B.Y. CHEN INEQUALITIES FOR BI-SLANT SUBMANIFOLDS IN GENERALIZED COMPLEX SPACE FORMS

S.S. SHUKLA ${ }^{1}$ AND PAWAN KUMAR RAO ${ }^{2 *}$

Abstract. The aim of the present paper is to study Chen inequalities for slant, bi-slant and semi-slant submanifolds in generalized complex space forms.

1. Introduction

In [7] B.Y. Chen recalls one of the basic problems in submanifold theory as to find simple relationships between the main extrinsic invariants and the main intrinsic invariants of a submanifold. In [5] he established a sharp inequality for the sectional curvature of a submanifold in a real space forms in terms of the scalar curvature and squared mean curvature. Afterward several geometers [16],[20],[23] obtained similar inequalities for submanifolds in generalized complex space forms. Many geometers also studied contact version of above inequalities [1],[13],[15]. In this article, we establish Chen inequalities for bi-slant and semislant submanifolds in generalized complex space forms.

2. Preliminaries

Let \tilde{M} be an almost Hermitian manifold with an almost complex structure J and Riemannian metric g. If J is integrable, i.e. the Nijenhuis tensor $[J, J]$ of J vanishes, then \tilde{M} is called a Hermitian manifold. The fundamental 2 -form Ω of \tilde{M} is defined by

$$
\begin{equation*}
\Omega(X, Y)=g(X, J Y), \text { for all, } X, Y \in T \tilde{M} . \tag{2.1}
\end{equation*}
$$

[^0]An almost Hermitian manifold \tilde{M} is called an almost Kaehler manifold if the fundamental 2-form Ω is closed and it becomes Kaehler manifold if $\tilde{\nabla} J=0$, where $\tilde{\nabla}$ denotes the operator of covariant differentiation with respect to g on \tilde{M}.

If an almost complex structure J satisfies

$$
\begin{equation*}
\left(\tilde{\nabla}_{X} J\right) Y+\left(\tilde{\nabla}_{Y} J\right) X=0 \tag{2.2}
\end{equation*}
$$

for any vector fields X and Y on \tilde{M}, then the manifold is called a nearly Kaehler manifold.
A. Gray [14] introduced the notion of constant type for a nearly Kaehler manifold, which led to the definition of RK-manifolds. An RK-manifold \tilde{M} is an almost Hermitian manifold for which the curvature tensor \tilde{R} is J-invariant, i.e.

$$
\begin{equation*}
\tilde{R}(J X, J Y, J Z, J W)=\tilde{R}(X, Y, Z, W) \tag{2.3}
\end{equation*}
$$

for all vector fields $X, Y, Z, W \in T \tilde{M}$.
An almost Hermitian manifold \tilde{M} is said to have (pointwise) constant type if for each $p \in \tilde{M}$ and for all vector fields $X, Y, Z \in T_{p} \tilde{M}$ such that

$$
\begin{gather*}
g(X, Y)=g(X, Z)=g(X, J Y)=g(X, J Z)=0 \tag{2.4}\\
g(Y, Y)=1=g(Z, Z)
\end{gather*}
$$

we have

$$
\begin{equation*}
\tilde{R}(X, Y, X, Y)-\tilde{R}(X, Y, J X, J Y)=\tilde{R}(X, Z, X, Z)-\tilde{R}(X, Z, J X, J Z) \tag{2.5}
\end{equation*}
$$

An RK-manifold \tilde{M} has (pointwise) constant type if and only if there is a differentiable function α on \tilde{M} such that

$$
\begin{array}{r}
\tilde{R}(X, Y, X, Y)-\tilde{R}(X, Y, J X, J Y)=\alpha\left\{g(X, X) g(Y, Y)-g^{2}(X, Y)\right. \tag{2.6}\\
\left.-g^{2}(X, J Y)\right\}
\end{array}
$$

for all vector fields $X, Y \in T \tilde{M}$.
Furthermore, \tilde{M} has global constant type if α is constant. The function α is called the constant type of \tilde{M}. An RK-manifold of constant holomorphic sectional curvature c and constant type α is called a generalized complex space form, denoted by $\tilde{M}(c, \alpha)$. The curvature tensor \tilde{R} of $\tilde{M}(c, \alpha)$ has the following expression:

$$
\begin{align*}
\tilde{R}(X, Y, Z, W)= & \frac{c+3 \alpha}{4}\{g(X, Z) g(Y, W)-g(X, W) g(Y, Z)\} \tag{2.7}\\
& +\frac{c-\alpha}{4}\{g(J X, Z) g(J Y, W)-g(J X, W) g(J Y, Z) \\
& +2 g(X, J Y) g(Z, J W)\},
\end{align*}
$$

for all vector fields $X, Y, Z, W \in T \tilde{M}$.

If $c=\alpha$, then $\tilde{M}(c, \alpha)$ is a space of constant curvature. A complex space form $\tilde{M}(c)$ (i.e., a Kaehler manifold of constant holomorphic sectional curvature c) belongs to the class of almost Hermitian manifold $\tilde{M}(c, \alpha)$ (with constant type zero).

