The Journal of $\mathbf{N o n l i n e a r ~} \mathbf{S}_{\text {cience and }}$ Applications http://www.tjnsa.com

COMMON FIXED POINTS FOR D-MAPS SATISFYING INTEGRAL TYPE CONDITION

K.P.R. RAO ${ }^{1 *}$, MD. MUSTAQ ALI ${ }^{2}$ AND A. SOM BABU ${ }^{3}$

Abstract. In this paper, we obtain two common fixed point theorems one for two pairs of single and set-valued mappings and another for four set-valued mappings satisfying integral type conditions.

1. Introduction and preliminaries

Recently Ali and Imdad [8]obtained some common fixed point theorems for four self maps using implicit relations in a metric space.Branciari [4] introduced integral type contractive conditions and proved a fixed point theorem for a self map on a metric space. Based on this concept, Bouhadjera and Djoudi [3] proved common fixed point theorems for pairs of single and set-valued D-maps satisfying an integral type condition. In this paper, we obtain a theorem different from that of [3] and obtain a generalization of a theorem of [8] . We also obtain common fixed point theorems for four set-valued mappings and obtain a generalization of theorems of [8] and [2].
In the sequel, we need the following
Let (X, d) be a metric space and $B(X)$, the set of all nonempty bounded subsets of X. For $A, B \in B(X)$, define $\delta(A, B)=\sup \{d(a, b): a \in A, b \in B\}$.
If $A=\{a\}$, then we write $\delta(A, B)=\delta(a, B)$ and also if $B=\{b\}$ then , we write $\delta(A, B)=$ $d(a, b)$.
From the definition of $\delta(A, B)$, we have $\delta(A, B)=\delta(B, A) \geq 0$,

[^0]$\delta(A, B)=0$ iff $A=B=\{a\}, \delta(A, B) \leq \delta(A, C)+\delta(C, B)$,
$\delta(A, A)=\operatorname{diam} A$ for all $A, B, C \in B(X)$.
Definition 1.1. ([6$]$): A sequence $\left\{A_{n}\right\}$ of nonempty subsets of X is said to be convergent to a subset A of X if
(i) each point a in A is the limit of a convergent sequence $\left\{a_{n}\right\}$, where a_{n} is in A_{n} for $n \in N$,
(ii) for arbitrary $\epsilon>0$, there exists an integer m such that $A_{n} \subseteq A_{\epsilon}$ for $n>m$, where A_{ϵ} denotes the set of all points $x \in X$ for which there exists a point $a \in A$, depending on x, such that $d(x, a)<\epsilon . A$ is then said to be the limit of the sequence $\left\{A_{n}\right\}$.
Lemma 1.2. ([6]): If $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ are sequences in $B(X)$ converging to A and B in $B(X)$,respectively, then the sequence $\left\{\delta\left(A_{n}, B_{n}\right)\right\}$ converges to $\delta(A, B)$.
Lemma 1.3. ([7]):Let $\left\{A_{n}\right\}$ be a sequence in $B(X)$ and y be a point in X such that $\delta\left(A_{n}, y\right) \longrightarrow 0$. Then the sequence $\left\{A_{n}\right\}$ convrges to the set $\{y\}$ in $B(X)$.

Definition 1.4. ([9]):The maps $f: X \longrightarrow X$ and $F: X \longrightarrow B(X)$ are weakly compatible or coincidentally commuting (some authors call it as subcompatible) if $\{t \in X / F t=\{f t\}\} \subseteq$ $\{t \in X / F f t=f F t\}$.

The following definition is an extension of (E.A.)property due to Aamri and Moutawakil [1].

Definition 1.5. ([5]): The maps $f: X \longrightarrow X$ and $F: X \longrightarrow B(X)$ are said to be D - maps if there exists a sequence $\left\{x_{n}\right\}$ in X such that $\operatorname{limf} x_{n}=t$ and $\operatorname{limF} x_{n}=\{t\}$ for some $t \in X$.

