Young's inequality, we obtain

$$
\begin{equation*}
|u|^{\gamma}|v|^{p}+|u|^{q}|v|^{\rho} \leq \frac{|v|^{p p_{1}}}{p_{1}}+\frac{|u|^{p_{2} \gamma}}{p_{2}}+\frac{|u|^{q q_{1}}}{q_{1}}+\frac{|v|^{\rho q_{2}}}{q_{2}} \tag{2.5}
\end{equation*}
$$

where $\gamma=\alpha+p_{0}-1, \rho=\beta+q_{0}-1, t_{0}=\gamma \rho-p q>0$ and

$$
\begin{equation*}
p_{1}=\frac{t_{0}}{p(\gamma-q)}, p_{2}=\frac{t_{0}}{\gamma(\rho-p)}, q_{1}=\frac{t_{0}}{q(\rho-p)}, q_{2}=\frac{t_{0}}{\rho(\gamma-q)} . \tag{2.6}
\end{equation*}
$$

The assumption $\left(H_{2}\right)$ on p_{0}, q_{0} and (1.4) imply that $p p_{1}<q_{0}+n, q q_{1}<p_{0}+m$. Thus we have from (2.2)-(2.5) and a Sobolev's inequality that

$$
\begin{align*}
& \frac{d}{d t}\left(\|u\|_{p_{0}}^{p_{0}}+\|v\|_{q_{0}}^{q_{0}}\right)+C_{3}\left(p_{0}^{-m}\|u\|_{p_{0}+m}^{p_{0}+m}+q_{0}^{-n}\|v\|_{q_{0}+n}^{q_{0}+n}\right) \tag{2.7}\\
& \quad \leq \eta|\Omega|\left(p_{0} j^{1-p_{0}}+q_{0} j^{1-q_{0}}\right)+C_{4} \int_{\Omega}\left(|u|^{q_{1}}+|v|^{p p_{1}}\right) d x .
\end{align*}
$$

Using Young's inequality and letting $j \rightarrow \infty$ in (2.7), we conclude that

$$
\begin{equation*}
\frac{d}{d t}\left(\|u\|_{p_{0}}^{p_{0}}+\|v\|_{q_{0}}^{q_{0}}\right)+C_{5}\left(\|u\|_{p_{0}+m}^{p_{0}+m}+\|v\|_{q_{0}+n}^{q_{0}+n}\right) \leq C \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d}{d t}\left(\|u\|_{p_{0}}^{p_{0}}+\|v\|_{q_{0}}^{q_{0}}\right)+C_{6}\left(\|u\|_{p_{0}}^{p_{0}}+\|v\|_{q_{0}}^{q_{0}}\right)^{1+\varrho} \leq C \tag{2.9}
\end{equation*}
$$

with $\varrho=\min \left\{m / p_{0}, n / q_{0}\right\}$. Thus (2.9) implies that $u(t) \in L^{\infty}\left(R^{+}, L^{p_{0}}(\Omega)\right)$, $v(t) \in L^{\infty}\left(R^{+}, L^{q_{0}}(\Omega)\right)$ if $u_{0} \in L^{p_{0}}(\Omega)$ and $v_{0} \in L^{q_{0}}(\Omega)$. The proof is completed.

Lemma 2.2. Under the assumptions of Lemma 2.1 and for any $T>0$, the solution $(u(t), v(t))$ also satisfies

$$
\begin{gather*}
\|u\|_{\infty} \leq C t^{-a}, \quad\|v\|_{\infty} \leq C t^{-b}, \quad 0<t \leq T \tag{2.10}\\
\|u\|_{m+2}^{m+2}+\|v\|_{n+2}^{n+2} \leq C\left(t^{-1-\sigma}+t^{1-2(p+\alpha) \sigma}+t^{1-2(q+\beta) \sigma}\right), \quad 0<t \leq T \tag{2.11}
\end{gather*}
$$

where the constant C depends on $T,\left\|u_{0}\right\|_{p_{0}},\left\|v_{0}\right\|_{q_{0}}$ and $a=N /\left(p_{0}(m+2)+\right.$ $m N), b=N /\left(q_{0}(n+2)+n N\right), \sigma=\min \{a, b\}$.

Proof. We only consider $N>\max \{m+2, n+2\}$ and the other cases can be treated in a similar way.

