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GLOBAL EXISTENCE AND L∞ ESTIMATES OF SOLUTIONS
FOR A QUASILINEAR PARABOLIC SYSTEM

JUN ZHOU ∗

Abstract. In this paper, we study the global existence, L∞ estimates and
decay estimates of solutions for the quasilinear parabolic system ut = ∇ ·
(|∇u|m∇u)+f(u, v), vt = ∇·(|∇v|n∇v)+g(u, v) with zero Dirichlet boundary
condition in a bounded domain Ω ⊂ RN .

1. Introduction

In this paper, we are concerned with the global existence, L∞ estimates and
decay estimates of solutions for the quasilinear parabolic system

ut = ∇ · (|∇u|m∇u) + f(u, v), x ∈ Ω, t > 0,

vt = ∇ · (|∇v|n∇v) + g(u, v), x ∈ Ω, t > 0, (1.1)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω,

where Ω is a bounded domain in RN(N > 1) with smooth boundary ∂Ω and
m,n > 0.

For m = n = 0, f(u, v) = uαvp, g(u, v) = uqvβ and u0(x), v0(x) ≥ 0, the prob-
lem (1.1) has been investigated extensively and the existence and nonexistence
of solutions for (1.1) are well understood (see [3, 5, 6, 13] and the references
cited there). We summarize some of the results. Suppose that the initial data
u0(x), v0(x) ≥ 0 and u0, v0 ∈ L∞(Ω). Then
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(A1) let α > 1 or β > 1 or s0 = (1−α)(1− β)− pq < 0. Problem (1.1) admits
a global solution for small initial data and the solution for (1.1) must blow up in
finite time for large initial data;

(A2) all solutions of (1.1) are global if α, β ≤ 1 and s0 ≥ 0.
The case m > 0 for the single equation

ut = ∇ · (|∇u|m∇u) + f(x, u), x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω, (1.2)

u(x, t) = 0, x ∈ ∂Ω

has been widely investigated in [1, 2, 4, 7, 9, 11, 12] and the references therein.
But the problem (1.1) is not considered sufficiently and there seems to be little
results on global existence, L∞ estimates and blow-up of solutions for (1.1).

In this paper we are interested in extending the previous results A1 and A2 for
m = n = 0 to m,n > 0. We consider problem (1.1) for general initial data (try
to be more specific here) and obtain sufficient conditions for the global existence
of solutions. Furthermore, we obtain L∞ and decay estimates for solutions of
(1.1), that give the behavior of solutions as t → 0 and t → ∞. Our method,
very different from that on the basis of comparison principle used in [3, 5, 6, 13,
14, 15, 16], is based on a priori estimates and an improved Moser’s technique
as in [2, 10]. In contrast with other results (which results [2, 4, 7, 9, 11]), our
initial data u0, v0 is neither restricted to be bounded nor nonnegative. To drive
the L∞ estimates for solutions of (1.1), we must treat carefully the parameters
m,n, p, q, α and β.

Definition 1.1. A pair of functions (u(x, t), v(x, t)) is a global weak solution
of (1.1) if (u(x, t), v(x, t)) ∈ (

L∞loc

(
(0,∞),W 1,m+1

0 (Ω)
) ∩ Lm+1

loc

(
R+,W 1,m+1

0 (Ω)
))

× (
L∞loc

(
(0,∞),W 1,n+1

0 (Ω)
) ∩ Ln+1

loc

(
R+,W 1,n+1

0 (Ω)
))

and the following equalities

∫ t

0

∫

Ω

{−uϕt + |∇u|m∇u∇ϕ− f(u, v)ϕ} dxdt

=

∫

Ω

{u0(x)ϕ(x, 0)− u(x, t)ϕ(x, t)} dx,

∫ t

0

∫

Ω

{−vϕt + |∇v|n∇v∇ϕ− g(u, v)ϕ} dxdt

=

∫

Ω

{v0(x)ϕ(x, 0)− u(x, t)ϕ(x, t)} dx

are valid for any t > 0 and ϕ ∈ C1 (R+, C1
0(Ω)), where R+ = [0,∞).