Recently in 2008,Bouhadjera and Djoudi [3] proved the following:
Theorem 1.6. (Theorem 2.1 of $[3]$): Let f, g be self maps of a metric space (X, d) and let $F, G: X \longrightarrow B(X)$ be two set- valued maps such that
(1.6.1) $F X \subseteq g X$ and $G X \subseteq f X$,

$$
\begin{equation*}
\int_{0}^{\phi}\binom{\delta(F x, G y), d(f x, g y), \delta(f x, F x), \delta(g y, G y),}{\delta(f x, G y), \delta(g y, F x)} \varphi(t) d t \leq 0 \tag{1.6.2}
\end{equation*}
$$

for all $x, y \in X$, where $\phi: R_{+}^{6} \longrightarrow R$ is continuous function satisfying
(i) $\int_{0}^{\phi(u, 0,0, u, u, 0)} \varphi(t) d t \leq 0$ implies $u=0$,
(ii) $\int_{0}^{\phi(u, 0, u, 0,0,0)} \varphi(t) d t \leq 0$ implies $u=0$,
(iii) $\int_{0}^{\phi(u, u, 0,0, u, u)} \varphi(t) d t>0$ for all $u>0$ and
$\varphi: R_{+} \longrightarrow R$ is a Lebesgue-integrable map which is summable,
(1.6.3)(a) f and F are subcompatible D-maps; g and G are subcompatible and $F X$ is closed, (or)
(1.6.3)(b) g and G are subcompatible D-maps; f and F are subcompatible and $G X$ is closed. Then f, g, F and G have a unique common fixed point $t \in X$ such that $F t=G t=\{f t\}=$ $\{g t\}=\{t\}$.

In this paper we prove a slight variation theorem of the above theorem using more general contractive condition .

2. Main results

First implicit relation :

Let $\phi: R_{+}^{4} \longrightarrow R$ be a lower semi continuous function satisfying
$\int_{0}^{\phi(u, u, u, u)} \varphi(t) d t \leq 0$ implies $u=0$, where $\varphi: R_{+} \longrightarrow R$ is a Lebesgue-integrable map which is summable.
Now we give some examples.
(i) Let $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=t_{1}-k \max \left\{t_{2}, t_{3}, t_{4}\right\}$, where $k \in[0,1)$ and $\varphi(t)=t$ or $\varphi(t)=$ $\frac{3 \pi}{4(1+t)^{2}} \operatorname{Cos}\left(\frac{3 \pi t}{4(1+t)}\right)$ for all $t \in R_{+}$.
Then $\phi(u, u, u, u)=(1-k) u$.
Case: Suppose $\varphi(t)=t$.
Then $\int_{0}^{\phi(u, u, u, u)} \varphi(t) d t \leq 0$ implies $\frac{1}{2}(1-k)^{2} u^{2} \leq 0$ so that $u \leq 0$. But $u \geq 0$. Hence $u=0$.
Case : Suppose $\varphi(t)=\frac{3 \pi}{4(1+t)^{2}} \operatorname{Cos}\left(\frac{3 \pi t}{4(1+t)}\right)$.
Then $\int_{0}^{\phi(u, u, u, u)} \varphi(t) d t \leq 0$ implies $\operatorname{Sin}\left(\frac{3 \pi(1-k) u}{4(1+(1-k) u)}\right) \leq 0$ so that $u=0$ since
$0 \leq \frac{3 \pi(1-k) u}{4(1+(1-k) u)}<\pi$.
The following ϕ functions satisfy the first implicit relation with $\varphi(t)=t$ for all $t \in R_{+}$or $\varphi(t)=\frac{3 \pi}{4(1+t)^{2}} \operatorname{Cos}\left(\frac{3 \pi t}{4(1+t)}\right)$.
(ii) $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=t_{1}-k\left(\max \left\{t_{2}^{2}, t_{3} t_{4}\right\}\right)^{\frac{1}{2}}$, where $k \in[0,1)$.
(iii) $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=t_{1}^{2}-\alpha \max \left\{t_{2}^{2}, t_{3}^{2}, t_{4}^{2}\right\}-\beta \max \left\{t_{2} t_{3}, t_{3} t_{4}\right\}$, where $\alpha, \beta \geq 0$ such that $\alpha+\beta<1$.
(iv) $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=t_{1}^{3}-\alpha \max \left\{t_{i} t_{j} t_{k} / i, j, k \in\{2,3,4\}\right\}$, where $\alpha \in[0,1)$.

