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ĆIRIĆ’S FIXED POINT THEOREM IN A CONE METRIC
SPACE

BESSEM SAMET

Abstract. In this paper, we extend a fixed point theorem due to Ćirić to a
cone metric space.

1. Introduction and preliminaries

Many generalizations of the Banach contraction principle [4] have been consid-
ered in the literature (see [1]-[3], [5]-[17]).

Huang and Zhang [12] recently have introduced the concept of cone metric
space, where the set of real numbers is replaced by an ordered Banach space, and
they have established some fixed point theorems for contractive type mappings
in a normal cone metric space. The study of fixed point theorems in such spaces
is followed by some other mathematicians (see [1]-[3], [5], [13], [14], [16]).

In this paper, we extend a fixed point theorem due to Ćirić ([8]-Theorem 2.5)
to a cone metric space. Before presenting our result, we start by recalling some
definitions.

Let E be a real Banach space and P a subset of E. P is called a cone if and
only if:

(i) P is closed, nonempty, and P 6= {0}.
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax + by ∈ P .
(iii) x ∈ P and −x ∈ P ⇒ x = 0.

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by:

x ≤ y ⇔ y − x ∈ P.
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We shall write x < y to indicate that x ≤ y but x 6= y, while x ¿ y will stand
for y − x ∈ intP , where intP denotes the interior of P .

The cone P is called normal if there is a number k > 0 such that for all x, y ∈ E,

0 ≤ x ≤ y ⇒ ‖x‖ ≤ k‖y‖,
where ‖ · ‖ is the norm in E. In this case, the number k is called the normal
constant of P . Rezapour and Hamlbarani [16] proved that there are no normal
cones with normal constant k < 1 and for each c > 1 there are cones with normal
constant k > c. For this reason, in all this paper, we take k ≥ 1.

In the following we always suppose E is a Banach space, P is a cone in E with
int P 6= ∅ and ≤ is partial ordering with respect to P . As it has been defined

in [12], a function d : X ×X → E is called a cone metric on X if it satisfies the
following conditions:

(a) 0 < d(x, y) for all x, y ∈ X, x 6= y and d(x, y) = 0 if and only if x = y.
(b) d(x, y) = d(y, x) for all x, y ∈ X.
(c) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then (X, d) is called a cone metric space.
Let (xn) be a sequence in X and x ∈ X.

• If for every c ∈ E, c À 0 there is N such that for all n > N , d(xn, x) ¿ c,
then (xn) is said to be convergent to x and x is the limit of (xn). We
denote this by xn → x as n → +∞.

• If for any c ∈ E with 0 ¿ c, there is N such that for all n,m > N ,
d(xn, xm) ¿ c, then (xn) is called a Cauchy sequence in X.

Let (X, d) be a cone metric space. If every Cauchy sequence is convergent in
X, then X is called a complete cone metric space.

The following lemmas will be useful later.

Lemma 1.1. (Huang and Zhang [12]) Let (X, d) be a cone metric space, P be a
normal cone. Let (xn) be a sequence in X. Then (xn) converges to x if and only
if ‖d(xn, x)‖ → 0 as n → +∞.

Lemma 1.2. (Huang and Zhang [12]) Let (X, d) be a cone metric space, (xn) be
a sequence in X. If (xn) is convergent, then it is a Cauchy sequence, too.

Lemma 1.3. (Huang and Zhang [12]) Let (X, d) be a cone metric space, P be a
normal cone. Let (xn) be a sequence in X. Then, (xn) is a Cauchy sequence if
and only if ‖d(xn, xm)‖ → 0 as n,m → +∞.

We denote L(E) the set of linear bounded operators on E, endowed with the
following norm:

‖S‖ = sup
x∈E,x6=0

‖Sx‖
‖x‖ , ∀S ∈ L(E).

It is clear that if S ∈ L(E), we have:

‖Sx‖ ≤ ‖S‖‖x‖, ