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J. M. RASSIAS PRODUCT-SUM STABILITY OF AN
EULER-LAGRANGE FUNCTIONAL EQUATION

MATINA J. RASSIAS

Abstract. In 1940 (and 1964) S. M. Ulam proposed the well-known Ulam
stability problem. In 1941 D. H. Hyers solved the Hyers-Ulam problem for lin-
ear mappings. In 1992 and 2008, J. M. Rassias introduced the Euler-Lagrange
quadratic mappings and the JMRassias “product-sum” stability, respectively.
In this paper we introduce an Euler-Lagrange type quadratic functional equa-
tion and investigate the JMRassias “product-sum” stability of this equation.
The stability results have applications in Mathematical Statistics, Stochastic
Analysis and Psychology.

1. Introduction and Preliminaries

In 1940 (and 1964) Stanislaw M. Ulam [9] proposed the following stability
problem, well-known as Ulam stability problem:

“When is true that by slightly changing the hypotheses of a theorem one can
still assert that the thesis of the theorem remains true or approximately true?”

In particular he stated the stability question:

“Let G1 be a group and G2 a metric group with the metric ρ(., .). Given a con-
stant δ > 0, does there exist a constant c > 0 such that if a mapping f : G1 → G2

satisfies ρ(f(xy), f(x)f(y)) < c for all x, y ∈ G1, then a unique homomorphism
h : G1 → G2 exists with ρ(f(x), h(x)) < δ for all x ∈ G1 ?”

In 1941 D. H. Hyers [3] solved this problem for linear mappings as follows:
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Theorem 1.1. (D. H. Hyers, 1941: [3]). If a mapping f : E → E ′ satisfies the
approximately additive inequality

||f(x + y)− f(x)− f(y)|| ≤ ε, (1.1)

for some fixed ε > 0 and all x, y ∈ E, where E and E ′ are Banach spaces, then
there exists a unique additive mapping A : E → E ′, satisfying the formula

A(x) = lim
n→∞

2−nf(2nx), (1.2)

and inequality

||f(x)− A(x)|| ≤ ε (1.3)

for some fixed ε > 0 and all x ∈ E.

No continuity conditions are required for this result.
In 1992, Euler-Lagrange functional equations were introduced ([5],[6]).

Theorem 1.2. (J. M. Rassias, 1992: [5]). Let X be a normed linear space, Y a
Banach space, and f : X → Y. If there exist α, b : 0 ≤ a+ b < 2, and c2 ≥ 0 such
that

||f(x + y) + f(x− y)− 2[f(x) + f(y)]|| ≤ c2||x||a||y||b, (1.4)

for all x, y ∈ X, then there exists a unique non-linear mapping N : X → Y such
that

||f(x)−N(x)|| ≤ c||x||a+b (1.5)

and

N(x + y) + N(x− y) = 2[N(x) + N(y)] (1.6)

for all x, y ∈ X, where c = c2/(4− 2a+b).
Note that a mapping N : X → Y satisfying (1.6) is called Euler-Lagrange map-
ping, and a mapping f : X → Y satisfying (1.4) is approximately Euler-Lagrange
mapping.

In 2008, the JMRassias “product-sum” stability was investigated for the first
time ([1],[2],[7],[8]).

For the theorem that follows, let (E,⊥) denote an orthogonality normed space
with norm ||.||E and (F, ||.||F ) is a Banach space.

Theorem 1.3. (K. Ravi, M. Arunkumar and J. M. Rassias, 2008: [7]) Let f :
E → F be a mapping which satisfies the inequality

||f(mx + y) + f(mx− y)− 2f(x + y)− 2f(x− y)− 2(m2 − 2)f(x) + 2f(y)||F
≤ ε

{||x||pE||y||pE +
(||x||2p

E ) + ||x||2p
E

)}
(1.7)

for all x, y ∈ E with x ⊥ y, where ε and p are constants with ε, p > 0 and
either m > 1; p > 1 or m < 1; p > 1 with m 6= 0; m 6= ±1; m 6= ±√2 and
−1 6= |m|p−1 < 1.
Then the limit

Q(x) = lim
n→∞

f(mnx)

m2n
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exists for all x ∈ E and Q : E → F is the unique orthogonally Euler-Lagrange
quadratic mapping such that

||f(x)−Q(x)||F ≤ ε

2|m2 −m2p| ||x||
2p
E (1.8)

for all x ∈ E.

Note that the mixed type product-sum function

(x, y) → ε
[||x||pE||y||pE +

(||x||2p
E + ||y||2p

E

)]

was introduced by J. M. Rassias ([1],[2],[7],[8]).
In this paper we introduce an Euler-Lagrange type quadratic functional equa-

tion and investigate the JMRassias “product-sum” stability of this equation. The
stability results have applications in Mathematical Statistics, Stochastic Analysis
and Psychology.