Theorem 2.1. Let f, g be self maps of a metric space (X, d) and let $F, G: X \longrightarrow B(X)$ be two set- valued maps such that
(2.1.1)

$$
\int_{0}^{\phi}\binom{\delta(F x, G y), d(f x, g y)+\delta(f x, F x)+\delta(g y, G y)}{\delta(f x, F x)+\delta(f x, G y), \delta(g y, G y)+\delta(g y, F x)} \varphi(t) d t \leq 0
$$

for all $x, y \in X$, where $\phi: R_{+}^{4} \longrightarrow R$ is a lower semi continuous function satisfying $\int_{0}^{\phi(u, u, u, u)} \varphi(t) d t \leq 0$ implies $u=0$ and
$\varphi: R_{+} \longrightarrow R$ is a Lebesgue-integrable map which is summable,
(2.1.2) (f, F) and (g, G) are subcompatible pairs,
(2.1.3) $(a)(f, F)$ is a pair of D-maps, $F x \subseteq g(X) \forall x \in X$ and $f(X)$ is closed (or)
(2.1.3)(b) (g, G) is a pair of D-maps, $G x \subseteq f(X) \forall x \in X$ and $g(X)$ is closed.

Then f, g, F and G have a unique common fixed point in X.
Proof. Suppose (2.1.3)(a) holds.
Since (f, F) is a pair of D-maps, there exists a sequence $\left\{x_{n}\right\}$ in X such that $\operatorname{limf} x_{n}=t$ and $\operatorname{limF} x_{n}=\{t\}$ for some $t \in X$.
Since $F x \subseteq g(X) \forall x \in X$, there exists $\alpha_{n} \in F x_{n}$ and $y_{n} \in X$ such that $\alpha_{n}=g y_{n} \forall n$. Also $d\left(g y_{n}, t\right)=d\left(\alpha_{n}, t\right) \leq \delta\left(F x_{n}, t\right) \longrightarrow 0$ as $n \longrightarrow \infty$.

Suppose $\lim G y_{n}=A$. Now

$$
\int_{0}^{\phi}\binom{\delta\left(F x_{n}, G y_{n}\right), d\left(f x_{n}, g y_{n}\right)+\delta\left(f x_{n}, F x_{n}\right)+\delta\left(g y_{n}, G y_{n}\right),}{\delta\left(f x_{n}, F x_{n}\right)+\delta\left(f x_{n}, G y_{n}\right), \delta\left(g y_{n}, G y_{n}\right)+\delta\left(g y_{n}, F x_{n}\right)} \varphi(t) d t \leq 0
$$

Letting $n \longrightarrow \infty$, we get

$$
\int_{0}^{\phi(\delta(t, A), \delta(t, A), \delta(t, A), \delta(t, A))} \varphi(t) d t \leq 0
$$

Hence $\delta(t, A)=0$ so that $A=\{t\}$.Thus $\operatorname{limG} y_{n}=\{t\}$.
Since $f(X)$ is closed, there exists $u \in X$ such that $t=f u$. Now,

$$
\int_{0}^{\phi}\binom{\delta\left(F u, G y_{n}\right), d\left(f u, g y_{n}\right)+\delta(f u, F u)+\delta\left(g y_{n}, G y_{n}\right),}{\delta(f u, F u)+\delta\left(f u, G y_{n}\right), \delta\left(g y_{n}, G y_{n}\right)+\delta\left(g y_{n}, F u\right)} \varphi(t) d t \leq 0
$$

Letting $n \longrightarrow \infty$, we get

$$
\int_{0}^{\phi(\delta(F u, t), \delta(F u, t), \delta(F u, t), \delta(F u, t))} \varphi(t) d t \leq 0
$$

Hence $\delta(F u, t)=0$ so that $F u=\{t\}$.Thus $F u=\{t\}=\{f u\}$.
Since $\{t\}=F u \subseteq g(X)$, there exists $w \in X$ such that $t=g w$. Now,

$$
\int_{0}^{\phi}\binom{\delta\left(F x_{n}, G w\right), d\left(f x_{n}, g w\right)+\delta\left(f x_{n}, F x_{n}\right)+\delta(g w, G w),}{\delta\left(f x_{n}, F x_{n}\right)+\delta\left(f x_{n}, G w\right), \delta(g w, G w)+\delta\left(g w, F x_{n}\right)} \varphi(t) d t \leq 0
$$

Letting $n \longrightarrow \infty$, we get

$$
\int_{0}^{\phi(\delta(t, G w), \delta(t, G w), \delta(t, G w), \delta(t, G w))} \varphi(t) d t \leq 0
$$