Let M be a Riemannian manifold and $K(\pi)$ the sectional curvature of M associated with a plane section $\pi \subset T_{p} M, p \in M$.

For any orthonormal basis $\left\{e_{1}, \ldots . ., e_{n}\right\}$ of the tangent space $T_{p} M$, the scalar curvature τ at p is defined by

$$
\begin{equation*}
\tau(p)=\sum_{i<j} K\left(e_{i} \wedge e_{j}\right) \tag{2.8}
\end{equation*}
$$

We denote by

$$
\begin{equation*}
(\inf K)(p)=\inf \left\{K(\pi): \pi \subset T_{p} M, \operatorname{dim} \pi=2\right\} \tag{2.9}
\end{equation*}
$$

The first Chen invariant $\delta_{M}(p)$ is given by

$$
\begin{equation*}
\delta_{M}(p)=\tau(p)-(\inf K)(p) . \tag{2.10}
\end{equation*}
$$

Let L be a subspace of $T_{p} M$ of dimension $k \geq 2$ and $\left\{e_{1}, \ldots ., e_{k}\right\}$ an orthonormal basis of L. Define $\tau(L)$ be the scalar curvature of the k-plane section L by

$$
\begin{equation*}
\tau(L)=\sum_{i<j} K\left(e_{i} \wedge e_{j}\right), i, j=1, \ldots \ldots, k \tag{2.11}
\end{equation*}
$$

Given an orthonormal basis $\left\{e_{1}, \ldots ., e_{n}\right\}$ of the tangent space $T_{p} M$, we denote by $\tau_{1 \ldots \ldots k}$ the scalar curvature of k-plane section spanned by $e_{1}, \ldots \ldots, e_{k}$. The scalar curvature $\tau(p)$ of M at p is the scalar curvature of the tangent space of M at p. If L is a 2-plane section, then $\tau(L)$ reduces to the sectional curvature $K(L)$ of the plane section L. If $K(\pi)$ is the sectional curvature of M for a plane section π in $T_{p} M, p \in M$, then scalar curvature $\tau(p)$ at p is given by

$$
\begin{equation*}
\tau(p)=\sum_{i<j} K_{i j} \tag{2.12}
\end{equation*}
$$

where $\left\{e_{1}, \ldots . ., e_{n}\right\}$ is an orthonormal basis for $T_{p} M$ and $K_{i j}$ is the sectional curvature of the plane section spanned by e_{i} and e_{j} at $p \in M$.

We recall the following Lemma of Chen [6].
Lemma 2.1. Let $n \geq 2$ and $a_{1}, \ldots . ., a_{n}, b$ be ($n+1$)-real numbers, such that

$$
\begin{equation*}
\left(\sum_{i=1}^{n} a_{i}\right)^{2}=(n-1)\left(\sum_{i=1}^{n} a_{i}^{2}+b\right) \tag{2.13}
\end{equation*}
$$

Then $2 a_{1} a_{2} \geq b$ with equality holding if and only if

$$
a_{1}+a_{2}=a_{3}=\ldots \ldots . .=a_{n}
$$

Let M be an n -dimensional submanifold of a 2 m -dimensional generalized complex space form $\tilde{M}(c, \alpha)$ and we denote by h, ∇ and ∇^{\perp} the second fundamental form of M, the induced connection on M and the normal bundle $T^{\perp} M$. Then, the Gauss and Weingarten formulae are given respectively

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\nabla}_{X} V=-A_{V} X+\nabla_{X}^{\perp} V \tag{2.15}
\end{equation*}
$$

for all vector fields X, Y tangent to M and vector field V normal to M, where A_{V} is the shape operator in the direction of V. The second fundamental form and the shape operator are related by

$$
\begin{equation*}
g(h(X, Y), V)=g\left(A_{V} X, Y\right) . \tag{2.16}
\end{equation*}
$$

Let R be the Riemannian curvature tensor of M, then the equation of Gauss is given by,

$$
\begin{align*}
\tilde{R}(X, Y, Z, W)= & R(X, Y, Z, W)+g(h(X, W), h(Y, Z)) \tag{2.17}\\
& -g(h(X, Z), h(Y, W)),
\end{align*}
$$

for any vector fields X, Y, Z, W tangent to M.
Let $p \in M$ and $\left\{e_{1}, \ldots . ., e_{n}\right\}$ an orthonormal basis of the tangent space $T_{p} M$. We denote by $H(p)$ the mean curvature vector at p, that is

$$
\begin{equation*}
H(p)=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right) . \tag{2.18}
\end{equation*}
$$

Also, we set

$$
\begin{equation*}
h_{i j}^{r}=g\left(h\left(e_{i}, e_{j}\right), e_{r}\right), i, j \in\{1, \ldots \ldots \ldots \ldots . ., n\}, r \in\{n+1, \ldots . ., 2 m\}, \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\|h\|^{2}=\sum_{i, j=1}^{n} g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right) \tag{2.20}
\end{equation*}
$$

For any $p \in M$ and $X \in T_{p} M$, we put

$$
\begin{equation*}
J X=P X+F X, \tag{2.21}
\end{equation*}
$$

where $P X$ and $F X$ are the tangential and normal components of $J X$ respectively.