2. JMRassias product-sum stability of an Euler-Lagrange type
functional equation

Let X be a real normed linear space and Y a real Banach space.

Definition 2.1. A mapping f : X → Y is called approximately Euler-Lagrange
type quadratic, if the approximately Euler-Lagrange quadratic functional inequal-
ity

||f(x+y)+
1

2
[f(x−y)+f(y−x)]−2[f(x)+f(y)]|| ≤ ε

(||x||α2 ||y||α2 + ||x||α+ ||y||α)

(2.1)
holds for every x, y ∈ X with ε ≥ 0 and α 6= 2.

Lemma 2.2. Mapping Q : X → Y satisfies the Euler-Lagrange type quadratic
equation

Q(x + y) +
1

2
[Q(x− y) + Q(y − x)] = 2[Q(x) + Q(y)]

for all x, y ∈ X if and only if there exists a mapping T : X → Y satisfying the
Euler-Lagrange quadratic equation

T (x + y) + T (x− y) = 2[T (x) + T (y)]

for all x, y ∈ X such that Q(x) = T (x) for all x ∈ X.

Proof. (⇒) Let mapping Q : X → Y satisfy the Euler-Lagrange type quadratic
equation

Q(x + y) +
1

2
[Q(x− y) + Q(y − x)] = 2[Q(x) + Q(y)] (2.2)

for all x, y ∈ X. Assume that there exists a mapping T : X → Y such that
Q(x) = T (x) for all x ∈ X. Observe that for x = y = 0 and x = x, y = 0 from
(2.2) we obtain respectively

T (0) = Q(0) = 0 (2.3)

and
T (−x) = Q(−x) = Q(x) = T (x), for x ∈ X. (2.4)
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From (2.2) and (2.4) it is obvious that

T (x + y) +
1

2
[T (x− y) + T (y − x)] = 2[T (x) + T (y)], or

T (x + y) +
1

2
[T (x− y) + T (−(x− y))] = 2[T (x) + T (y)], or

T (x + y) + T (x− y) = 2[T (x) + T (y)].

Hence, T satisfies the Euler-Lagrange quadratic equation.
(⇐) Let mapping T : X → Y satisfy the Euler-Lagrange quadratic equation

T (x + y) + T (x− y) = 2[T (x) + T (y)] (2.5)

for all x, y ∈ X. Assume that there exists a mapping Q : X → Y such that
Q(x) = T (x) for all x ∈ X. Observe that for x = y = 0 and x = 0, y = x from
(2.5) we obtain

Q(0) = T (0) = 0 (2.6)

and

Q(x) = T (x) = T (−x) = Q(−x), for x ∈ X. (2.7)

Thus, from (2.5) - (2.7) one gets

2[Q(x) + Q(y)] = 2[T (x) + T (y)] = T (x + y) + T (x− y)

= T (x + y) +
1

2
T (x− y) +

1

2
T (−(y − x))

= Q(x + y) +
1

2
[Q(x− y) + Q(y − x)].

Hence, Q satisfies the Euler-Lagrange type quadratic equation.
Thus the proof of Lemma 2.2 is complete.

Theorem 2.3. Assume that f : X → Y is an approximately Euler-Lagrange type
additive mapping satisfying (2.1).
Then, there exists a unique Euler-Lagrange type quadratic mapping Q : X → Y
which satisfies the formula

Q(x) = lim
n→∞

fn(x), (2.8)

where

fn(x) =

{2−2nf(2nx), −∞<α<2

22nf(2−nx), α>2

for all x ∈ X and n ∈ N = {0, 1, 2, ...}, which is the set of natural numbers and

||f(x)−Q(x)|| ≤ 3ε

|2α − 4| ||x||
α (2.9)

for some fixed ε > 0, α 6= 2 and all x ∈ X.
Q : X → Y is a unique Euler-Lagrange type quadratic mapping satisfying equation

Q(x + y) +
1

2
[Q(x− y) + Q(y − x)] = 2[Q(x) + Q(y)]. (2.10)
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Proof. We start our proof considering: −∞ < α < 2.
Step 1. By substituting x = y in (2.1), we can observe that

||f(2x) + f(0)− 4f(x)|| ≤ 3ε||x||α,

from which for x = 0 it occurs that

f(0) = 0 (2.11)

and in extension

||f(x)− 2−2f(2x)|| ≤ 3

4
ε||x||α. (2.12)

Hence, for n ∈ N − {0}
||f(x)− 2−2nf(2nx)|| ≤ ||f(x)− 2−2f(2x)||+ ||2−2f(2x)− 2−4f(22x)||+ ...