Hence $\delta(t, G w)=0$ so that $G w=\{t\}$. Thus $G w=\{t\}=\{g w\}$.
Since (f, F) is subcompatible, we have $F t=F f u=f F u=\{f t\}$.Now,

$$
\int_{0}^{\phi}\binom{\delta(F t, G w), d(f t, g w)+\delta(f t, F t)+\delta(g w, G w),}{\delta(f t, F t)+\delta(f t, G w), \delta(g w, G w)+\delta(g w, F t)} \varphi(t) d t \leq 0
$$

which implies

$$
\int_{0}^{\phi(\delta(F t, t), \delta(F t, t), \delta(F t, t), \delta(F t, t))} \varphi(t) d t \leq 0
$$

Hence $\delta(F t, t)=0$ so that $F t=\{t\}$. Thus $F t=\{t\}=\{f t\}$.
Since (g, G) is subcompatible, we have $G t=G g w=g G w=\{g t\}$.Now,

$$
\int_{0}^{\phi}\binom{\delta(F u, G t), d(f u, g t)+\delta(f u, F u)+\delta(g t, G t),}{\delta(f u, F u)+\delta(f u, G t), \delta(g t, G t)+\delta(g t, F u)} \varphi(t) d t \leq 0
$$

which implies

$$
\int_{0}^{\phi(\delta(t, G t), \delta(t, G t), \delta(t, G t), \delta(t, G t))} \varphi(t) d t \leq 0
$$

Hence $\delta(t, G t)=0$ so that $G t=\{t\}$.Thus $G t=\{t\}=\{g t\}$.
Thus t is a common fixed point of F, G, f and g. Uniqueness of common fixed point follows easily from (2.1.1).Similarly, we can prove the theorem if $(2,1,3)(b)$ holds.

Let Ψ_{6} denote the set of all lower semicontinuous functions $\psi: R_{+}^{6} \rightarrow R$ satisfying
(i) $\psi(t, 0, t, 0,0, t)>0 \forall t>0$,
(ii) $\psi(t, 0,0, t, t, 0)>0 \forall t>0$,
(i) $\psi(t, t, 0,0, t, t)>0 \forall t>0$.

Clearly the conditions (i),(ii) and (iii) imply $\phi(t, t, t, t) \leq 0 \Rightarrow t=0$ if we define $\psi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=$ $\phi\left(t_{1}, t_{2}+t_{3}+t_{4}, t_{3}+t_{5}, t_{4}+t_{6}\right)$.
We observe that $\phi(t, t, t, t) \leq 0 \Rightarrow t=0$ need not imply(i),(ii),(iii) if we take $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=$ $t_{1}-k \max \left\{t_{2}, t_{3}, t_{4}\right\}$, where $k \in[0,1)$ and $\psi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=\phi\left(t_{1} t_{2}, t_{2} t_{3}, t_{3} t_{4}, t_{4} t_{5}\right)$. Clearly $\psi(t, 0, t, 0,0, t)=\phi(0,0,0,0)=0$.

Theorem 2.1 is a generalization of the following
Theorem 2.2. (Theorem 3.3,[8]): Let A, B, S and T be self mappings of a metric space (X, d) satisfying
(2.2.1)

$$
\psi(d(A x, B y), d(S x, T y), d(S x, A x), d(T y, B y), d(S x, B y), d(T y, A x)) \leq 0
$$

for all $x, y \in X$, where $\psi \in \Psi_{6}$.
Suppose that (2.2.2)the pair (A, S) (or (B, T)) has Property(E.A.),
(2.2.3) $A(X) \subseteq T(X) \quad$ or $B(X) \subseteq S(X))$,
(2.2.4) $S(X)$ (or $T(X)$) is a closed subset of X and
(2.2.5) the pairs (A, S) and (B, T) are weakly compatible.

Then A, B, S and T have a unique common fixed point.
Proof. Let $F=\{A\}, G=\{B\}, f=S, g=T$ be single valued mappings and $\varphi(t)=1$ for all $t>0$ in Theorem 2.1. Define $\psi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=\phi\left(t_{1}, t_{2}+t_{3}+t_{4}, t_{3}+t_{5}, t_{4}+t_{6}\right)$. Clearly the conditions (i),(ii),(iii) on ψ imply that $\phi(t, t, t, t) \leq 0$ implies that $t=0$. The rest follows from Theorem 2.1.

