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B.Y. CHEN INEQUALITIES FOR BI-SLANT SUBMANIFOLDS
IN GENERALIZED COMPLEX SPACE FORMS

S.S. SHUKLA1 AND PAWAN KUMAR RAO2∗

Abstract. The aim of the present paper is to study Chen inequalities for
slant, bi-slant and semi-slant submanifolds in generalized complex space forms.

1. Introduction

In [7] B.Y. Chen recalls one of the basic problems in submanifold theory as
to find simple relationships between the main extrinsic invariants and the main
intrinsic invariants of a submanifold. In [5] he established a sharp inequality
for the sectional curvature of a submanifold in a real space forms in terms of
the scalar curvature and squared mean curvature. Afterward several geometers
[16],[20],[23] obtained similar inequalities for submanifolds in generalized complex
space forms. Many geometers also studied contact version of above inequalities
[1],[13],[15]. In this article, we establish Chen inequalities for bi-slant and semi-
slant submanifolds in generalized complex space forms.

2. Preliminaries

Let M̃ be an almost Hermitian manifold with an almost complex structure J
and Riemannian metric g. If J is integrable, i.e. the Nijenhuis tensor [J, J ] of J

vanishes, then M̃ is called a Hermitian manifold. The fundamental 2-form Ω of
M̃ is defined by

(2.1) Ω(X,Y ) = g(X, JY ), for all, X,Y ∈ TM̃ .
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An almost Hermitian manifold M̃ is called an almost Kaehler manifold if the
fundamental 2-form Ω is closed and it becomes Kaehler manifold if ∇̃J = 0,
where ∇̃ denotes the operator of covariant differentiation with respect to g on
M̃ .

If an almost complex structure J satisfies

(2.2) (∇̃XJ)Y + (∇̃Y J)X = 0,

for any vector fields X and Y on M̃ , then the manifold is called a nearly Kaehler
manifold.

A. Gray [14] introduced the notion of constant type for a nearly Kaehler manifold,
which led to the definition of RK-manifolds. An RK-manifold M̃ is an almost
Hermitian manifold for which the curvature tensor R̃ is J-invariant, i.e.

(2.3) R̃(JX, JY, JZ, JW ) = R̃(X,Y, Z,W ),

for all vector fields X,Y, Z,W ∈ TM̃ .

An almost Hermitian manifold M̃ is said to have (pointwise) constant type if for
each p ∈ M̃ and for all vector fields X, Y, Z ∈ TpM̃ such that

(2.4) g(X, Y ) = g(X, Z) = g(X, JY ) = g(X, JZ) = 0,

g(Y, Y ) = 1 = g(Z, Z),

we have

(2.5) R̃(X, Y, X, Y )− R̃(X,Y, JX, JY ) = R̃(X, Z, X, Z)− R̃(X,Z, JX, JZ).

An RK-manifold M̃ has (pointwise) constant type if and only if there is a
differentiable function α on M̃ such that

(2.6) R̃(X, Y, X, Y )− R̃(X,Y, JX, JY ) = α{g(X, X)g(Y, Y )− g2(X, Y )

− g2(X, JY )},
for all vector fields X,Y ∈ TM̃ .

Furthermore, M̃ has global constant type if α is constant. The function α is called
the constant type of M̃ . An RK-manifold of constant holomorphic sectional cur-
vature c and constant type α is called a generalized complex space form, denoted
by M̃(c, α). The curvature tensor R̃ of M̃(c, α) has the following expression:

(2.7) R̃(X, Y, Z, W ) = c+3α
4
{g(X, Z)g(Y, W )− g(X,W )g(Y, Z)}

+ c−α
4
{g(JX,Z)g(JY, W )− g(JX, W )g(JY, Z)

+ 2g(X, JY )g(Z, JW )},
for all vector fields X,Y, Z,W ∈ TM̃ .
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If c = α, then M̃(c, α) is a space of constant curvature. A complex space form
M̃(c) (i.e., a Kaehler manifold of constant holomorphic sectional curvature c)
belongs to the class of almost Hermitian manifold M̃(c, α) (with constant type
zero).