+ ||2−2(n−1)f(2n−1x)− 2−2nf(2nx)||
≤ 3

4
(1 + 2α−2 + ... + 2(n−1)(α−2))ε||x||α

=
3

4− 2α
(1− 2n(α−2))ε||x||α.

Thus,

||f(x)− 2−2nf(2nx)|| ≤ 3

4− 2α
(1− 2n(α−2))ε||x||α, (2.13)

for n ∈ N − {0} and −∞ < α < 2.
Step 2. Following, we need to show that if there is a sequence {fn} : fn(x) =

2−2nf(2nx), then {fn} converges.
For every n > m > 0, we can obtain

||fn(x)− fm(x)|| = ||2−2nf(2nx)− 2−2mf(2mx)||
= 2−2m||f(2mx)− 2−2(n−m)f(2(n−m)2mx)||
≤ 2m(α−2) 3ε

4− 2α
(1− 2(n−m)(α−2))||x||α

< 2m(α−2) 3ε

4− 2α
||x||α → 0,

for m →∞, as α < 2. Therefore, {fn} is a Cauchy sequence. Since Y is complete
we can conclude that {fn} is convergent. Thus, there is a well-defined Q : X → Y
such that Q(x) = limn→∞ 2−2nf(2nx), for α < 2.

Step 3. Observe that

||f(x)− fn(x)|| = ||f(x)− 2−2nf(2nx)|| ≤ 3ε

4− 2α
(1− 2n(α−2))||x||α,

from which by letting n →∞ we obtain

||f(x)−Q(x)|| ≤ 3ε

4− 2α
||x||α. (2.14)
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Step 4. Claim that mapping Q : X → Y satisfies (2.10). In fact, by letting
x → 2nx and y → 2ny, from (2.1), we have:

||f(
2n(x + y)

)
+

1

2
[f

(
2n(x− y)

)
+ f

(
2n(y − x)

)
]− 2[f

(
2nx

)
+ f

(
2ny

)
]||

≤ ε
(||2nx||α2 ||2ny||α2 + ||2nx||α + ||2ny||α)

.

Next, by multiplying with 2−2n we obtain

0 ≤ ||2−2nf
(
2n(x + y)

)
+

1

2
[2−2nf

(
2n(x− y)

)
+ 2−2nf

(
2n(y − x)

)
]

− 2[2−2nf
(
2nx

)
+ 2−2nf

(
2ny

)
]||

≤ 2n(α−2)ε
(||x||α2 ||y||α2 + ||x||α + ||y||α)

and by letting n →∞, for α < 2 we can conclude that an Q : X → Y truly exists
such that: Q(x) = limn→∞ 2−2nf(2nx) satisfies the Euler-Lagrange type quadratic
property

Q(x + y) +
1

2
[Q(x− y) + Q(y − x)] = 2[Q(x) + Q(y)]. (2.15)

Therefore, existence of Theorem holds.
Step 5. We need to prove that Q is unique.

Observe, from (2.15), that for a) x = y = 0, b) x = x, y = 0 and c) x = y, we
obtain:

a) Q(0) = 0, b) Q(−x) = Q(x) and c) Q(2x) = 22Q(x),

respectively. Therefore, by induction, by claiming that Q(2n−1x) = 22(n−1)Q(x),
we can show that

Q(2nx) = 22Q(2n−1x) = 22nQ(x)

or equivalently
Q(x) = 2−2nQ(2nx). (2.16)

Assume, now, the existence of another Q′ : X → Y, such that Q′(x) = 2−2nQ′(2nx).
With the aid of the (2.14)-(2.16) and the triangular inequality, one gets

0 ≤ ||Q(x)−Q′(x)|| = ||2−2nQ(2nx)− 2−2nQ′(2nx)||
≤ ||2−2nQ(2nx)− 2−2nf(2nx)||+ ||2−2nf(2nx)− 2−2nQ′(2nx)||
≤ 2n(α−2) 6ε

4− 2α
||x||α

→ 0,

as n → ∞, (α < 2). Thus, the uniqueness of Q is proved and the stability of
Euler-Lagrange type quadratic mapping Q : X → Y is established.

The proof for the case of α > 2 is similar to the proof for −∞ < α < 2.
In fact, we can find the general inequality

||f(x)− 22nf(2−nx)|| ≤ 3ε

2α − 4
(1− 2n(2−α))||x||α, (2.17)

for all n ∈ N − {0}. Thus from this inequality (2.17) and the formula

Q(x) = lim
n→∞

22nf(2−nx),
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for n →∞, we get the inequality

||f(x)−Q(x)|| ≤ 3ε

2α − 4
||x||α, for α > 2.

The rest of the proof for α > 2 is omitted as similar to the above mentioned proof
for −∞ < α < 2. ¤
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