Our results read as follows.

Theorem 1.2. Suppose that
(H1) The functions f(u, v), g(u, v) ∈ C0(R2) ∩ C1(R2�(0, 0)) and

|f(u, v)| ≤ K1|u|α|v|p, |g(u, v)| ≤ K2|u|q|v|β, (u, v) ∈ R2, (1.3)



GLOBAL EXISTENCE AND L∞ ESTIMATES... 247

where the parameters α, β, p, q satisfy

0 ≤ α < 1 + m, 0 ≤ β < 1 + n; m,n, p, q > 0; (1.4)

s = (m + 1− α)(n + 1− β)− pq > 0.

(H2) u0(x) ∈ Lp0(Ω), v0(x) ∈ Lq0(Ω) with

p0 > max{1, q + 1− α}, q0 > max{1, p + 1− β}.
Then problem (1.1) admits a global weak solution u(x, t), v(x, t) which satisfies

u ∈ L∞
(
R+, Lp0(Ω)

)
, v ∈ L∞

(
R+, Lq0(Ω)

)

and the following estimates hold for any T > 0

‖u‖∞ ≤ Ct−σ, ‖v‖∞ ≤ Ct−σ, 0 ≤ t ≤ T, (1.5)

‖u‖m+2
m+2 + ‖v‖n+2

n+2 ≤ C
(
t−1−σ + t1−2(p+α)σ + t1−2(q+β)σ

)
, 0 ≤ t ≤ T, (1.6)

where C = C(T, ‖u0‖p0 , ‖v‖q0), σ = min
{

N
p0(m+2)+mN

, N
q0(n+2)+nN

}
.

Theorem 1.3. Suppose s < 0. Then there exist p0, q0 > 1, d0 > 0 such that
if u0(x) ∈ Lp0(Ω), v0(x) ∈ Lq0(Ω) and ‖u0‖p0 + ‖v0‖q0 < d0 the problem (1.1)
admits a global weak solution (u(x, t), v(x, t)) that

u(x, t) ∈ L∞loc

(
(0,∞),W 1,m+1

0 (Ω)
) ∩ Lm+1

loc

(
R+,W 1,m+1

0 (Ω)
)

(1.7)

v(x, t) ∈ L∞loc

(
(0,∞),W 1,n+1

0 (Ω)
) ∩ Ln+1

loc

(
R+,W 1,n+1

0 (Ω)
)

satisfying

‖u‖p0 ≤ C(1 + t)−
1
ϑ , ‖v‖q0 ≤ C(1 + t)−

1
ϑ , t ≥ 0, (1.8)

where ϑ = min{m/p0, n/q0}.
To derive Theorem 1.2 and 1.3, we will use the following lemmas.

Lemma 1.4. [9] Let β ≥ 0, N > p ≥ 1, β + 1 ≤ q, and 1 ≤ r ≤ q ≤
(β + 1)Np/(N − p). Then for |u|βu ∈ W 1,p(Ω), we have

‖u‖q ≤ C1/(β+1)‖u‖1−θ
r ‖|u|βu‖θ/(β+1)

1,p ,

with θ = (β + 1)(r−1 − q−1)/(N−1 − p−1 + (β + 1)r−1)−1, where C is a constant
depending only on N, p and r.

Lemma 1.5. [11] Let y(t) be a nonnegative differentiable function on (0, T ] sat-
isfying

y′(t) + Atλθ−1y1+θ(t) ≤ Bt−ky(t) + Ctδ

with A, θ > 0, λθ ≥ 1, B, C ≥ 0, k ≤ 1. Then we have

y(t) ≤ A−1/θ(2A + 2BT 1−k)1/θt−λ + 2C(λ + BT 1−k)−1t1−δ 0 < t ≤ T

This paper is organized as follows. In Section 2, we apply Lemmas 1.4 and 1.5
to establish L∞ estimates for solutions of problem (1.1). The proof of Theorem
1.3 will be given in Section 3.
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2. Proof of Theorem 1.2

For j = 1, 2, ... , we choose fj(u, v), gj(u, v) ∈ C1 in such a way fj(u, v) =
f(u, v), gj(u, v) = g(u, v) when u2 + v2 ≥ j−2, |fj(u, v)| ≤ η, |gj(u, v)| ≤ η when
u2 + v2 ≤ j−2 with some η > 0 and (fj(u, v), gj(u, v)) → (f(u, v), g(u, v)) uni-
formly in R2 as j →∞.