Now, we prove a common fixed point theorem for four set-valued mappings.
Theorem 2.3. Let F, G, f and $g: X \longrightarrow B(X)$ be set- valued mappings satisfying (2.3.1)

$$
\int_{0}^{\phi}\binom{\delta(F x, G y), \delta(f x, g y)+\delta(f x, F x)+\delta(g y, G y)}{\delta(f x, F x)+\delta(f x, G y), \delta(g y, G y)+\delta(g y, F x)} \varphi(t) d t \leq 0
$$

for all $x, y \in X$, where ϕ and φ are as in Theorem 2.1,
(2.3.2)(a) Suppose that there exists a sequence $\left\{x_{n}\right\}$ in X such that $\left\{F x_{n}\right\}$ and $\left\{f x_{n}\right\}$ converge to the same limit $\{z\}$ for some $z \in X$. (or)
(2.3.2)(b) Suppose that there exists a sequence $\left\{y_{n}\right\}$ in X such that $\left\{G y_{n}\right\}$ and $\left\{g y_{n}\right\}$ converge to the same limit $\{z\}$ for some $z \in X$.
(2.3.3)Suppose that the pairs (f, F) and (g, G) are coincidentally commuting,
(2.3.4)Suppose $f u=\{z\}=g v$ for some $u, v \in X$.
(2.3.5) Suppose that $F z$ or $f z$ is a singleton and $G z$ or $g z$ is a singleton.

Then z is the unique common fixed point of F, G, f and g, Also z is the unique common fixed point of F and f as well as of G and g.

Proof. Suppose (2.3.2) (a) holds.

$$
\int_{0}^{\phi}\binom{\delta\left(F x_{n}, G v\right), \delta\left(f x_{n}, g v\right)+\delta\left(f x_{n}, F x_{n}\right)+\delta(g v, G v),}{\delta\left(f x_{n}, F x_{n}\right)+\delta\left(f x_{n}, G v\right), \delta(g v, G v)+\delta\left(g v, F x_{n}\right)} \varphi(t) d t \leq 0
$$

Letting $n \longrightarrow \infty$, we get

$$
\int_{0}^{\phi(\delta(z, G v), \delta(z, G v), \delta(z, G v), \delta(z, G v))} \varphi(t) d t \leq 0
$$

Hence $\delta(z, G v)=0$ so that $G v=\{z\}$. Thus $G v=\{z\}=g v$.
Since (g, G) is coincidentally commuting, we have $G z=G g v=g G v=g z=$ singleton from(2.3.5).Now,

$$
\int_{0}^{\phi}\binom{\delta\left(F x_{n}, G z\right), \delta\left(f x_{n}, g z\right)+\delta\left(f x_{n}, F x_{n}\right)+\delta(g z, G z),}{\delta\left(f x_{n}, F x_{n}\right)+\delta\left(f x_{n}, G z\right), \delta(g z, G z)+\delta\left(g z, F x_{n}\right)} \varphi(t) d t \leq 0
$$

Letting $n \longrightarrow \infty$, we get

$$
\int_{0}^{\phi(\delta(z, G z), \delta(z, G z), \delta(z, G z), \delta(z, G z))} \varphi(t) d t \leq 0
$$

Hence $\delta(z, G z)=0$ so that $G z=\{z\}$. Thus $G z=\{z\}=g z$.

$$
\int_{0}^{\phi}\binom{\delta(F u, G z), \delta(f u, g z)+\delta(f u, F u)+\delta(g z, G z),}{\delta(f u, F u)+\delta(f u, G z), \delta(g z, G z)+\delta(g z, F u)} \varphi(t) d t \leq 0
$$

which implies

$$
\int_{0}^{\phi(\delta(F u, z), \delta(F u, z), \delta(F u, z), \delta(F u, z))} \varphi(t) d t \leq 0
$$

Hence $\delta(F u, z)=0$ so that $F u=\{z\}$. Thus $F u=\{z\}=f u$.
Since (f, F) is coincidentally commuting, we have $F z=F f u=f F u=f z=$ singleton from (2.3.5). Now,

$$
\int_{0}^{\phi}\binom{\delta(F z, G z), \delta(f z, g z)+\delta(f z, F z)+\delta(g z, G z),}{\delta(f z, F z)+\delta(f z, G z), \delta(g z, G z)+\delta(g z, F z)} \varphi(t) d t \leq 0
$$

which implies

$$
\int_{0}^{\phi(\delta(F z, z), \delta(F z, z), \delta(F z, z), \delta(F z, z))} \varphi(t) d t \leq 0
$$