Let us denote

$$
\begin{equation*}
\|P\|^{2}=\sum_{i, j=1}^{n} g^{2}\left(P e_{i}, e_{j}\right) \tag{2.22}
\end{equation*}
$$

Now, we recall that for a submanifold M in a Riemannian manifold, the relative null space of M at a point p is defined by

$$
N_{p}=\left\{X \in T_{p} M \mid h(X, Y)=0, \text { for all } Y \in T_{p} M\right\} .
$$

Definition(2.1)[2]. A differential distribution D on M is called a slant distribution if for each $p \in M$ and each non-zero vector $X \in D_{p}$, the angle $\theta_{D}(X)$ between $J X$ and the vector subspace D_{p} is constant, which is independent of the choice of $p \in M$ and $X \in D_{p}$. In this case, the constant angle θ_{D} is called the slant angle of the distribution D.

Definition(2.2)[2]. A submanifold M is said to be a slant submanifold if for any $p \in M$ and $X \in T_{p} M$, the angle between $J X$ and $T_{p} M$ is constant, i.e., it does not depend on the choice of $p \in M$ and $X \in T_{p} M$. The angle $\theta \in\left[0, \frac{\pi}{2}\right]$ is called the slant angle of M in \tilde{M}.

Invariant and anti-invariant submanifolds are slant submanifolds with slant angle $\theta=0$ and $\theta=\frac{\pi}{2}$, respectively. A slant submanifold which is neither invariant nor anti-invariant is called a proper slant submanifold.

Definition(2.3)[3]. A submanifold M is called a bi-slant submanifold of \tilde{M} if there exist two orthogonal distributions D_{1} and D_{2} on M, such that
(i) $T M$ admits the orthogonal direct decomposition $T M=D_{1} \oplus D_{2}$,
(ii) for any $i=1,2, D_{i}$ is slant distribution with slant angle θ_{i}.

On the other hand, CR-submanifolds of \tilde{M} are bi-slant submanifolds with $\theta_{1}=0$ and $\theta_{2}=\frac{\pi}{2}$.

Let $2 d_{1}=\operatorname{dim} D_{1}$ and $2 d_{2}=\operatorname{dim} D_{2}$.
If either d_{1} or d_{2} vanishes, the bi-slant submanifold is a slant submanifold. Thus, slant submanifolds are particular cases of bi-slant submanifolds.

Definition(2.4)[3]. A submanifold M is said to be a semi-slant submanifold of \tilde{M} if there exist two orthogonal distributions D_{1} and D_{2} on M, such that
(i) $T M$ admits the orthogonal direct decomposition $T M=D_{1} \oplus D_{2}$,
(ii) the distribution D_{1} is an invariant distribution, that is, $J\left(D_{1}\right)=D_{1}$,
(iii) the distribution D_{2} is slant with angle $\theta \neq 0$.

The invariant distribution of a semi-slant submanifold is a slant distribution with zero slant angle. Thus, it is obvious that, semi-slant submanifolds are particular cases of bi-slant submanifolds. However if $2 d_{1}=\operatorname{dim} D_{1}$ and $2 d_{2}=\operatorname{dim} D_{2}$
(a) $d_{2}=0$, then M is an invariant submanifold.
(b) $d_{1}=0$ and $\theta=\frac{\pi}{2}$, then M is an anti-invariant submanifold.
(c) $d_{1}=0$ and $\theta \neq \frac{\pi}{2}$, then M is a proper slant submanifold, with slant angle θ.

A semi-slant submanifold is proper if $d_{1} d_{2} \neq 0$ and $\theta \neq \frac{\pi}{2}$.

3. B.Y. Chen inequalities

In this section, we establish Chen inequalities for proper bi-slant submanifolds in a generalized complex space form. We consider a plane section π invariant by P and denote $\operatorname{dim} D_{1}=2 d_{1}$ and $\operatorname{dim} D_{2}=2 d_{2}$.

Theorem 3.1. Let M be an n-dimensional proper bi-slant submanifold of a $2 m$-dimensional generalized complex space form $\tilde{M}(c, \alpha)$. Then
(I) For any plane section π invariant by P and tangent to D_{1},

$$
\begin{align*}
\delta_{M} \leq \frac{n-2}{2} & \left\{\frac{n^{2}}{n-1}\|H\|^{2}+\frac{c+3 \alpha}{4}(n+1)\right\} \tag{3.1}\\
& +\frac{(c-\alpha)}{4}\left\{3\left(d_{1}-1\right) \cos ^{2} \theta_{1}+3 d_{2} \cos ^{2} \theta_{2}\right\}
\end{align*}
$$

and
(II) For any plane section π invariant by P and tangent to D_{2},

$$
\begin{align*}
\delta_{M} \leq \frac{n-2}{2} & \left\{\frac{n^{2}}{n-1}\|H\|^{2}+\frac{c+3 \alpha}{4}(n+1)\right\} \tag{3.2}\\
& +\frac{c-\alpha}{4}\left\{3 d_{1} \cos ^{2} \theta_{1}+3\left(d_{2}-1\right) \cos ^{2} \theta_{2}\right\} .
\end{align*}
$$