Let (u0,j, v0,j) ∈ C2
0(Ω) and u0,j → u0 in Lp0(Ω), v0,j → v0 in Lq0(Ω) as j →∞.

We consider the approximate problem of (1.1)

ut = ∇ · ((|∇u|2 + j−1)m/2∇u) + fj(u, v), x ∈ Ω, t > 0,

vt = ∇ · ((|∇v|2 + j−1)n/2∇v) + gj(u, v), x ∈ Ω, t > 0, (2.1)

u(x, 0) = u0,j(x), v(x, 0) = v0,j(x), x ∈ Ω,

u(x, t) = v(x, t) = 0, x ∈ ∂Ω,

The problem (2.1) is a standard quasilinear parabolic system and admits a unique
smooth solution (uj(x, t), vj(x, t)) on [0, T ) for each j = 1, 2, ..., see [7, 8]. Fur-
thermore, if T < ∞, then

lim sup
t→T

(‖uj(·, t)‖∞ + ‖vj(·, t)‖∞) = +∞.

In the sequel, we will always write (u, v) instead of (uj, vj) and (up, vp) for
(|u|p−1u, |v|p−1v) where p > 0. Also, let C and Ci be the generic constants
independent of j and p changeable from line to line.

Lemma 2.1. Let (H1) and (H2) hold. If (u(x, t), v(x, t)) is the solution of problem
(2.1). Then u ∈ L∞ (R+, Lp0(Ω)), v ∈ L∞ (R+, Lq0(Ω)).

Proof. Let p0, q0 > 1. Multiplying the first equation in (2.1) by |u|p0−2u, we
obtain that

1

p0

d

dt
‖u‖p0

p0
+

(p0 − 1)(m + 2)m+2

(p0 + m)m+2
‖∇u

p0+m
m+2 ‖m+2

m+2 ≤
∫

Ω

fj(u, v)|u|p0−2udx. (2.2)

Notice that∫

Ω

fj(u, v)|u|p0−2udx ≤ ηj1−p0|Ω|+ C1

∫

Ω

|u|α+p0−1|v|pdx. (2.3)

Similarly, we have

1

q0

d

dt
‖v‖q0

q0
+

(q0 − 1)(n + 2)n+2

(q0 + n)n+2
‖∇v

q0+n
n+2 ‖n+2

n+2 (2.4)

≤ ηj1−q0|Ω|+ C2

∫

Ω

|v|β+q0−1|u|qdx,

with C1, C2 > 0.
By Young’s inequality, we obtain

|u|γ|v|p + |u|q|v|ρ ≤ |v|pp1

p1

+
|u|p2γ

p2

+
|u|qq1

q1

+
|v|ρq2

q2

, (2.5)

where γ = α + p0 − 1, ρ = β + q0 − 1, t0 = γρ− pq > 0 and

p1 =
t0

p(γ − q)
, p2 =

t0
γ(ρ− p)

, q1 =
t0

q(ρ− p)
, q2 =

t0
ρ(γ − q)

. (2.6)
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The assumption (H2) on p0, q0 and (1.4) imply that pp1 < q0 + n, qq1 < p0 + m.
Thus we have from (2.2)-(2.5) and a Sobolev’s inequality that

d

dt

(‖u‖p0
p0

+ ‖v‖q0
q0

)
+ C3

(
p−m

0 ‖u‖p0+m
p0+m + q−n

0 ‖v‖q0+n
q0+n

)
(2.7)

≤ η|Ω| (p0j
1−p0 + q0j

1−q0
)

+ C4

∫

Ω

(|u|qq1 + |v|pp1) dx.