Multiplying the first equation and the second equation in (2.1) by $|u|^{\lambda-2} u$ and $|v|^{\mu-1} v$ respectively, we obtain

$$
\begin{gather*}
\frac{d}{d t}\left(\|u\|_{\lambda}^{\lambda}+\|v\|_{\mu}^{\mu}\right)+C_{1}\left(\lambda^{-m}\left\|\nabla u^{\frac{\lambda+m}{m+2}}\right\|_{m+2}^{m+2}+\mu^{-n}\left\|\nabla v^{\frac{\mu+n}{n+2}}\right\|_{n+2}^{n+2}\right) \tag{2.12}\\
\leq C_{2}(\lambda+\mu)\left(1+\int_{\Omega}|u|^{\alpha+\lambda-1}|v|^{p}+|u|^{q}|v|^{\beta+\mu-1}\right) d x .
\end{gather*}
$$

By the Young's inequality, we have

$$
\begin{equation*}
|u|^{\gamma_{1}}|v|^{p}+|u|^{q}|v|^{\gamma_{2}} \leq \frac{|v|^{p \varepsilon_{1}}}{\varepsilon_{1}}+\frac{|u|^{\gamma_{1} \varepsilon_{2}}}{\varepsilon_{2}}+\frac{|u|^{q \eta_{1}}}{\eta_{1}}+\frac{|v|^{\gamma_{2} \eta_{2}}}{\eta_{2}}, \tag{2.13}
\end{equation*}
$$

with $\gamma_{1}=\alpha+\lambda-1, \gamma_{2}=\beta+\mu-1$ and $p \varepsilon_{1}=\gamma_{2} \eta_{2}, \gamma_{1} \varepsilon_{2}=q \eta_{1}, \varepsilon_{1}^{-1}+\varepsilon_{2}^{-1}=1$, $\eta_{1}^{-1}+\eta_{2}^{-1}=1$.

The direct computation shows that

$$
\eta_{1}=\frac{\tau}{q\left(\gamma_{2}-p\right)}, \quad \eta_{2}=\frac{\tau}{\gamma_{2}\left(\gamma_{1}-q\right)}, \quad \varepsilon_{1}=\frac{\tau}{p\left(\gamma_{1}-q\right)}, \quad \varepsilon_{2}=\frac{\tau}{\gamma_{1}\left(\gamma_{2}-p\right)},
$$

where $\tau=\gamma_{1} \gamma_{2}-p q>0 . \lambda, \mu$ are chosen properly so that $0<p \varepsilon_{1}<\mu+n$ and $0<q \eta_{1}<\lambda+m$. We take two sequences of $\left\{\lambda_{k}\right\}$ and $\left\{\mu_{k}\right\}$ as follows

$$
\begin{array}{r}
\lambda_{1}=p_{0}, \lambda=\lambda_{k}=b_{1}+b_{12} R^{k-1} ; \tag{2.14}\\
\mu_{1}=q_{0}, \mu=\mu_{k}=b_{2}+b_{22} R^{k-1}, \quad k=2,3, \ldots
\end{array}
$$

where $b_{1}=q+1-\alpha, b_{12}=\left(b_{1}+m\right) / s, b_{2}=p+1-\beta, b_{22}=\left(b_{2}+n\right) / s$ and R is chosen so that $R>1, \lambda_{2}>p_{0}, \mu_{2}>q_{0}$. Notice that $\lambda_{k} \sim \mu_{k}$ as $k \rightarrow \infty$.

We now derive the estimates for the integrals $\int_{\Omega}|v|^{p \varepsilon_{1}} d x$ and $\int_{\Omega}|u|^{q \eta_{1}} d x$. If $p \varepsilon_{1} \leq \mu$ and $q \eta_{1} \leq \lambda$, then we have

$$
\begin{equation*}
\int_{\Omega}|v|^{p \varepsilon_{1}} d x \leq C\left(1+\int_{\Omega}|v|^{\mu} d x\right), \quad \int_{\Omega}|u|^{q \eta_{1}} d x \leq C\left(1+\int_{\Omega}|u|^{\lambda} d x\right) . \tag{2.15}
\end{equation*}
$$

Without loss of generality, we suppose $\mu<p \varepsilon_{1}<\mu+n, \lambda<q \eta_{1}<\lambda+m$ and $r=\tau /\left(\gamma_{1}-q\right)-\mu>0, h=\tau /\left(\gamma_{2}-p\right)-\lambda>0$. Then from (2.12) and (2.13), we have

$$
\begin{gather*}
\frac{d}{d t}\left(\|u\|_{\lambda}^{\lambda}+\|v\|_{\mu}^{\mu}\right)+2 C_{1}\left(\lambda^{-m}\left\|\nabla u^{\frac{\lambda+m}{m+2}}\right\|_{m+2}^{m+2}+\mu^{-n}\left\|\nabla v^{\frac{\mu+n}{n+2}}\right\|_{n+2}^{n+2}\right) \tag{2.16}\\
\leq C_{2} \lambda\left(1+\|u\|_{\lambda+h}^{\lambda+h}\right)+C_{2} \mu\left(1+\|v\|_{\mu+r}^{\mu+r}\right) .
\end{gather*}
$$

where the constants C_{1}, C_{2} are independent of λ and μ. Furthermore, we have following by Hölder's and Sobolev's inequalities