Let M be a Riemannian manifold and K(π) the sectional curvature of M
associated with a plane section π ⊂ TpM, p ∈ M .

For any orthonormal basis {e1, ....., en} of the tangent space TpM , the scalar
curvature τ at p is defined by

(2.8) τ(p) =
∑
i<j

K(ei ∧ ej).

We denote by

(2.9) (inf K)(p) =inf {K(π) : π ⊂ TpM, dim π = 2}.
The first Chen invariant δM(p) is given by

(2.10) δM(p) = τ(p)− (inf K)(p).

Let L be a subspace of TpM of dimension k ≥ 2 and {e1, ....., ek} an orthonormal
basis of L. Define τ(L) be the scalar curvature of the k-plane section L by

(2.11) τ(L) =
∑
i<j

K(ei ∧ ej), i, j = 1, ....., k.

Given an orthonormal basis {e1, ....., en} of the tangent space TpM , we denote by
τ1.....k the scalar curvature of k-plane section spanned by e1, ....., ek. The scalar
curvature τ(p) of M at p is the scalar curvature of the tangent space of M at p.
If L is a 2-plane section, then τ(L) reduces to the sectional curvature K(L) of
the plane section L. If K(π) is the sectional curvature of M for a plane section
π in TpM, p ∈ M , then scalar curvature τ(p) at p is given by

(2.12) τ(p) =
∑
i<j

Kij,

where {e1, ....., en} is an orthonormal basis for TpM and Kij is the sectional
curvature of the plane section spanned by ei and ej at p ∈ M .

We recall the following Lemma of Chen [6].

Lemma 2.1. Let n ≥ 2 and a1, ....., an, b be (n+1)-real numbers, such that

(2.13) (
n∑

i=1

ai)
2 = (n− 1)(

n∑
i=1

a2
i + b).

Then 2a1a2 ≥ b with equality holding if and only if

a1 + a2 = a3 = ....... = an.
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Let M be an n-dimensional submanifold of a 2m-dimensional generalized complex
space form M̃(c, α) and we denote by h, ∇ and ∇⊥ the second fundamental form
of M , the induced connection on M and the normal bundle T⊥M . Then, the
Gauss and Weingarten formulae are given respectively

(2.14) ∇̃XY = ∇XY + h(X,Y )

and

(2.15) ∇̃XV = −AV X +∇⊥
XV ,

for all vector fields X,Y tangent to M and vector field V normal to M , where
AV is the shape operator in the direction of V . The second fundamental form
and the shape operator are related by

(2.16) g(h(X,Y ), V ) = g(AV X, Y ).

Let R be the Riemannian curvature tensor of M , then the equation of Gauss
is given by,

(2.17) R̃(X, Y, Z,W ) = R(X,Y, Z,W ) + g(h(X,W ), h(Y, Z))
− g(h(X, Z), h(Y,W )),

for any vector fields X,Y, Z, W tangent to M .

Let p ∈ M and {e1, ....., en} an orthonormal basis of the tangent space TpM . We
denote by H(p) the mean curvature vector at p, that is

(2.18) H(p) = 1
n

n∑
i=1

h(ei, ei).

Also, we set

(2.19) hr
ij = g(h(ei, ej), er), i, j ∈ {1, ............., n}, r ∈ {n + 1, ....., 2m},

and

(2.20) ||h||2 =
n∑

i,j=1

g(h(ei, ej), h(ei, ej)).

For any p ∈ M and X ∈ TpM , we put

(2.21) JX = PX + FX,

where PX and FX are the tangential and normal components of JX respec-
tively.

Let us denote

(2.22) ||P ||2 =
n∑

i,j=1

g2(Pei, ej).
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Now, we recall that for a submanifold M in a Riemannian manifold, the relative
null space of M at a point p is defined by

Np = {X ∈ TpM | h(X,Y ) = 0, for all Y ∈ TpM}.
Definition(2.1)[2]. A differential distribution D on M is called a slant distri-
bution if for each p ∈ M and each non-zero vector X ∈ Dp, the angle θD(X)
between JX and the vector subspace Dp is constant, which is independent of the
choice of p ∈ M and X ∈ Dp. In this case, the constant angle θD is called the
slant angle of the distribution D.