Using Young’s inequality and letting j →∞ in (2.7), we conclude that

d

dt

(‖u‖p0
p0

+ ‖v‖q0
q0

)
+ C5

(‖u‖p0+m
p0+m + ‖v‖q0+n

q0+n

) ≤ C (2.8)

and

d

dt

(‖u‖p0
p0

+ ‖v‖q0
q0

)
+ C6

(‖u‖p0
p0

+ ‖v‖q0
q0

)1+% ≤ C (2.9)

with % = min{m/p0, n/q0}. Thus (2.9) implies that u(t) ∈ L∞(R+, Lp0(Ω)),
v(t) ∈ L∞(R+, Lq0(Ω)) if u0 ∈ Lp0(Ω) and v0 ∈ Lq0(Ω). The proof is completed.

¤

Lemma 2.2. Under the assumptions of Lemma 2.1 and for any T > 0, the
solution (u(t), v(t)) also satisfies

‖u‖∞ ≤ Ct−a, ‖v‖∞ ≤ Ct−b, 0 < t ≤ T, (2.10)

‖u‖m+2
m+2 + ‖v‖n+2

n+2 ≤ C
(
t−1−σ + t1−2(p+α)σ + t1−2(q+β)σ

)
, 0 < t ≤ T, (2.11)

where the constant C depends on T, ‖u0‖p0 , ‖v0‖q0 and a = N/(p0(m + 2) +
mN), b = N/(q0(n + 2) + nN), σ = min{a, b}.
Proof. We only consider N > max{m + 2, n + 2} and the other cases can be
treated in a similar way.

Multiplying the first equation and the second equation in (2.1) by |u|λ−2u and
|v|µ−1v respectively, we obtain

d

dt

(‖u‖λ
λ + ‖v‖µ

µ

)
+ C1

(
λ−m‖∇u

λ+m
m+2 ‖m+2

m+2 + µ−n‖∇v
µ+n
n+2 ‖n+2

n+2

)
(2.12)

≤ C2(λ + µ)

(
1 +

∫

Ω

|u|α+λ−1|v|p + |u|q|v|β+µ−1

)
dx.

By the Young’s inequality, we have

|u|γ1|v|p + |u|q|v|γ2 ≤ |v|pε1

ε1

+
|u|γ1ε2

ε2

+
|u|qη1

η1

+
|v|γ2η2

η2

, (2.13)

with γ1 = α + λ− 1, γ2 = β + µ− 1 and pε1 = γ2η2, γ1ε2 = qη1, ε−1
1 + ε−1

2 = 1,
η−1

1 + η−1
2 = 1.

The direct computation shows that

η1 =
τ

q(γ2 − p)
, η2 =

τ

γ2(γ1 − q)
, ε1 =

τ

p(γ1 − q)
, ε2 =

τ

γ1(γ2 − p)
,
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where τ = γ1γ2 − pq > 0. λ, µ are chosen properly so that 0 < pε1 < µ + n and
0 < qη1 < λ + m. We take two sequences of {λk} and {µk} as follows

λ1 = p0, λ = λk = b1 + b12R
k−1; (2.14)

µ1 = q0, µ = µk = b2 + b22R
k−1, k = 2, 3, ...

where b1 = q + 1− α, b12 = (b1 + m)/s, b2 = p + 1− β, b22 = (b2 + n)/s and R is
chosen so that R > 1, λ2 > p0, µ2 > q0. Notice that λk v µk as k →∞.

We now derive the estimates for the integrals
∫
Ω
|v|pε1dx and

∫
Ω
|u|qη1dx. If

pε1 ≤ µ and qη1 ≤ λ, then we have
∫

Ω

|v|pε1dx ≤ C

(
1 +

∫

Ω

|v|µdx

)
,

∫

Ω

|u|qη1dx ≤ C

(
1 +

∫

Ω

|u|λdx

)
. (2.15)

Without loss of generality, we suppose µ < pε1 < µ + n, λ < qη1 < λ + m and
r = τ/(γ1− q)− µ > 0, h = τ/(γ2− p)− λ > 0. Then from (2.12) and (2.13), we
have

d

dt

(‖u‖λ
λ + ‖v‖µ

µ

)
+ 2C1

(
λ−m‖∇u

λ+m
m+2 ‖m+2

m+2 + µ−n‖∇v
µ+n
n+2 ‖n+2

n+2

)
(2.16)