$$
\begin{align*}
\int_{\Omega}|u|^{\lambda+h} d x & \leq\|u\|_{\lambda}^{\theta_{1}}\|u\|_{p_{0}}^{\theta_{2}}\|u\|_{\lambda^{*}}^{\theta_{3}} \leq C\|u\|_{\lambda}^{\theta_{1}}\left\|\nabla u^{\frac{\lambda+m}{m+2}}\right\|^{\frac{(m+2) \theta_{3}}{\lambda+m}} \tag{2.17}\\
\leq & C_{1} C_{2}^{-1} \lambda^{-1-m}\left\|\nabla u^{\frac{\lambda+m}{m+2}}\right\|_{m+2}^{m+2}+C_{3} \lambda^{\sigma_{1}}\|u\|_{\lambda}^{\lambda}
\end{align*}
$$

with

$$
\begin{gathered}
\lambda^{*}=\frac{N(\lambda+m)}{N-m-2}, \theta_{1}=\lambda\left(1-\frac{h N}{p_{0}(m+2)+m N}\right), \theta_{2}=\frac{h p_{0}(m+2)}{p_{0}(m+2)+m N}, \\
\theta_{3}=\frac{h N(\lambda+m)}{p_{0}(m+2)+m N}, \sigma_{1}=\frac{(m+1)\left(p_{0}(m+2)+N(m-h)\right)}{h N}>0 .
\end{gathered}
$$

Similarly, we can derive that

$$
\begin{equation*}
\int_{\Omega}|v|^{\mu+r} d x \leq C_{1} C_{2}^{-1} \mu^{-1-n}\left\|\nabla v^{\frac{\mu+n}{n+2}}\right\|_{n+2}^{n+2}+C_{3} \mu^{\sigma_{2}}\|v\|_{\mu}^{\mu} \tag{2.18}
\end{equation*}
$$

with $\sigma_{2}=(n+1)\left(q_{0}(n+2)+N(n-r)\right) /(r N)>0$. Hence it follows from (2.16)-(2.18) that

$$
\begin{gather*}
\frac{d}{d t}\left(\|u\|_{\lambda}^{\lambda}+\|v\|_{\mu}^{\mu}\right)+C_{1}\left(\lambda^{-m}\left\|\nabla u^{\frac{\lambda+m}{m+2}}\right\|_{m+2}^{m+2}+\mu^{-n}\left\|\nabla v^{\frac{\mu+n}{n+2}}\right\|_{n+2}^{n+2}\right) \tag{2.19}\\
\leq C_{3} \lambda\left(1+\lambda^{\sigma_{1}}\|u\|_{\lambda}^{\lambda}\right)+C_{3} \mu\left(1+\mu^{\sigma_{2}}\|v\|_{\mu}^{\mu}\right) .
\end{gather*}
$$

Now we employ an improved Moser's technique as in [2, 10]. Let $\left\{\lambda_{k}\right\},\left\{\mu_{k}\right\}$ be two sequences as defined in (2.14). From Lemma 1.4, we see that

$$
\begin{equation*}
\|u\|_{\lambda_{k}} \leq C^{\frac{m+2}{m+\lambda_{k}}}\|u\|_{\lambda_{k-1}}^{1-\theta_{k}}\left\|\nabla u^{\frac{\lambda_{k}+m}{m+2}}\right\|_{m+2}^{\frac{(m+2) \theta_{k}}{\lambda_{k}+m}}, \tag{2.20}
\end{equation*}
$$

$$
\begin{equation*}
\|v\|_{\mu_{k}} \leq C^{\frac{n+2}{n+\mu_{k}}}\|v\|_{\mu_{k-1}}^{1-\bar{\theta}_{k}}\left\|\nabla v^{\frac{\mu_{k}+n}{n+2}}\right\|_{n+2}^{\frac{(n+2) \bar{\theta}_{k}}{\mu_{k}+n}}, \tag{2.21}
\end{equation*}
$$

where the constant C is independent of λ_{k} and μ_{k}, and

$$
\begin{aligned}
\theta_{k} & =\frac{\lambda_{k}+m}{m+2}\left(\frac{1}{\lambda_{k-1}}-\frac{1}{\lambda_{k}}\right)\left(\frac{1}{N}-\frac{1}{m+2}+\frac{\lambda_{k}+m}{(m+2) \lambda_{k-1}}\right)^{-1} \\
\bar{\theta}_{k} & =\frac{\mu_{k}+n}{n+2}\left(\frac{1}{\mu_{k-1}}-\frac{1}{\mu_{k}}\right)\left(\frac{1}{N}-\frac{1}{n+2}+\frac{\mu_{k}+n}{(n+2) \mu_{k-1}}\right)^{-1} .
\end{aligned}
$$