The equality case of inequalities (3.1) and (3.2) hold at a point $p \in M$ if and only if there exists an orthonormal basis $\left\{e_{1}, e_{2}, \ldots ., e_{n}\right\}$ of $T_{p} M$ and an orthonormal basis $\left\{e_{n+1}, \ldots . ., e_{2 m}\right\}$ of $T_{p}^{\perp} M$ such that the shape operators of M in $\tilde{M}(c, \alpha)$ at p have the following forms:

$$
A_{n+1}=\left(\begin{array}{ccccc}
a & 0 & 0 & \ldots . . & 0 \tag{3.3}\\
0 & b & 0 & \ldots . & 0 \\
0 & 0 & \mu & \ldots . & 0 \\
. & . . & . & \ldots . & \\
0 & 0 & 0 & \ldots . . & \mu
\end{array}\right), \quad a+b=\mu,
$$

$$
A_{r}=\left(\begin{array}{ccccc}
h_{11}^{r} & h_{12}^{r} & 0 & \ldots . . & 0 \tag{3.4}\\
h_{12}^{r} & -h_{11}^{r} & 0 & \ldots . & 0 \\
0 & 0 & 0 & \ldots . & 0 \\
. & . . & . & \ldots . & \\
0 & 0 & 0 & \ldots . & 0
\end{array}\right)
$$

where

$$
\begin{align*}
& A_{r}=A_{e_{r}}, r=n+1, \ldots \ldots, 2 m . \tag{3.5}\\
& h_{i j}^{r}=g\left(h\left(e_{i}, e_{j}\right), e_{r}\right), r=n+1, \ldots ., 2 m . \tag{3.6}
\end{align*}
$$

Proof. The Gauss equation for the submanifold M is given by

$$
\begin{gather*}
\tilde{R}(X, Y, Z, W)=R(X, Y, Z, W)+g(h(X, W), h(Y, Z)) \tag{3.7}\\
-g(h(X, Z), h(Y, W)),
\end{gather*}
$$

for all vector fields $X, Y, Z, W \in T M$, where \tilde{R}, R denote the curvature tensors of $\tilde{M}(c, \alpha)$ and M respectively.

The curvature tensor \tilde{R} of $\tilde{M}(c, \alpha)$ has the following expression [20]:

$$
\begin{align*}
\tilde{R}(X, Y, Z, W)=\frac{c+3 \alpha}{4} & \{g(X, Z) g(Y, W)-g(X, W) g(Y, Z)\} \tag{3.8}\\
& +\frac{c-\alpha}{4}\{g(J X, Z) g(J Y, W)-g(J X, W) g(J Y, Z) \\
& +2 g(X, J Y) g(Z, J W)\}
\end{align*}
$$

for any vector fields $X, Y, Z, W \in T M$.
Let $p \in M$, we choose an orthonormal basis $\left\{e_{1}, e_{2}, \ldots . ., e_{n}\right\}$ of $T_{p} M$ and an orthonormal basis $\left\{e_{n+1}, \ldots ., e_{2 m}\right\}$ of $T_{p}^{\perp} M$. By substituting $X=Z=e_{i}, Y=$ $W=e_{j}$ in equation (3.8), we have

$$
\begin{align*}
\tilde{R}\left(e_{i}, e_{j}, e_{i}, e_{j}\right)= & \frac{c+3 \alpha}{4}\left\{n^{2}-n\right\} \tag{3.9}\\
& +\frac{c-\alpha}{4}\left\{-g\left(J e_{i}, e_{j}\right) g\left(J e_{j}, e_{i}\right)+2 g\left(e_{i}, J e_{j}\right) g\left(e_{i}, J e_{j}\right)\right. \\
= & \frac{c+3 \alpha}{4}\left\{n^{2}-n\right\}+\frac{c-\alpha}{4}\left\{3 \sum_{i, j=1}^{n} g^{2}\left(J e_{i}, e_{j}\right)\right\} .
\end{align*}
$$

Let M be a proper bi-slant submanifold of $\tilde{M}(c, \alpha)$ and $\operatorname{dim} M=n=2 d_{1}+2 d_{2}$. We consider an adapted bi-slant orthonormal frames

$$
\begin{align*}
& e_{1}, e_{2}=\frac{1}{\cos \theta_{1}} P e_{1}, \ldots \ldots, e_{2 d_{1}-1}, e_{2 d_{1}}=\frac{1}{\cos \theta_{1}} P e_{2 d_{1}-1}, \tag{3.10}\\
& e_{2 d_{1}+1}, e_{2 d_{1}+2}=\frac{1}{\cos \theta_{2}} P e_{2 d_{1}+1}, \\
& \quad \ldots \ldots
\end{align*}
$$

Obviously, we have

$$
\begin{align*}
g^{2}\left(J e_{i}, e_{i+1}\right)= & \cos ^{2} \theta_{1}, \text { for } i \in\left\{1, \ldots ., 2 d_{1}-1\right\} \text { and } \tag{3.11}\\
& =\cos ^{2} \theta_{2}, \text { for } i \in\left\{2 d_{1}+1, \ldots ., 2 d_{1}+2 d_{2}-1\right\} .
\end{align*}
$$