≤ C2λ
(
1 + ‖u‖λ+h

λ+h

)
+ C2µ

(
1 + ‖v‖µ+r

µ+r

)
.

where the constants C1, C2 are independent of λ and µ. Furthermore, we have
following by Hölder’s and Sobolev’s inequalities∫

Ω

|u|λ+hdx ≤ ‖u‖θ1
λ ‖u‖θ2

p0
‖u‖θ3

λ∗ ≤ C‖u‖θ1
λ ‖∇u

λ+m
m+2 ‖ (m+2)θ3

λ+m (2.17)

≤ C1C
−1
2 λ−1−m‖∇u

λ+m
m+2 ‖m+2

m+2 + C3λ
σ1‖u‖λ

λ

with

λ∗ =
N(λ + m)

N −m− 2
, θ1 = λ

(
1− hN

p0(m + 2) + mN

)
, θ2 =

hp0(m + 2)

p0(m + 2) + mN
,

θ3 =
hN(λ + m)

p0(m + 2) + mN
, σ1 =

(m + 1)(p0(m + 2) + N(m− h))

hN
> 0.

Similarly, we can derive that∫

Ω

|v|µ+rdx ≤ C1C
−1
2 µ−1−n‖∇v

µ+n
n+2 ‖n+2

n+2 + C3µ
σ2‖v‖µ

µ, (2.18)

with σ2 = (n + 1)(q0(n + 2) + N(n − r))/(rN) > 0. Hence it follows from
(2.16)-(2.18) that

d

dt

(‖u‖λ
λ + ‖v‖µ

µ

)
+ C1

(
λ−m‖∇u

λ+m
m+2 ‖m+2

m+2 + µ−n‖∇v
µ+n
n+2 ‖n+2

n+2

)
(2.19)

≤ C3λ
(
1 + λσ1‖u‖λ

λ

)
+ C3µ

(
1 + µσ2‖v‖µ

µ

)
.

Now we employ an improved Moser’s technique as in[2, 10]. Let {λk}, {µk}be
two sequences as defined in (2.14). From Lemma 1.4, we see that

‖u‖λk
≤ C

m+2
m+λk ‖u‖1−θk

λk−1
‖∇u

λk+m

m+2 ‖
(m+2)θk

λk+m

m+2 , (2.20)
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‖v‖µk
≤ C

n+2
n+µk ‖v‖1−θk

µk−1
‖∇v

µk+n

n+2 ‖
(n+2)θk

µk+n

n+2 , (2.21)

where the constant C is independent of λk and µk, and

θk =
λk + m

m + 2

(
1

λk−1

− 1

λk

)(
1

N
− 1

m + 2
+

λk + m

(m + 2)λk−1

)−1

,

θk =
µk + n

n + 2

(
1

µk−1

− 1

µk

)(
1

N
− 1

n + 2
+

µk + n

(n + 2)µk−1

)−1

.

Let tk = λk+m
θk

− λk, sk = µk+n

θk
− µk. Then (2.20) and (2.21) give

λ−m
k ‖∇u

λk+m

m+2 ‖m+2
m+2 ≥ C

−m+2
θk ‖u‖λk+tk

λk
‖u‖m−tk

λk−1
, (2.22)

µ−n
k ‖∇v

µk+n

n+2 ‖n+2
n+2 ≥ C

−n+2

θk ‖v‖µk+sk
µk

‖v‖n−sk
µk−1

. (2.23)

Denote
yk(t) = ‖u‖λk

λk
+ ‖v‖µk

µk
, t ≥ 0.

Then inserting (2.22)-(2.23) into (2.19) (λ = λk, µ = µk), we find that

y
′
k(t) + C1C

−m+2
θk ‖u‖λk+tk

λk
‖u‖m−tk

λk−1
+ C1C

−n+2

θk ‖v‖µk+sk
µk

‖v‖n−sk
µk−1

(2.24)

≤ C3(λk + µk) + Cλσ1+1
k ‖u‖λk

λk
+ Cµσ2+1

k ‖v‖µk
µk

.