Hence $\delta(F z, z)=0$ so that $F z=\{z\}$. Thus $F z=\{z\}=f z$. Thus z is a common fixed point of F, G, f and g. Uniqueness of common fixed point follows easily from (2.3.1).
Suppose $f w=\{w\}=F w$ for some $w \in X$.

$$
\int_{0}^{\phi}\binom{\delta(F w, G z), \delta(f w, g z)+\delta(f w, F w)+\delta(g z, G z)}{\delta(f w, F w)+\delta(f w, G z), \delta(g z, G z)+\delta(g z, F w)}_{\varphi} \varphi(t) d t \leq 0
$$

which implies

$$
\int_{0}^{\phi}(d(w, z), d(w, z), d(w, z), d(w, z)) \varphi(t) d t \leq 0
$$

Hence $d(w, z)=0$ so that $w=z$. Thus z is the unique common fixed point of f and F. Similarly we can show that z is the unique common fixed point of g and G. Similarly, we can prove the theorem when (2.3.2)(b) holds.

Theorem 2.3 is a generalization of the following
Theorem 2.4. (Theorem 3.1,[8]):Let A, B, S and T be self mappings of a metric space (X, d) satisfying (2.2.1) of Corollary (2.2).Suppose that
(2.4.1) the pairs (A, S) and (B, T) enjoy the common property(E.A.),
(2.4.2) $S(X)$ and $T(X)$ are closed subsets of X,
(2.4.3) the pairs $((A, S)$ and (B, T) are weakly compatible.

Then A, B, S and T have a unique common fixed point in X.
Proof. Let $F=\{A\}, G=\{B\}, f=\{S\}, g=\{T\}$ be single valued mappings and $\varphi(t)=1$ for all $t>0$ in Theorem 2.3. Define $\psi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=\phi\left(t_{1}, t_{2}+t_{3}+t_{4}, t_{3}+t_{5}, t_{4}+t_{6}\right)$. From (2.4.1), there exist sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that $\lim A x_{n}=\operatorname{limS} x_{n}=\lim B y_{n}=\lim T y_{n}=z$ for some $z \in X$.
From (2.4.2), there exist $u, v \in X$ such that $z=S u=T v$. The rest follows from Theorem 2.3.

Second implicit relation :

Let $\phi: R_{+}^{5} \longrightarrow R$ be an upper semi continuous function satisfying
$\int_{0}^{\phi(0, u, u, u, u)} \varphi(t) d t \geq 0$ or $\int_{0}^{\phi(u, u, u, u, u)} \varphi(t) d t \geq 0$ implies $u=0$, where $\varphi: R_{+} \longrightarrow R$ is a
Lebesgue-integrable map which is summable.
Now, we give some examples .
(i) Let $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right)=t_{1}-k \min \left\{t_{2}, t_{3}, t_{4}, t_{5}\right\}$, where $k>1$ and $\varphi(t)=t^{2}$ or $\varphi(t)=$ $\frac{3 \pi}{4(1-t)^{2}} \operatorname{Cos}\left(\frac{3 \pi t}{4(1-t)}\right)$ for all $t \in R_{+}$.
Case : Suppose $\varphi(t)=t^{2}$.
Then $\int_{0}^{\phi(0, u, u, u, u)} \varphi(t) d t \geq 0 \Rightarrow-\frac{1}{3} k^{3} u^{3} \geq 0 \Rightarrow u \leq 0$. But $u \geq 0$. Hence $u=0$.
Also $\int_{0}^{\phi(u, u, u, u, u)} \varphi(t) d t \geq 0 \Rightarrow \frac{1}{3}(1-k)^{3} u^{3} \geq 0 \Rightarrow u \leq 0$. But $u \geq 0$. Hence $u=0$.
Case : $\varphi(t)=\frac{3 \pi}{4(1-t)^{2}} \operatorname{Cos}\left(\frac{3 \pi t}{4(1-t)}\right)$.