Then, we have

$$
\begin{equation*}
\sum_{i, j=1}^{n} g^{2}\left(J e_{i}, e_{j}\right)=2\left(d_{1} \cos ^{2} \theta_{1}+d_{2} \cos ^{2} \theta_{2}\right) \tag{3.12}
\end{equation*}
$$

Substituting (3.12) into (3.9), we have

$$
\begin{equation*}
\tilde{R}\left(e_{i}, e_{j}, e_{i}, e_{j}\right)=\frac{c+3 \alpha}{4}\left\{n^{2}-n\right\}+\frac{c-\alpha}{4}\left\{6\left(d_{1} \cos ^{2} \theta_{1}+d_{2} \cos ^{2} \theta_{2}\right)\right\} . \tag{3.13}
\end{equation*}
$$

The equation (3.7) gives

$$
\begin{equation*}
\tilde{R}\left(e_{i}, e_{j}, e_{i}, e_{j}\right)=2 \tau+\|h\|^{2}-n^{2}\|H\|^{2} \tag{3.14}
\end{equation*}
$$

By using equations (3.13) and (3.14), we get

$$
\begin{equation*}
2 \tau=n^{2}\|H\|^{2}-\|h\|^{2}+\frac{c+3 \alpha}{4}\{n(n-1)\}+\frac{c-\alpha}{4}\left\{6\left(d_{1} \cos ^{2} \theta_{1}+d_{2} \cos ^{2} \theta_{2}\right)\right\} . \tag{3.15}
\end{equation*}
$$

If we set

$$
\begin{equation*}
\epsilon=2 \tau-\frac{n^{2}}{n-1}(n-2)\|H\|^{2}-\frac{c+3 \alpha}{4}\{n(n-1)\}-\frac{c-\alpha}{4}\left\{6 \left(d_{1} \cos ^{2} \theta_{1}+\right.\right. \tag{3.16}
\end{equation*}
$$ $\left.\left.d_{2} \cos ^{2} \theta_{2}\right)\right\}$,

in equation (3.15), we get

$$
\begin{equation*}
n^{2}\|H\|^{2}=(n-1)\left(\epsilon+\|h\|^{2}\right) . \tag{3.17}
\end{equation*}
$$

Let $p \in M, \pi \subset T_{p} M, \operatorname{dim} \pi=2$ and π invariant by P.
Now, we consider two cases:
Case (a): The plane section π is tangent to D_{1}.
We may assume that $\pi=s p\left\{e_{1}, e_{2}\right\}$. We choose $e_{n+1}=\frac{H}{\|H\|}$.
From the equation (3.17) becomes,

$$
\begin{equation*}
\left(\sum_{i=1}^{n} h_{i i}^{n+1}\right)^{2}=(n-1)\left\{\sum_{r=n+1}^{2 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}+\epsilon\right\} . \tag{3.18}
\end{equation*}
$$

The above equation implies

$$
\begin{equation*}
\left(\sum_{i=1}^{n} h_{i i}^{n+1}\right)^{2}=(n-1)\left\{\sum_{i=1}^{n}\left(h_{i i}^{n+1}\right)^{2}+\sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}+\epsilon\right\} . \tag{3.19}
\end{equation*}
$$

Using the Lemma (2.1) and equation (3.19), we obtain

$$
\begin{equation*}
2 h_{11}^{n+1} h_{22}^{n+1} \geq \sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}+\epsilon . \tag{3.20}
\end{equation*}
$$

From the Gauss equation for $X=Z=e_{1}$ and $Y=W=e_{2}$, we get

$$
\begin{align*}
K(\pi)= & \frac{c+3 \alpha}{4}+3 \frac{c-\alpha}{4} \cos ^{2} \theta_{1}+\sum_{r=n+1}^{2 m}\left[h_{11}^{r} h_{22}^{r}-\left(h_{12}^{r}\right)^{2}\right] \tag{3.21}\\
\geq & \frac{c+3 \alpha}{4}+3 \frac{c-\alpha}{4} \cos ^{2} \theta_{1}+\frac{1}{2}\left[\sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}+\epsilon\right] \\
& +\sum_{r=n+2}^{2 m} h_{11}^{r} h_{22}^{r}-\sum_{r=n+1}^{2 m}\left(h_{12}^{r}\right)^{2} \\
= & \frac{c+3 \alpha}{4}+3 \frac{c-\alpha}{4} \cos ^{2} \theta_{1}+\frac{1}{2} \sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 m} \sum_{i, j>2}\left(h_{i j}^{r}\right)^{2} \\
& +\frac{1}{2} \sum_{r=n+2}^{2 m}\left(h_{11}^{r}+h_{22}^{r}\right)^{2}+\sum_{j>2}\left[\left(h_{1 j}^{n+1}\right)^{2}+\left(h_{2 j}^{n+1}\right)^{2}\right]+\frac{\epsilon}{2} \\
\geq & \frac{c+3 \alpha}{4}+3 \frac{c-\alpha}{4} \cos ^{2} \theta_{1}+\frac{\epsilon}{2} .
\end{align*}
$$