Definition(2.2)[2]. A submanifold M is said to be a slant submanifold if for
any p ∈ M and X ∈ TpM , the angle between JX and TpM is constant, i.e., it
does not depend on the choice of p ∈ M and X ∈ TpM . The angle θ ∈ [0, π

2
] is

called the slant angle of M in M̃ .

Invariant and anti-invariant submanifolds are slant submanifolds with slant
angle θ = 0 and θ = π

2
, respectively. A slant submanifold which is neither

invariant nor anti-invariant is called a proper slant submanifold.

Definition(2.3)[3]. A submanifold M is called a bi-slant submanifold of M̃ if
there exist two orthogonal distributions D1 and D2 on M , such that

(i) TM admits the orthogonal direct decomposition TM = D1 ⊕D2,
(ii) for any i = 1, 2, Di is slant distribution with slant angle θi.

On the other hand, CR-submanifolds of M̃ are bi-slant submanifolds with θ1 = 0
and θ2 = π

2
.

Let 2d1 =dimD1 and 2d2 =dimD2.

If either d1 or d2 vanishes, the bi-slant submanifold is a slant submanifold. Thus,
slant submanifolds are particular cases of bi-slant submanifolds.

Definition(2.4)[3]. A submanifold M is said to be a semi-slant submanifold of
M̃ if there exist two orthogonal distributions D1 and D2 on M , such that

(i) TM admits the orthogonal direct decomposition TM = D1 ⊕D2,
(ii) the distribution D1 is an invariant distribution, that is, J(D1) = D1,
(iii) the distribution D2 is slant with angle θ 6= 0.

The invariant distribution of a semi-slant submanifold is a slant distribution
with zero slant angle. Thus, it is obvious that, semi-slant submanifolds are par-
ticular cases of bi-slant submanifolds. However if 2d1 =dimD1 and 2d2 =dimD2

(a) d2 = 0, then M is an invariant submanifold.
(b) d1 = 0 and θ = π

2
, then M is an anti-invariant submanifold.

(c) d1 = 0 and θ 6= π
2
, then M is a proper slant submanifold, with slant angle θ.

A semi-slant submanifold is proper if d1d2 6= 0 and θ 6= π
2
.
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3. B.Y. Chen inequalities

In this section, we establish Chen inequalities for proper bi-slant submanifolds
in a generalized complex space form. We consider a plane section π invariant by
P and denote dimD1 = 2d1 and dimD2 = 2d2.

Theorem 3.1. Let M be an n-dimensional proper bi-slant submanifold of a
2m-dimensional generalized complex space form M̃(c, α). Then

(I) For any plane section π invariant by P and tangent to D1,

(3.1) δM ≤ n−2
2
{ n2

n−1
||H||2 + c+3α

4
(n + 1)}

+ (c−α)
4
{3(d1 − 1) cos2 θ1 + 3d2 cos2 θ2}

and

(II) For any plane section π invariant by P and tangent to D2,

(3.2) δM ≤ n−2
2
{ n2

n−1
||H||2 + c+3α

4
(n + 1)}

+ c−α
4
{3d1 cos2 θ1 + 3(d2 − 1) cos2 θ2}.

The equality case of inequalities (3.1) and (3.2) hold at a point p ∈ M if and only
if there exists an orthonormal basis {e1, e2, ....., en} of TpM and an orthonormal

basis {en+1, ....., e2m} of T⊥
p M such that the shape operators of M in M̃(c, α) at

p have the following forms:

(3.3) An+1 =




a 0 0 ..... 0
0 b 0 ..... 0
0 0 µ ..... 0
.. .. .. .....
0 0 0 ..... µ




, a + b = µ,

(3.4) Ar =




hr
11 hr

12 0 ..... 0
hr

12 −hr
11 0 ..... 0

0 0 0 ..... 0
.. .. .. .....
0 0 0 ..... 0




where

(3.5) Ar = Aer , r = n + 1, ....., 2m.

(3.6) hr
ij = g(h(ei, ej), er), r = n + 1, ....., 2m.