We claim that there exist the bounded sequence {ξk}, {ηk}, {mk}, {rk} such that

‖u‖λk
≤ ξkt

−mk , ‖v‖µk
≤ ηkt

−rk , 0 < t ≤ T. (2.25)

Without loss of generality, we suppose that ξk, ηk ≥ 1. By Lemma 2.1, (2.25)
holds for k = 0 if we take m0 = r0 = 0 and ξ0 = supt≥0 ‖u‖p0 , η0 = supt≥0 ‖v‖q0 .
If (2.25) is true for k − 1, then we have from (2.24) that

y
′
k(t) + C3‖u‖λk+tk

λk

(
ξk−1t

−mk−1
)m−tk + C3‖v‖µk+sk

µk

(
ηk−1t

−rk−1
)n−sk (2.26)

≤ C(λk + µk)
(
λσ1

k ‖u‖λk
λk

+ µσ2
k ‖v‖µk

µk

)
.

We take σ0 = max{σ1, σ2}, τk = min{tk/λk, sk/µk}, αk = min{m − tk, n − sk}
and Ak−1 = max{ξk−1, ηk−1}, βk = max{(tk −m)mk−1, (sk − n)rk−1}. Then we
have from (2.26) that

y
′
k(t) + C3A

αk
k−1t

βkyt+τk
k (t) ≤ Cλk + Cλσ0+1

k yk(t) + CAαk
k−1T

βk , 0 < t < T.(2.27)

Applying Lemma 1.5 to (2.27), we get

yk(t) ≤ Bkt
−(1+βk)/τk , 0 < t < T, (2.28)

where

Bk = 2
(
C3A

αk
k−1

)− 1
τk

(
C3λ

σ0+1
k +

1 + βk

τk

) 1
τk

+ 2Cλk

(
Cλσ0+1

k +
1 + βk

τk

)−1

.

Moreover, (2.28) implies that

‖u‖λk
≤ B

1
λk
k t

− 1+βk
λkτk , ‖v‖µk

≤ B
1

µk
k t

− 1+βk
µkτk , 0 < t ≤ T. (2.29)
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We take

ξk = B
1

λk
k , ηk = B

1
µk
k , mk =

1 + βk

λkτk

, rk =
1 + βk

µk

τk.

By a similar argument in [2, 10], we know that {ξk}, {ηk} are bounded and there
exist two subsequences {mkl} ⊂ {m− k} and {rkl} ⊂ {rk} such that

mkl → a =
N

p0(m + 2) + mN
, rkl → b =

N

q0(n + 2) + nN
, (as l →∞).

Therefore, letting l →∞ in (2.28), we obtain

‖u‖∞ ≤ Ct−a, ‖v‖∞ ≤ Ct−b, 0 < t < T, (2.30)

This yields (2.10).
It remains to prove the estimate (2.11). In order to derive (2.11), we use a

similar argument in [10]. We first choose µ > max{σ, 2(p+α)σ−2, 2(q+β)σ−2}
and h(t) ∈ C([0,∞) ∩ C1(0,∞) such that h(t) = tµ, 0 ≤ t ≤ 1; h(t) = 2, t ≥ 2
and h(t), h′(t) ≥ 0 in (0,∞). Then multiplying the first equation by h(t)u and
the second equation by h(t)v in (2.1), and letting j →∞, we obtain

∫ t

0

h(s)g(s)ds +
1

2
h(t)

∫

Ω

(|u|2 + |v|2)dx (2.31)

≤ 1

2

∫ t

0

∫

Ω

h′(s)(|u|2 + |v|2)dxds + C

∫ t

0

∫

Ω

h(s)(|u|1+α|v|p + |u|q|v|1+β)dxds

with g(t) = ‖∇u‖m+2
m+2 + ‖∇v‖n+2

n+2, t ≥ 0.
By Young’s inequality and the assumption (1.4), we obtain

C

∫

Ω

(|u|1+α|v|p + |u|q|v|1+β)dx ≤
∫

Ω

(|u|τ1 + |v|τ1)dx (2.32)