Let $t_{k}=\frac{\lambda_{k}+m}{\theta_{k}}-\lambda_{k}, s_{k}=\frac{\mu_{k}+n}{\bar{\theta}_{k}}-\mu_{k}$. Then (2.20) and (2.21) give

$$
\begin{gather*}
\lambda_{k}^{-m}\left\|\nabla u^{\frac{\lambda_{k}+m}{m+2}}\right\|_{m+2}^{m+2} \geq C^{-\frac{m+2}{\theta_{k}}}\|u\|_{\lambda_{k}}^{\lambda_{k}+t_{k}}\|u\|_{\lambda_{k-1}}^{m-t_{k}}, \tag{2.22}\\
\mu_{k}^{-n}\left\|\nabla v^{\frac{\mu_{k}+n}{n+2}}\right\|_{n+2}^{n+2} \geq C^{-\frac{n+2}{\theta_{k}}}\|v\|_{\mu_{k}}^{\mu_{k}+s_{k}}\|v\|_{\mu_{k-1}}^{n-s_{k}} . \tag{2.23}
\end{gather*}
$$

Denote

$$
y_{k}(t)=\|u\|_{\lambda_{k}}^{\lambda_{k}}+\|v\|_{\mu_{k}}^{\mu_{k}}, \quad t \geq 0 .
$$

Then inserting (2.22)-(2.23) into (2.19) $\left(\lambda=\lambda_{k}, \mu=\mu_{k}\right)$, we find that

$$
\begin{gather*}
y_{k}^{\prime}(t)+C_{1} C^{-\frac{m+2}{\theta_{k}}}\|u\|_{\lambda_{k}}^{\lambda_{k}+t_{k}}\|u\|_{\lambda_{k-1}}^{m-t_{k}}+C_{1} C^{-\frac{n+2}{\theta_{k}}}\|v\|_{\mu_{k}}^{\mu_{k}+s_{k}}\|v\|_{\mu_{k-1}}^{n-s_{k}} \tag{2.24}\\
\leq C_{3}\left(\lambda_{k}+\mu_{k}\right)+C \lambda_{k}^{\sigma_{1}+1}\|u\|_{\lambda_{k}}^{\lambda_{k}}+C \mu_{k}^{\sigma_{2}+1}\|v\|_{\mu_{k}}^{\mu_{k}} .
\end{gather*}
$$

We claim that there exist the bounded sequence $\left\{\xi_{k}\right\},\left\{\eta_{k}\right\},\left\{m_{k}\right\},\left\{r_{k}\right\}$ such that

$$
\begin{equation*}
\|u\|_{\lambda_{k}} \leq \xi_{k} t^{-m_{k}}, \quad\|v\|_{\mu_{k}} \leq \eta_{k} t^{-r_{k}}, \quad 0<t \leq T . \tag{2.25}
\end{equation*}
$$

Without loss of generality, we suppose that $\xi_{k}, \eta_{k} \geq 1$. By Lemma 2.1, (2.25) holds for $k=0$ if we take $m_{0}=r_{0}=0$ and $\xi_{0}=\sup _{t \geq 0}\|u\|_{p_{0}}, \eta_{0}=\sup _{t \geq 0}\|v\|_{q_{0}}$. If (2.25) is true for $k-1$, then we have from (2.24) that

$$
\begin{gather*}
y_{k}^{\prime}(t)+C_{3}\|u\|_{\lambda_{k}}^{\lambda_{k}+t_{k}}\left(\xi_{k-1} t^{-m_{k-1}}\right)^{m-t_{k}}+C_{3}\|v\|_{\mu_{k}}^{\mu_{k}+s_{k}}\left(\eta_{k-1} t^{-r_{k-1}}\right)^{n-s_{k}} \tag{2.26}\\
\leq C\left(\lambda_{k}+\mu_{k}\right)\left(\lambda_{k}^{\sigma_{1}}\|u\|_{\lambda_{k}}^{\lambda_{k}}+\mu_{k}^{\sigma_{2}}\|v\|_{\mu_{k}}^{\mu_{k}}\right) .
\end{gather*}
$$

We take $\sigma_{0}=\max \left\{\sigma_{1}, \sigma_{2}\right\}, \tau_{k}=\min \left\{t_{k} / \lambda_{k}, s_{k} / \mu_{k}\right\}, \alpha_{k}=\min \left\{m-t_{k}, n-s_{k}\right\}$ and $A_{k-1}=\max \left\{\xi_{k-1}, \eta_{k-1}\right\}, \beta_{k}=\max \left\{\left(t_{k}-m\right) m_{k-1},\left(s_{k}-n\right) r_{k-1}\right\}$. Then we have from (2.26) that

$$
y_{k}^{\prime}(t)+C_{3} A_{k-1}^{\alpha_{k}} t^{\beta_{k}} y_{k}^{t+\tau_{k}}(t) \leq C \lambda_{k}+C \lambda_{k}^{\sigma_{0}+1} y_{k}(t)+C A_{k-1}^{\alpha_{k}} T^{\beta_{k}}, \quad 0<t<T(2.27)
$$