Proof. The Gauss equation for the submanifold M is given by

(3.7) R̃(X, Y, Z, W ) = R(X,Y, Z,W ) + g(h(X, W ), h(Y, Z))
− g(h(X,Z), h(Y,W )),
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for all vector fields X, Y, Z, W ∈ TM , where R̃, R denote the curvature tensors
of M̃(c, α) and M respectively.

The curvature tensor R̃ of M̃(c, α) has the following expression [20]:

(3.8) R̃(X, Y, Z, W ) = c+3α
4
{g(X, Z)g(Y, W )− g(X,W )g(Y, Z)}

+ c−α
4
{g(JX,Z)g(JY, W )− g(JX, W )g(JY, Z)

+ 2g(X, JY )g(Z, JW )},
for any vector fields X,Y, Z, W ∈ TM .

Let p ∈ M , we choose an orthonormal basis {e1, e2, ....., en} of TpM and an
orthonormal basis {en+1, ....., e2m} of T⊥

p M . By substituting X = Z = ei, Y =
W = ej in equation (3.8), we have

(3.9) R̃(ei, ej, ei, ej) = c+3α
4
{n2 − n}

+ c−α
4
{−g(Jei, ej)g(Jej, ei) + 2g(ei, Jej)g(ei, Jej)

= c+3α
4
{n2 − n}+ c−α

4
{3

n∑
i,j=1

g2(Jei, ej)}.

Let M be a proper bi-slant submanifold of M̃(c, α) and dim M = n = 2d1 + 2d2.
We consider an adapted bi-slant orthonormal frames

(3.10) e1, e2 = 1
cos θ1

Pe1, ......, e2d1−1, e2d1 = 1
cos θ1

Pe2d1−1,

e2d1+1, e2d1+2 = 1
cos θ2

Pe2d1+1,
...................................................,
...................................................,
e2d1+2d2−1, e2d1+2d2 = 1

cos θ2
Pe2d1+2d2−1.

Obviously, we have

(3.11) g2(Jei, ei+1) = cos2 θ1, for i ∈ {1, ....., 2d1 − 1} and

= cos2θ2, for i ∈ {2d1 + 1, ....., 2d1 + 2d2 − 1}.
Then, we have

(3.12)
n∑

i,j=1

g2(Jei, ej) = 2(d1 cos2 θ1 + d2 cos2 θ2).

Substituting (3.12) into (3.9), we have

(3.13) R̃(ei, ej, ei, ej) = c+3α
4
{n2 − n}+ c−α

4
{6(d1 cos2 θ1 + d2 cos2 θ2)}.

The equation (3.7) gives

(3.14) R̃(ei, ej, ei, ej) = 2τ + ||h||2 − n2||H||2.
By using equations (3.13) and (3.14), we get
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(3.15) 2τ = n2||H||2−||h||2+ c+3α
4
{n(n−1)}+ c−α

4
{6(d1 cos2 θ1+d2 cos2 θ2)}.

If we set

(3.16) ε = 2τ − n2

n−1
(n − 2)||H||2 − c+3α

4
{n(n − 1)} − c−α

4
{6(d1 cos2 θ1 +

d2 cos2 θ2)},
in equation (3.15), we get

(3.17) n2||H||2 = (n− 1)(ε + ||h||2).
Let p ∈ M, π ⊂ TpM , dimπ = 2 and π invariant by P .

Now, we consider two cases:

Case (a): The plane section π is tangent to D1.

We may assume that π = sp{e1, e2}. We choose en+1 = H
||H|| .

From the equation (3.17) becomes,

(3.18) (
n∑

i=1

hn+1
ii )2 = (n− 1){

2m∑
r=n+1

n∑
i,j=1

(hr
ij)

2 + ε}.

The above equation implies

(3.19) (
n∑

i=1

hn+1
ii )2 = (n− 1){

n∑
i=1

(hn+1
ii )2 +

∑
i6=j

(hn+1
ij )2 +

2m∑
r=n+2

n∑
i,j=1

(hr
ij)

2 + ε}.