≤ ε

∫

Ω

(|u|m+2 + |v|n+2)dx + Cε|Ω| ≤ C(‖∇u‖m+2
m+2 + ‖∇v‖n+2

n+2) + Cε|Ω|

for any ε > 0 and τ1 = ((α + 1)(β + 1) − pq)/(β + 1 − p) < m + 2, τ2 =
((α + 1)(β + 1)− pq)/(α + 1− q) < n + 2. Furthermore, we take ε = 1/2. Then
(2.31)-(2.32) yields

∫ t

0

h(s)g(s)ds + h(t)(‖u‖2
2 + ‖v‖2

2) ≤ Ctµ−σ. (2.33)

Next, let ρ(t) =
∫ t

0
h(s)ds, t ≥ 0. Similarly, multiplying the first equation in

(2.1) by ρ(t)ut and the second equation by ρ(t)vt , and letting j → ∞, we have
from (2.30) and (2.31) that

∫ t

0

ρ(s)(‖ut‖2
2+‖vt‖2

2)ds + ρ(t)g(t) ≤ C

∫ t

0

∫

Ω

ρ(s)(|u|2α|v|2p+|u|2q|v|2β)dxds

+

∫ t

0

ρ′(s)g(s)ds ≤ C

∫ t

0

ρ(s)
(
s−2(α+p)σ + s−2(β+q)σ

)
ds + Ctµ−σ

≤ C
(
tµ−σ + tµ+2−2(p+α)σ + tµ+2−2(q+β)σ

)
, 0 < t ≤ T. (2.34)
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Thus (2.34) implies

g(t) ≤ C
(
t−1−σ + t1−2(p+α)σ + t1−2(q+β)σ

)
, 0 < t ≤ T, (2.35)

and (2.11) is proved. The proof is completed. ¤

Proof of Theorem 1.2. We notice that the estimate constant C in (2.30) and
(2.35) is independent of j , we may obtain the desired solution (u, v) as limit of
{(uj, vj)} (or a subsequence ) by the standard compact argument as in [6, 8, 9, 10].
The solution (u, v) of problem (1.1) also satisfies (1.5)-(1.6). The proof is com-
pleted. ¤

Remark:

• From the proof of Theorem 1.2, we see that if the assumption (1.3) is
replaced by

|f(u, v)| ≤ K1(1 + |u|α|v|p), |g(u, v)| ≤ K2(1 + |u|q|v|β),

the conclusions in Theorem 1.2 still hold.

3. Proof of Theorem 1.3

By the standard compact argument as in [2, 7, 9, 10], we only consider the esti-
mate (1.8) and show that (u, v) ∈ L1,m+1

loc

(
R+,W 1,m+1

0 (Ω)
)∩L1,n+1

loc

(
R+,W 1,n+1

0 (Ω)
)

for the solution of (2.1).

Proof of Theorem 1.3. Suppose that s < 0 holds. Let

p0 = b1 + b12ε > 1, q0 = b2 + b22ε > 1, (3.1)

with b1 = q+1−α, b2 = p+1−β, b12 = −(q+m+1−α)/s, b22 = −(p+n+1−β)/s.
Since s < 0, we can take ε > 0 such that p0 ≥ max{4q, 4α, 2 + 2α}, q0 ≥
max{4p, 4β, 2+2β}, S0 = (α + p0− 1)(β + q0− 1)− pq > 0. Then it follows from
(2.5) and (2.7) that

d

dt

(‖u‖q0
p0

+ ‖v‖q0
q0

)
+ C1

(
‖∇u

p0+m
m+2 ‖m+2

m+2 + ‖∇v
q0+n
n+2 ‖n+2

n+2

)
(3.2)

≤ C

∫

Ω

(|u|qq1 + |v|pp1) dx,

where qq1 = S0/(q0 + β − 1 − p) > p0 + m, pp1 = S0/(α + p0 − q − 1) > q0 + n.
We now estimate the right-hand side of (3.2). Let qq1 = p0 + θ, pp1 = q0 + τ and
θ > m, τ > n. Then∫