Applying Lemma 1.5 to (2.27), we get

$$
\begin{equation*}
y_{k}(t) \leq B_{k} t^{-\left(1+\beta_{k}\right) / \tau_{k}}, \quad 0<t<T, \tag{2.28}
\end{equation*}
$$

where

$$
B_{k}=2\left(C_{3} A_{k-1}^{\alpha_{k}}\right)^{-\frac{1}{\tau_{k}}}\left(C_{3} \lambda_{k}^{\sigma_{0}+1}+\frac{1+\beta_{k}}{\tau_{k}}\right)^{\frac{1}{\tau_{k}}}+2 C \lambda_{k}\left(C \lambda_{k}^{\sigma_{0}+1}+\frac{1+\beta_{k}}{\tau_{k}}\right)^{-1}
$$

Moreover, (2.28) implies that

$$
\begin{equation*}
\|u\|_{\lambda_{k}} \leq B_{k}^{\frac{1}{\lambda_{k}}} t^{-\frac{1+\beta_{k}}{\lambda_{k} \tau_{k}}}, \quad\|v\|_{\mu_{k}} \leq B_{k}^{\frac{1}{\mu_{k}}} t^{-\frac{1+\beta_{k}}{\mu_{k} \tau_{k}}}, \quad 0<t \leq T . \tag{2.29}
\end{equation*}
$$

We take

$$
\xi_{k}=B_{k}^{\frac{1}{\lambda_{k}}}, \eta_{k}=B_{k}^{\frac{1}{\mu_{k}}}, m_{k}=\frac{1+\beta_{k}}{\lambda_{k} \tau_{k}}, r_{k}=\frac{1+\beta_{k}}{\mu_{k}} \tau_{k} .
$$

By a similar argument in [2, 10], we know that $\left\{\xi_{k}\right\},\left\{\eta_{k}\right\}$ are bounded and there exist two subsequences $\left\{m_{k l}\right\} \subset\{m-k\}$ and $\left\{r_{k l}\right\} \subset\left\{r_{k}\right\}$ such that

$$
m_{k l} \rightarrow a=\frac{N}{p_{0}(m+2)+m N}, \quad r_{k l} \rightarrow b=\frac{N}{q_{0}(n+2)+n N}, \quad(\text { as } l \rightarrow \infty) .
$$

Therefore, letting $l \rightarrow \infty$ in (2.28), we obtain

$$
\begin{equation*}
\|u\|_{\infty} \leq C t^{-a}, \quad\|v\|_{\infty} \leq C t^{-b}, \quad 0<t<T \tag{2.30}
\end{equation*}
$$

This yields (2.10).
It remains to prove the estimate (2.11). In order to derive (2.11), we use a similar argument in [10]. We first choose $\mu>\max \{\sigma, 2(p+\alpha) \sigma-2,2(q+\beta) \sigma-2\}$ and $h(t) \in C\left([0, \infty) \cap C^{1}(0, \infty)\right.$ such that $h(t)=t^{\mu}, 0 \leq t \leq 1 ; h(t)=2, t \geq 2$ and $h(t), h^{\prime}(t) \geq 0$ in $(0, \infty)$. Then multiplying the first equation by $h(t) u$ and the second equation by $h(t) v$ in (2.1), and letting $j \rightarrow \infty$, we obtain

$$
\begin{gather*}
\int_{0}^{t} h(s) g(s) d s+\frac{1}{2} h(t) \int_{\Omega}\left(|u|^{2}+|v|^{2}\right) d x \tag{2.31}\\
\leq \frac{1}{2} \int_{0}^{t} \int_{\Omega} h^{\prime}(s)\left(|u|^{2}+|v|^{2}\right) d x d s+C \int_{0}^{t} \int_{\Omega} h(s)\left(|u|^{1+\alpha}|v|^{p}+|u|^{q}|v|^{1+\beta}\right) d x d s
\end{gather*}
$$

with $g(t)=\|\nabla u\|_{m+2}^{m+2}+\|\nabla v\|_{n+2}^{n+2}, \quad t \geq 0$.
By Young's inequality and the assumption (1.4), we obtain

$$
\begin{gather*}
C \int_{\Omega}\left(|u|^{1+\alpha}|v|^{p}+|u|^{q}|v|^{1+\beta}\right) d x \leq \int_{\Omega}\left(|u|^{\tau_{1}}+|v|^{\tau_{1}}\right) d x \tag{2.32}\\
\leq \varepsilon \int_{\Omega}\left(|u|^{m+2}+|v|^{n+2}\right) d x+C_{\varepsilon}|\Omega| \leq C\left(\|\nabla u\|_{m+2}^{m+2}+\|\nabla v\|_{n+2}^{n+2}\right)+C_{\varepsilon}|\Omega|
\end{gather*}
$$

for any $\varepsilon>0$ and $\tau_{1}=((\alpha+1)(\beta+1)-p q) /(\beta+1-p)<m+2, \tau_{2}=$ $((\alpha+1)(\beta+1)-p q) /(\alpha+1-q)<n+2$. Furthermore, we take $\varepsilon=1 / 2$. Then (2.31)-(2.32) yields

$$
\begin{equation*}
\int_{0}^{t} h(s) g(s) d s+h(t)\left(\|u\|_{2}^{2}+\|v\|_{2}^{2}\right) \leq C t^{\mu-\sigma} \tag{2.33}
\end{equation*}
$$