Using the Lemma (2.1) and equation (3.19), we obtain

(3.20) 2hn+1
11 hn+1

22 ≥ ∑
i 6=j

(hn+1
ij )2 +

2m∑
r=n+2

n∑
i,j=1

(hr
ij)

2 + ε.

From the Gauss equation for X = Z = e1 and Y = W = e2, we get

(3.21) K(π) = c+3α
4

+ 3 c−α
4

cos2 θ1 +
2m∑

r=n+1

[hr
11h

r
22 − (hr

12)
2]

≥ c+3α
4

+ 3 c−α
4

cos2 θ1 + 1
2
[
∑
i6=j

(hn+1
ij )2 +

2m∑
r=n+2

n∑
i,j=1

(hr
ij)

2 + ε]

+
2m∑

r=n+2

hr
11h

r
22 −

2m∑
r=n+1

(hr
12)

2

= c+3α
4

+ 3 c−α
4

cos2 θ1 + 1
2

∑
i6=j

(hn+1
ij )2 + 1

2

2m∑
r=n+2

∑
i,j>2

(hr
ij)

2

+ 1
2

2m∑
r=n+2

(hr
11 + hr

22)
2 +

∑
j>2

[(hn+1
1j )2 + (hn+1

2j )2] + ε
2

≥ c+3α
4

+ 3 c−α
4

cos2 θ1 + ε
2
.
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From the equations (3.16), (3.21) and (2.9), it follows that

(3.22) inf K ≥ c+3α
4

+ 3 c−α
4

cos2 θ1 + τ − n2

2(n−1)
(n− 2)||H||2

− c+3α
8
{n(n− 1)} − c−α

8
{6(d1 cos2 θ1 + d2 cos2 θ2)}.

From the equations (3.22) and (2.10), we get

(3.23) δM ≤ n−2
2
{ n2

n−1
||H||2 + c+3α

4
(n + 1)}

+ c−α
4
{3(d1 − 1) cos2 θ1 + 3d2 cos2 θ2},

where δM is Chen invariant. This proves the inequality (3.1).

Case (b): The plane section π is tangent to D2.

From the equation (3.17), we have

(
n∑

i=1

hn+1
ii )2 = (n− 1){

2m∑
r=n+1

n∑
i,j=1

(hr
ij)

2 + ε}.

The above equation implies

(3.24) (
n∑

i=1

hn+1
ii )2 = (n− 1){

n∑
i=1

(hn+1
ii )2 +

∑
i6=j

(hn+1
ij )2 +

2m∑
r=n+2

n∑
i,j=1

(hr
ij)

2 + ε}.

Using the Lemma (2.1) and equation (3.24), we obtain

(3.25) 2hn+1
11 hn+1

22 ≥ ∑
i 6=j

(hn+1
ij )2 +

2m∑
r=n+2

n∑
i,j=1

(hr
ij)

2 + ε.

From the Gauss equation for X = Z = e1 and Y = W = e2, we get

(3.26) K(π) = c+3α
4

+ 3 c−α
4

cos2 θ2 +
2m∑

r=n+1

[hr
11h

r
22 − (hr

12)
2]

≥ c+3α
4

+ 3 c−α
4

cos2 θ2 + 1
2
[
∑
i6=j

(hn+1
ij )2 +

2m∑
r=n+2

n∑
i,j=1

(hr
ij)

2 + ε]

+
2m∑

r=n+2

hr
11h

r
22 −

2m∑
r=n+1

(hr
12)

2

= c+3α
4

+ 3 c−α
4

cos2 θ2 + 1
2

∑
i6=j

(hn+1
ij )2 + 1

2

2m∑
r=n+2

n∑
i,j>2

(hr
ij)

2

+ 1
2

2m∑
r=n+2

(hr
11 + hr

22)
2 +

∑
j>2

[(hn+1
1j )2 + (hn+1

2j )2] + ε
2

≥ c+3α
4

+ 3 c−α
4

cos2 θ2 + ε
2
.