Then $\int_{0}^{\phi(0, u, u, u, u)} \varphi(t) d t \geq 0 \Rightarrow \operatorname{Sin}\left(\frac{-3 \pi k u}{4(1+k u)}\right) \geq 0 \Rightarrow \operatorname{Sin}\left(\frac{3 \pi k u}{4(1+k u)}\right) \leq 0 \Rightarrow u=0$ since $0 \leq$ $\frac{3 \pi k u}{4(1+k u)}<\pi$.
$\int_{0}^{\phi(u, u, u, u, u)} \varphi(t) d t \geq 0 \Rightarrow \operatorname{Sin}\left(\frac{3 \pi(1-k) u}{4(1-(1-k) u)}\right) \geq 0 \Rightarrow \operatorname{Sin}\left(\frac{3 \pi(k-1) u}{4(1+(k-1) u)}\right) \leq 0 \Rightarrow u=0$.
The following ϕ functions satisfy the second implicit relation with $\varphi(t)=t^{2}$ or $\varphi(t)=$ $\frac{3 \pi}{4(1-t)^{2}} \operatorname{Cos}\left(\frac{3 \pi t}{4(1-t)}\right)$ for all $t \in R_{+}$.
(ii) $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right)=t_{1}-a t_{2}-b \frac{\left(t_{2} t_{3}+t_{4} t_{5}\right)}{\left(t_{3}+t_{4}\right)}$, where $a \geq 0, b \geq 0$ with $a+b>1$.
(iii) $\phi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right)=t_{1}-\alpha t_{2}-\beta \min \left\{t_{3}, t_{4}\right\}-\gamma \min \left\{t_{2}+t_{3}, t_{4}+t_{5}\right\}$, where $\alpha, \beta, \gamma \geq 0$ with $\alpha+\beta+2 \gamma>1$.

Finally, we state the following theorem with expansive condition for four set - valued mappings.
Theorem 2.5. Theorem 2.3 holds if the inequality(2.3.1) is replaced by (2.5.1)

$$
\int_{0}^{\phi}\binom{\delta(f x, g y), \delta(F x, G y), \delta(f x, F x)+\delta(g y, G y)}{\delta(f x, F x)+\delta(f x, G y), \delta(g y, G y)+\delta(g y, F x)} \varphi(t) d t \geq 0
$$

for all $x, y \in X$, where $\phi: R_{+}^{5} \longrightarrow R$ is an upper semi continuous function satisfying $\int_{0}^{\phi(0, u, u, u, u)} \varphi(t) d t \geq 0$ or $\int_{0}^{\phi(u, u, u, u, u)} \varphi(t) d t \geq 0$ implies $u=0$ and φ is as in Theorem 2.1.

Remark 2.6: Theorem 2.5 with f and g as single valued mappings is a generalization of Theorem 3.1 of [2].
Acknowledgement : The authors are grateful to the referee for his valuable suggestions.

References

[1] M. Aamri, D.El. Moutawakil,, Some new common fixed point theorems under strict contractive conditions,J.Math.Anal.Appl.,Vol.270,Issue 1,(2002), 181-188.
[2] H. Bouhadjera, A. Djoudi, and Fisher,Brian, Common fixed point theorems for subcompatible D-maps,Mathematica Moravica,12(2) (2008),19-28.
[3] H. Bouhadjera, A. Djoudi, Common fixed point theorems for pairs of single and multivalued D-maps satisfying an integral type, Annales Mathematicae et Informaticae,35 (2008),43-59.
[4] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int.J.Math.Math.Sci., 29 (2002), 531-536.
[5] A. Djoudi, R. Khemis, Fixed points for set and single valued maps without continuity , Demonstratio Math., 38 (2005), 739-751.
[6] B. Fisher, Common fixed points of mappings and set - valued mappings, Rostock.Math.Kolloq 18 (1981), 69-77.
[7] B. Fisher, S. Sessa, Two common fixed point theorems for weakly commuting mappings,Period. Math. Hungar, 20 (1989), 207-218.
[8] J. Ali, M. Imdad, An implicit function implies several contraction conditions,Sarajevo J.Maths., 4 (2008), 269-285.
[9] G. Jungck, B.E. Rhoades,Fixed points for set valued functions without continuity ,India J. Pure.Appl.Math., 29 (1998), 227-238.
$1,2,3$ Department of Applied Mathematics, Acharya Nagarjuna University - Dr.M.R.Appa Row Campus,Nuzvid-521 201,Krishna Dt.,A.P.,INDIA.

E-mail address: kprrao2004@yahoo.com

[^0]: Date: Received: 11 Aug. 2010.

 * Corresponding author : K.P.R. Rao
 (c) 2010 N.A.G.

 2000 Mathematics Subject Classification. $47 \mathrm{H} 10,54 \mathrm{H} 25$.
 Key words and phrases. Set valued maps, D-maps, Subcompatible maps ,Implicit relation.