Next, let $\rho(t)=\int_{0}^{t} h(s) d s, t \geq 0$. Similarly, multiplying the first equation in (2.1) by $\rho(t) u_{t}$ and the second equation by $\rho(t) v_{t}$, and letting $j \rightarrow \infty$, we have from (2.30) and (2.31) that

$$
\begin{gather*}
\int_{0}^{t} \rho(s)\left(\left\|u_{t}\right\|_{2}^{2}+\left\|v_{t}\right\|_{2}^{2}\right) d s+\rho(t) g(t) \leq C \int_{0}^{t} \int_{\Omega} \rho(s)\left(|u|^{2 \alpha}|v|^{2 p}+|u|^{2 q}|v|^{2 \beta}\right) d x d s \\
+\int_{0}^{t} \rho^{\prime}(s) g(s) d s \leq C \int_{0}^{t} \rho(s)\left(s^{-2(\alpha+p) \sigma}+s^{-2(\beta+q) \sigma}\right) d s+C t^{\mu-\sigma} \\
\leq C\left(t^{\mu-\sigma}+t^{\mu+2-2(p+\alpha) \sigma}+t^{\mu+2-2(q+\beta) \sigma}\right), 0<t \leq T \tag{2.34}
\end{gather*}
$$

Thus (2.34) implies

$$
\begin{equation*}
g(t) \leq C\left(t^{-1-\sigma}+t^{1-2(p+\alpha) \sigma}+t^{1-2(q+\beta) \sigma}\right), \quad 0<t \leq T \tag{2.35}
\end{equation*}
$$

and (2.11) is proved. The proof is completed.
Proof of Theorem 1.2. We notice that the estimate constant C in (2.30) and (2.35) is independent of j, we may obtain the desired solution (u, v) as limit of $\left\{\left(u_{j}, v_{j}\right)\right\}$ (or a subsequence) by the standard compact argument as in [6, 8, 9, 10]. The solution (u, v) of problem (1.1) also satisfies (1.5)-(1.6). The proof is completed.

Remark:

- From the proof of Theorem 1.2, we see that if the assumption (1.3) is replaced by

$$
|f(u, v)| \leq K_{1}\left(1+|u|^{\alpha}|v|^{p}\right), \quad|g(u, v)| \leq K_{2}\left(1+|u|^{q}|v|^{\beta}\right)
$$

the conclusions in Theorem 1.2 still hold.

3. Proof of Theorem 1.3

By the standard compact argument as in [2, 7, 9, 10], we only consider the estimate (1.8) and show that $(u, v) \in L_{l o c}^{1, m+1}\left(R^{+}, W_{0}^{1, m+1}(\Omega)\right) \cap L_{l o c}^{1, n+1}\left(R^{+}, W_{0}^{1, n+1}(\Omega)\right)$ for the solution of (2.1).

Proof of Theorem 1.3. Suppose that $s<0$ holds. Let

$$
\begin{equation*}
p_{0}=b_{1}+b_{12} \varepsilon>1, \quad q_{0}=b_{2}+b_{22} \varepsilon>1, \tag{3.1}
\end{equation*}
$$

with $b_{1}=q+1-\alpha, b_{2}=p+1-\beta, b_{12}=-(q+m+1-\alpha) / s, b_{22}=-(p+n+1-\beta) / s$. Since $s<0$, we can take $\varepsilon>0$ such that $p_{0} \geq \max \{4 q, 4 \alpha, 2+2 \alpha\}, q_{0} \geq$ $\max \{4 p, 4 \beta, 2+2 \beta\}, S_{0}=\left(\alpha+p_{0}-1\right)\left(\beta+q_{0}-1\right)-p q>0$. Then it follows from (2.5) and (2.7) that

$$
\begin{gather*}
\frac{d}{d t}\left(\|u\|_{p_{0}}^{q_{0}}+\|v\|_{q_{0}}^{q_{0}}\right)+C_{1}\left(\left\|\nabla u^{\frac{p_{0}+m}{m+2}}\right\|_{m+2}^{m+2}+\left\|\nabla v^{\frac{q_{0}+n}{n+2}}\right\|_{n+2}^{n+2}\right) \tag{3.2}\\
\leq C \int_{\Omega}\left(|u|^{q q_{1}}+|v|^{p p_{1}}\right) d x
\end{gather*}
$$