From the equations (3.16), (3.21) and (2.9), it follows that

$$
\begin{align*}
\inf K \geq & \frac{c+3 \alpha}{4}+3 \frac{c-\alpha}{4} \cos ^{2} \theta_{1}+\tau-\frac{n^{2}}{2(n-1)}(n-2)\|H\|^{2} \tag{3.22}\\
& \quad-\frac{c+3 \alpha}{8}\{n(n-1)\}-\frac{c-\alpha}{8}\left\{6\left(d_{1} \cos ^{2} \theta_{1}+d_{2} \cos ^{2} \theta_{2}\right)\right\}
\end{align*}
$$

From the equations (3.22) and (2.10), we get

$$
\begin{align*}
\delta_{M} \leq & \frac{n-2}{2}\left\{\frac{n^{2}}{n-1}\|H\|^{2}+\frac{c+3 \alpha}{4}(n+1)\right\} \tag{3.23}\\
& +\frac{c-\alpha}{4}\left\{3\left(d_{1}-1\right) \cos ^{2} \theta_{1}+3 d_{2} \cos ^{2} \theta_{2}\right\}
\end{align*}
$$

where δ_{M} is Chen invariant. This proves the inequality (3.1).
Case (b): The plane section π is tangent to D_{2}.
From the equation (3.17), we have

$$
\left(\sum_{i=1}^{n} h_{i i}^{n+1}\right)^{2}=(n-1)\left\{\sum_{r=n+1}^{2 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}+\epsilon\right\} .
$$

The above equation implies

$$
\begin{equation*}
\left(\sum_{i=1}^{n} h_{i i}^{n+1}\right)^{2}=(n-1)\left\{\sum_{i=1}^{n}\left(h_{i i}^{n+1}\right)^{2}+\sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}+\epsilon\right\} . \tag{3.24}
\end{equation*}
$$

Using the Lemma (2.1) and equation (3.24), we obtain

$$
\begin{equation*}
2 h_{11}^{n+1} h_{22}^{n+1} \geq \sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}+\epsilon . \tag{3.25}
\end{equation*}
$$

From the Gauss equation for $X=Z=e_{1}$ and $Y=W=e_{2}$, we get

$$
\begin{align*}
K(\pi)= & \frac{c+3 \alpha}{4}+3 \frac{c-\alpha}{4} \cos ^{2} \theta_{2}+\sum_{r=n+1}^{2 m}\left[h_{11}^{r} h_{22}^{r}-\left(h_{12}^{r}\right)^{2}\right] \tag{3.26}\\
\geq & \frac{c+3 \alpha}{4}+3 \frac{c-\alpha}{4} \cos ^{2} \theta_{2}+\frac{1}{2}\left[\sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}+\epsilon\right] \\
& +\sum_{r=n+2}^{2 m} h_{11}^{r} h_{22}^{r}-\sum_{r=n+1}^{2 m}\left(h_{12}^{r}\right)^{2} \\
= & \frac{c+3 \alpha}{4}+3 \frac{c-\alpha}{4} \cos ^{2} \theta_{2}+\frac{1}{2} \sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 m} \sum_{i, j>2}^{n}\left(h_{i j}^{r}\right)^{2} \\
& +\frac{1}{2} \sum_{r=n+2}^{2 m}\left(h_{11}^{r}+h_{22}^{r}\right)^{2}+\sum_{j>2}\left[\left(h_{1 j}^{n+1}\right)^{2}+\left(h_{2 j}^{n+1}\right)^{2}\right]+\frac{\epsilon}{2} \\
\geq & \frac{c+3 \alpha}{4}+3 \frac{c-\alpha}{4} \cos ^{2} \theta_{2}+\frac{\epsilon}{2} .
\end{align*}
$$

From the relations (3.16), (3.26) and (2.9), it follows that

$$
\begin{align*}
\inf K \geq & \frac{c+3 \alpha}{4}+3 \frac{c-\alpha}{4} \cos ^{2} \theta_{2}+\tau-\frac{n^{2}}{2(n-1)}(n-2)\|H\|^{2} \tag{3.27}\\
& \quad-\frac{c+3 \alpha}{8}\{n(n-1)\}-\frac{c-\alpha}{8}\left\{6\left(d_{1} \cos ^{2} \theta_{1}+d_{2} \cos ^{2} \theta_{2}\right)\right\} .
\end{align*}
$$

From the equations (3.27) and (2.10), we get

$$
\begin{align*}
\delta_{M} \leq & \frac{n-2}{2}\left\{\frac{n^{2}}{n-1}\|H\|^{2}+\frac{c+3 \alpha}{4}(n+1)\right\}, \tag{3.28}\\
& +\frac{c-\alpha}{4}\left\{3 d_{1} \cos ^{2} \theta_{1}+3\left(d_{2}-1\right) \cos ^{2} \theta_{2}\right\} .
\end{align*}
$$