Ω

|u|qq1dx = ‖u‖p0+θ
p0+θ ≤ C2‖u‖θ−m

p0
‖∇u

p0+m
m+2 ‖m+2

m+2, (3.3)

∫

Ω

|v|pp1dx = ‖v‖q0+τ
q0+τ ≤ C2‖v‖τ−n

q0
‖∇v

q0+n
n+2 ‖n+2

n+2. (3.4)

Denote

φ(t) = ‖u‖p0
p0

+‖v‖q0
q0

, f(t) = ‖∇u
p0+m
m+2 ‖m+2

m+2+‖∇v
q0+n
n+2 ‖n+2

n+2,
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then (3.2) becomes

φ′(t) + C1f(t) ≤ C2

(
‖u‖θ−m

p0
‖∇u

p0+m
m+2 ‖m+2

m+2 + ‖v‖τ−n
q0

‖∇v
q0+n
n+2 ‖n+2

n+2

)
(3.5)

≤ C2

(|u‖θ−m
p0

+ ‖v‖τ−n
q0

)
f(t) ≤ C3φ

α0(t)f(t),

with α0 = min{(θ −m)/p0, (τ − n)/q0} > 0.
(3.5) implies that there is C0 > 0 such that

φ′(t) + C0f(t) ≤ 0 if C3φ
α0(0) = C3

(‖u0‖p0
p0

+ ‖v0‖q0
q0

)α0 < C1. (3.6)

Furthermore, we have from Sobolev embedding theorems that

‖∇u
p0+m
m+2 ‖m+2

m+2 ≥ d1‖u‖p0+m
p0+m ≥ d2‖u‖p0+m

p0
, ‖∇v

q0+n
n+2 ‖n+2

n+2 ≥ d2‖v‖q0+2
q0

,

for some d2 > 0. Hence,

f(t) ≥ d2

(‖u‖p0+m
p0

+ ‖v‖q0+m
q0

) ≥ d2φ
1+ϑ, ϑ = min{m/p0, n/q0}.

Now (3.6) gives

φ′(t) + d2φ
1+ϑ ≤ 0, t ≥ 0. (3.7)

This implies that

φ(t) ≤ C(1 + t)−
1
ϑ . (3.8)

Next, we show that (u, v) ∈ L1,m+1
loc

(
R+,W 1,m+1

0

) ∩ L1,n+1
loc

(
R+,W 1,n+1

0

)
. By the

definition of p0 and q0, we have from (3.8) that for any t ≥ 0,
∫

Ω

|u|1+α|v|pdx ≤ C‖u‖1+α
p0
‖v‖p

q0
≤ C1,

∫

Ω

|u|q|v|1+βdx ≤ C‖u‖q
p0
‖v‖1+β

q0
≤ C1.

Here C1 is a constant independent of t. Thus (2.31) yields that
∫ t

0

h(s)g(s)ds ≤ C

(
h(t) +

∫ t

0

g(s)ds

)
≤ C(h(t) + ρ(t)), t ≥ 0. (3.9)

Similarly, we have
∫

Ω

|u|2α|v|2pdx ≤ ‖u‖2α
p0
‖v‖2p

q0
≤ C2,

∫

Ω

|u|2q|v|2βdx ≤ ‖u‖2q
p0
‖v‖2β

q0
≤ C2.

Then from (2.34) and (3.9), we obtain

ρ(t)g(t) ≤ C3

(∫ t

0

ρ(s)ds +

∫ t

0

h(s)g(s)ds

)
≤ C3

(∫ t

0

ρ(s)ds + h(t) + ρ(t)

)
.(3.10)

It implies

g(t) ≤ C4(t + t−1 + 1), 0 ≤ t ≤ T, (3.11)

and (u, v) ∈ L1,m+1
loc

(
R+,W 1,m+1

0

)∩L1,n+1
loc

(
R+,W 1,n+1

0

)
. This completes the proof

of Theorem 1.2. The proof is completed. ¤
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