where $q q_{1}=S_{0} /\left(q_{0}+\beta-1-p\right)>p_{0}+m, p p_{1}=S_{0} /\left(\alpha+p_{0}-q-1\right)>q_{0}+n$. We now estimate the right-hand side of (3.2). Let $q q_{1}=p_{0}+\theta, p p_{1}=q_{0}+\tau$ and $\theta>m, \tau>n$. Then

$$
\begin{gather*}
\int_{\Omega}|u|^{\mid q_{1}} d x=\|u\|_{p_{0}+\theta}^{p_{0}+\theta} \leq C_{2}\|u\|_{p_{0}}^{\theta-m}\left\|\nabla u^{\frac{p_{0}+m}{m+2}}\right\|_{m+2}^{m+2} \tag{3.3}\\
\int_{\Omega}|v|^{p p_{1}} d x=\|v\|_{q_{0}+\tau}^{q_{0}+\tau} \leq C_{2}\|v\|_{q_{0}}^{\tau-n}\left\|\nabla v^{\frac{q_{0}+n}{n+2}}\right\|_{n+2}^{n+2} \tag{3.4}
\end{gather*}
$$

Denote

$$
\phi(t)=\|u\|_{p_{0}}^{p_{0}}+\|v\|_{q_{0}}^{q_{0}}, \quad f(t)=\left\|\nabla u^{\frac{p_{0}+m}{m+2}}\right\|_{m+2}^{m+2}+\left\|\nabla v^{\frac{q_{0}+n}{n+2}}\right\|_{n+2}^{n+2},
$$

then (3.2) becomes

$$
\begin{align*}
\phi^{\prime}(t)+C_{1} f(t) & \leq C_{2}\left(\|u\|_{p_{0}}^{\theta-m}\left\|\nabla u^{\frac{p_{0}+m}{m+2}}\right\|_{m+2}^{m+2}+\|v\|_{q_{0}}^{\tau-n}\left\|\nabla v^{\frac{q_{0}+n}{n+2}}\right\|_{n+2}^{n+2}\right) \tag{3.5}\\
\leq & C_{2}\left(\mid u\left\|_{p_{0}}^{\theta-m}+\right\| v \|_{q_{0}}^{\tau-n}\right) f(t) \leq C_{3} \phi^{\alpha_{0}}(t) f(t),
\end{align*}
$$

with $\alpha_{0}=\min \left\{(\theta-m) / p_{0},(\tau-n) / q_{0}\right\}>0$.
(3.5) implies that there is $C_{0}>0$ such that

$$
\begin{equation*}
\phi^{\prime}(t)+C_{0} f(t) \leq 0 \quad \text { if } C_{3} \phi^{\alpha_{0}}(0)=C_{3}\left(\left\|u_{0}\right\|_{p_{0}}^{p_{0}}+\left\|v_{0}\right\|_{q_{0}}^{q_{0}}\right)^{\alpha_{0}}<C_{1} . \tag{3.6}
\end{equation*}
$$

Furthermore, we have from Sobolev embedding theorems that

$$
\left\|\nabla u^{\frac{p_{0}+m}{m+2}}\right\|_{m+2}^{m+2} \geq d_{1}\|u\|_{p_{0}+m}^{p_{0}+m} \geq d_{2}\|u\|_{p_{0}}^{p_{0}+m}, \quad\left\|\nabla v^{\frac{q_{0}+n}{n+2}}\right\|_{n+2}^{n+2} \geq d_{2}\|v\|_{q_{0}}^{q_{0}+2}
$$

for some $d_{2}>0$. Hence,

$$
f(t) \geq d_{2}\left(\|u\|_{p_{0}}^{p_{0}+m}+\|v\|_{q_{0}}^{q_{0}+m}\right) \geq d_{2} \phi^{1+\vartheta}, \quad \vartheta=\min \left\{m / p_{0}, n / q_{0}\right\}
$$

Now (3.6) gives

$$
\begin{equation*}
\phi^{\prime}(t)+d_{2} \phi^{1+\vartheta} \leq 0, \quad t \geq 0 . \tag{3.7}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\phi(t) \leq C(1+t)^{-\frac{1}{v}} . \tag{3.8}
\end{equation*}
$$

Next, we show that $(u, v) \in L_{l o c}^{1, m+1}\left(R^{+}, W_{0}^{1, m+1}\right) \cap L_{l o c}^{1, n+1}\left(R^{+}, W_{0}^{1, n+1}\right)$. By the definition of p_{0} and q_{0}, we have from (3.8) that for any $t \geq 0$,

$$
\int_{\Omega}|u|^{1+\alpha}|v|^{p} d x \leq C\|u\|_{p_{0}}^{1+\alpha}\|v\|_{q_{0}}^{p} \leq C_{1}, \quad \int_{\Omega}|u|^{q}|v|^{1+\beta} d x \leq C\|u\|_{p_{0}}^{q}\|v\|_{q_{0}}^{1+\beta} \leq C_{1} .
$$