This proves the inequality (3.2).
The equality case at a point p holds, if and only if equality holds in each of inequalities (3.20), (3.23) and (3.28) and Lemma (2.1). So we have

$$
\begin{aligned}
& h_{i j}^{n+1}=0, \forall i \neq j, i, j>2, \\
& h_{i j}^{r}=0, \forall i \neq j, i, j>2, r=n+1, \ldots \ldots, 2 m, \\
& h_{11}^{r}+h_{22}^{r}=0, \forall r=n+2, \ldots \ldots, 2 m, \\
& h_{1 j}^{n+1}=h_{2 j}^{n+1}=0, \forall j>2, \\
& h_{11}^{n+1}+h_{2}^{n+1}=h_{33}^{n+1}=\ldots \ldots=h_{n n}^{n+1} .
\end{aligned}
$$

We may choose $\left\{e_{1}, e_{2}\right\}$ such that $h_{12}^{n+1}=0$ and we denote by $a=h_{11}, b=$ $h_{22}^{r}, \mu=h_{33}^{n+1}=\ldots \ldots . .=h_{n n}^{n+1}$. Then the shape operators take the desired forms.

Now, we can state the following:
Corollary 3.2. Let M be an n-dimensional proper semi-slant submanifold of a $2 m$-dimensional generalized complex space form $\tilde{M}(c, \alpha)$. Then
(I) For any plane section π invariant by P and tangent to D_{1},

$$
\begin{align*}
\delta_{M} \leq & \frac{n-2}{2} \tag{3.29}\\
& \left\{\frac{n^{2}}{n-1}\|H\|^{2}+\frac{c+3 \alpha}{4}(n+1)\right\} \\
& +\frac{(c-\alpha)}{4}\left\{3\left(d_{1}-1\right)+3 d_{2} \cos ^{2} \theta\right\}
\end{align*}
$$

and
(II) For any plane section π invariant by P and tangent to D_{2},

$$
\begin{align*}
\delta_{M} \leq & \frac{n-2}{2}\left\{\frac{n^{2}}{n-1}\|H\|^{2}+\frac{c+3 \alpha}{4}(n+1)\right\} \tag{3.30}\\
& +\frac{c-\alpha}{4}\left\{3 d_{1}+3\left(d_{2}-1\right) \cos ^{2} \theta\right\} .
\end{align*}
$$

The equality case of inequalities (3.29) and (3.30) holds at a point $p \in M$ if and only if there exists an orthonormal basis $\left\{e_{1}, e_{2}, \ldots ., e_{n}\right\}$ of $T_{p} M$ and an orthonormal basis $\left\{e_{n+1}, \ldots . ., e_{2 m}\right\}$ of $T_{p}^{\perp} M$ such that the shape operators of M in $\tilde{M}(c, \alpha)$ at p have the forms (3.3) and (3.4).

Corollary 3.3. Let M be an n-dimensional θ-slant submanifold of a 2m-dimensional generalized complex space form $\tilde{M}(c, \alpha)$. Then

$$
\begin{equation*}
\delta_{M} \leq \frac{n-2}{2}\left\{\frac{n^{2}}{n-1}\|H\|^{2}+\frac{c+3 \alpha}{4}(n+1)+3 \frac{c-\alpha}{4} \cos ^{2} \theta\right\} . \tag{3.31}
\end{equation*}
$$

The equality case of the inequality (3.31) holds at a point $p \in M$ if and only if there exists an orthonormal basis $\left\{e_{1}, \ldots . ., e_{n}\right\}$ of $T_{p} M$ and an orthonormal basis $\left\{e_{n+1}, \ldots ., e_{2 m}\right\}$ of $T_{p}^{\perp} M$ such that the shape operators of M in $\tilde{M}(c, \alpha)$ at p have the forms (3.3) and (3.4).

Corollary 3.4. Let M be an n-dimensional invariant submanifold of a $2 m$ dimensional generalized complex space form $\tilde{M}(c, \alpha)$. Then

$$
\begin{equation*}
\delta_{M} \leq \frac{n-2}{2}\left\{\frac{n^{2}}{n-1}\|H\|^{2}+\frac{c+3 \alpha}{4}(n+1)+3 \frac{c-\alpha}{4}\right\} . \tag{3.32}
\end{equation*}
$$

The equality case of the inequality (3.32) holds at a point $p \in M$ if and only if there exists an orthonormal basis $\left\{e_{1}, \ldots . ., e_{n}\right\}$ of $T_{p} M$ and an orthonormal basis $\left\{e_{n+1}, \ldots ., e_{2 m}\right\}$ of $T_{p}^{\perp} M$ such that the shape operators of M in $\tilde{M}(c, \alpha)$ at p have the forms (3.3) and (3.4).

Corollary 3.5. Let M be an n-dimensional anti-invariant submanifold of a $2 m$ dimensional generalized complex space form $\tilde{M}(c, \alpha)$. Then

$$
\begin{equation*}
\delta_{M} \leq \frac{n-2}{2}\left\{\frac{n^{2}}{n-1}\|H\|^{2}+\frac{c+3 \alpha}{4}(n+1)\right\} . \tag{3.33}
\end{equation*}
$$

The equality case of the inequality (3.33) holds at a point $p \in M$ if and only if there exists an orthonormal basis $\left\{e_{1}, \ldots . ., e_{n}\right\}$ of $T_{p} M$ and an orthonormal basis $\left\{e_{n+1}, \ldots . ., e_{2 m}\right\}$ of $T_{p}^{\perp} M$ such that the shape operators of M in $\tilde{M}(c, \alpha)$ at p have the forms (3.3) and (3.4).