From the relations (3.16), (3.26) and (2.9), it follows that
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(3.27) inf K ≥ c+3α
4

+ 3 c−α
4

cos2 θ2 + τ − n2

2(n−1)
(n− 2)||H||2

− c+3α
8
{n(n− 1)} − c−α

8
{6(d1 cos2 θ1 + d2 cos2 θ2)}.

From the equations (3.27) and (2.10), we get

(3.28) δM ≤ n−2
2
{ n2

n−1
||H||2 + c+3α

4
(n + 1)},

+ c−α
4
{3d1 cos2 θ1 + 3(d2 − 1) cos2 θ2}.

This proves the inequality (3.2).

The equality case at a point p holds, if and only if equality holds in each of
inequalities (3.20), (3.23) and (3.28) and Lemma (2.1). So we have

hn+1
ij = 0, ∀ i 6= j, i, j > 2,

hr
ij = 0, ∀ i 6= j, i, j > 2, r = n + 1, ....., 2m,

hr
11 + hr

22 = 0, ∀ r = n + 2, ......, 2m,

hn+1
1j = hn+1

2j = 0, ∀ j > 2,

hn+1
11 + hn+1

2 = hn+1
33 = ...... = hn+1

nn .

We may choose {e1, e2} such that hn+1
12 = 0 and we denote by a = h11, b =

hr
22, µ = hn+1

33 = ....... = hn+1
nn . Then the shape operators take the desired forms.

Now, we can state the following:

Corollary 3.2. Let M be an n-dimensional proper semi-slant submanifold of a
2m-dimensional generalized complex space form M̃(c, α). Then

(I) For any plane section π invariant by P and tangent to D1,

(3.29) δM ≤ n−2
2
{ n2

n−1
||H||2 + c+3α

4
(n + 1)}

+ (c−α)
4
{3(d1 − 1) + 3d2 cos2 θ}

and

(II) For any plane section π invariant by P and tangent to D2,

(3.30) δM ≤ n−2
2
{ n2

n−1
||H||2 + c+3α

4
(n + 1)}

+ c−α
4
{3d1 + 3(d2 − 1) cos2 θ}.

The equality case of inequalities (3.29) and (3.30) holds at a point p ∈ M if and
only if there exists an orthonormal basis {e1, e2, ....., en} of TpM and an orthonor-

mal basis {en+1, ....., e2m} of T⊥
p M such that the shape operators of M in M̃(c, α)

at p have the forms (3.3) and (3.4).
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Corollary 3.3. Let M be an n-dimensional θ-slant submanifold of a 2m-dimensional
generalized complex space form M̃(c, α). Then

(3.31) δM ≤ n−2
2
{ n2

n−1
||H||2 + c+3α

4
(n + 1) + 3 c−α

4
cos2 θ}.

The equality case of the inequality (3.31) holds at a point p ∈ M if and only if
there exists an orthonormal basis {e1, ....., en} of TpM and an orthonormal basis

{en+1, ....., e2m} of T⊥
p M such that the shape operators of M in M̃(c, α) at p have

the forms (3.3) and (3.4).

Corollary 3.4. Let M be an n-dimensional invariant submanifold of a 2m-
dimensional generalized complex space form M̃(c, α). Then

(3.32) δM ≤ n−2
2
{ n2

n−1
||H||2 + c+3α

4
(n + 1) + 3 c−α

4
}.

The equality case of the inequality (3.32) holds at a point p ∈ M if and only if
there exists an orthonormal basis {e1, ....., en} of TpM and an orthonormal basis

{en+1, ....., e2m} of T⊥
p M such that the shape operators of M in M̃(c, α) at p have

the forms (3.3) and (3.4).

Corollary 3.5. Let M be an n-dimensional anti-invariant submanifold of a 2m-
dimensional generalized complex space form M̃(c, α). Then

(3.33) δM ≤ n−2
2
{ n2

n−1
||H||2 + c+3α

4
(n + 1)}.

The equality case of the inequality (3.33) holds at a point p ∈ M if and only if
there exists an orthonormal basis {e1, ....., en} of TpM and an orthonormal basis

{en+1, ....., e2m} of T⊥
p M such that the shape operators of M in M̃(c, α) at p have

the forms (3.3) and (3.4).
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