Here C_{1} is a constant independent of t. Thus (2.31) yields that

$$
\begin{equation*}
\int_{0}^{t} h(s) g(s) d s \leq C\left(h(t)+\int_{0}^{t} g(s) d s\right) \leq C(h(t)+\rho(t)), t \geq 0 \tag{3.9}
\end{equation*}
$$

Similarly, we have

$$
\int_{\Omega}|u|^{2 \alpha}|v|^{2 p} d x \leq\|u\|_{p_{0}}^{2 \alpha}\|v\|_{q_{0}}^{2 p} \leq C_{2}, \quad \int_{\Omega}|u|^{2 q}|v|^{2 \beta} d x \leq\|u\|_{p_{0}}^{2 q}\|v\|_{q_{0}}^{2 \beta} \leq C_{2}
$$

Then from (2.34) and (3.9), we obtain
$\left.\rho(t) g(t) \leq C_{3}\left(\int_{0}^{t} \rho(s) d s+\int_{0}^{t} h(s) g(s) d s\right) \leq C_{3}\left(\int_{0}^{t} \rho(s) d s+h(t)+\rho(t)\right) 3.10\right)$
It implies

$$
\begin{equation*}
g(t) \leq C_{4}\left(t+t^{-1}+1\right), \quad 0 \leq t \leq T \tag{3.11}
\end{equation*}
$$

and $(u, v) \in L_{l o c}^{1, m+1}\left(R^{+}, W_{0}^{1, m+1}\right) \cap L_{l o c}^{1, n+1}\left(R^{+}, W_{0}^{1, n+1}\right)$. This completes the proof of Theorem 1.2. The proof is completed.

Acknowledgement. This work is supported by Basic Research Foundation Project of China SWU (No. XDJK2009C069)

References

[1] N. D. Alikakos and R. Rostamian, Gradient estimates for degenerate diffusion equations, Math. Ann., 259 (1982) 53-70.
[2] C. S. Chen and R. Y. Wang, L^{∞} estimates of solution for the evolutionm-Laplacian equation with initial value in $L^{q}(\Omega)$, Nonlinear Analysis, 48 (2002) 607-616.
[3] H. W. Chen, Global existence and blow-up for a nonlinear reaction-diffusion system, J. Math. Anal. Appl., 212 (2) (1997) 481-492.
[4] E. Dibenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.
[5] F. Dickstein and M. Escobedo, A maximum principle for semilinear parabolic systems and applications, Nonlinear Analysis, 45 (2001) 825-837.
[6] M. Escobedo and M. A. Herrero, A semilinear parabolic system in a bounded domain, Ann. Mat. Pura. Appl., CLXV(4) (1993) 315-336.
[7] J. L. Lions, Quelques Méthodes de Resolution des Problémes aux Limites Nonlineaires, Dunod, Paris, 1969.
[8] O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, 1969.
[9] M. Nakao, Global solutions for some nonlinear parabolic equations with nonmonotonic perturbations, Nonlinear Analysis, 10 (3) (1986) 299-314.
[10] M. Nakao and C. S. Chen, Global existence and gradient estimates for quasilinear parabolic equations of m-laplacian type with a nonlinear convection term, J. Diff. Eqn., 162 (2000) 224-250.
[11] Y. Ohara, L^{∞} estimates of solutions of some nonlinear degenerate parabolic equations, Nonlinear Analysis., 18 (1992) 413-426.
[12] M. Tsutsumi, Existence and nonexistence of global solutions for nonlinear parabolic equations, Publ. RIMS. Kyoto Univ., 8 (1972-1973) 221-229.
[13] M. X. Wang, Global existence and finite time blow up for a reaction-diffusion system, Z.angew. Math. Phys., 51 (2000), 160-167.
[14] Z. J. Wang, J. X. Yin and C. P. Wang, Critical exponents of the non-Newtonian polytropic filtration equation with nonlinear boundary condition, Appl. Math. Letters, 20(2007) 142147.
[15] H. J. Yuan, S. Z. Lian, W. J. Gao, X. J. Xu and C. L. Cao, Extinction and positivity for the evolution p-laplace equation in \mathbb{R}^{N}, Nonlinear Analysis, 60(2005) 1085-1091.
[16] J. Zhou and C. L. Mu, Critical blow-up and extinction exponents for non-Newton polytropic filtration equation with source, Bull. Korean Math. Soc., 46 (2009) 1159-1173.

* School of mathematics and statistics, Southwest University, Chongqing, 400715, P. R. China.

E-mail address: zhoujun_math@hotmail.com