Acknowledgements: The authors are thankful to the referee towards the improvement of manuscript.

References

[1] N. Aktan, M.Z. Sarikaya, E. Ozusaglam, B.Y. Chen's inequality for semislant submanifolds in T-space forms, Balkan J. Geom. Appl., 13(1) (2008), 1-10.
[2] J.L. Cabrerizo, A. Carriazo, L.M. Fernandez, M. Fernandez, Slant submanifolds in sasakian manifolds, Glasgow Math. J., 42(1) (2000), 125-138.
[3] J.L. Cabrerizo, A. Carriazo, L.M. Fernandez, M. Fernandez, Semi-slant submanifolds of a Sasakian manifold, Geometriae Dedicata, 78(2) (1999), 183-199.
[4] B.Y. Chen, Geometry of slant submanifols, K.U. Leuven, 1990.
[5] B.Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math., 60 (1993), 568-578.
[6] B.Y. Chen, Some new obstructions to minimal and Lagrangian isometric immersions, Japan J. Math. (N.S.), 26 (2000), 105-127.
[7] B.Y. Chen, Mean curvature and shape operator of isometric immersions in real space forms, Glasgow Math. J., 38 (1996), 87-97.
[8] B.Y. Chen, Relations between Ricci curvature and shape operator for submanifolds with arbitrary co-dimensions, Glasgow Math. J., 41 (1999), 33-41.
[9] B.Y. Chen, Slant immersions, Bull. Aus. Math. Soc., 41 (1990), 135-147.
[10] B.Y. Chen, Y. Tazawa, Slant submanifolds in complex Euclidean spaces, Tokyo J. Math., 14 (1991), 101-120.
[11] B.Y. Chen, L. Vrancken, Existence and Uniqueness theorem for slant immersions and its applications, Results Math., 31 (1997), 28-39.
[12] B.Y. Chen, A general inequality for Kaehlerian slant submanifolds and related results, Geometriae Dedicata, 85 (2001), 253-271.
[13] D. Cioroboiu, B.Y. Chen inequalities for semi-slant submanifolds in Sasakian space forms, IJMMS, 27 (2003), 1731-1738.
[14] A. Gray, Nearly Kaehlerian manifolds, J. Diff. Geometry, 4(1970), 283-309.
[15] R.S. Gupta, I. Ahmed, S.M.K. Haider, B.Y. Chen's inequality and its applications to slant immersions into Kenmotsu manifolds, Kyungpook Math. J., 44 (2004), 101-110.
[16] J.S. Kim, Y.M. Song, M.M. Tripathi, B.Y. Chen inequalities for submanifolds in generalized complex space forms, Bull. Korean Math. Soc., 40(3) (2003), 411-423.
[17] J.S. Kim, Y.M. Song, M.M. Tripathi, Shape operator for slant submanifolds in generalized complex space forms, Indian J. Pure appl. Math., 34(8) (2003), 1153-1163.
[18] K. Matsumoto, I. Mihai, A. Oiaga, Shape operator A_{H} for slant submanifolds in complex space forms, Bull. Yamagata Univ., 14 (2000), 169-177.
[19] A. Mihai, t Shape operator A_{H} for slant submanifolds in generalized complex space forms, Turk. J. Math., 27 (2003), 509-523.
[20] A. Mihai, B.Y. Chen inequalities for slant submanifolds in generalized complex space forms, Radovi Mathematicki, 12 (2004), 215-231.
[21] I. Mihai, R. Rosca, L. Veratraelen, Some aspects of the Differential Geometry of vector fields, PADGF2, K.U. Leuven, Brussels, 1996
[22] A. Oiaga, Inequalities for certain submanifolds in complex space forms, Porc. 10th Int. Symposium Classical Analysis, Kazimierz Dolny (Poland), (1999), 49-61.
[23] A. Oiaga, I. Mihai, B.Y. Chen inequalities for slant submanifolds in complex space forms, Demonstratio Math., 32(4) (1999), 835-846.
[24] N. Papaghiuc, Semi-slant submanifolds of Kaehlerian manifold, Ann. St. Univ. Iasi, tom. XL, S.I., 9(f1) (1994), 55-61.
[25] F. Urbano, CR-submanifolds of nearly Kaehler manifolds, Doctoral Thesis, Granada (1980).
[26] K. Yano, M. Kon, Structures on manifolds, World Scientific, Singapore (1984).
1 Department of Mathematics, University of Allahabad, Allahabad, U.P., IndiA-211002

E-mail address: ssshukla_au@rediffmail.com
2 Department of Mathematics, University of Allahabad, Allahabad, U.P., InDIA-211002

E-mail address: babapawanrao@rediffmail.com

[^0]: Date: Received: 16 June 2010.

 * Corresponding author
 (c) 2010 N.A.G.

 2000 Mathematics Subject Classification. 53C40, 53C15.
 Key words and phrases. Chen inequalities, slant submanifold, semi-slant submanifold, generalized complex space form.

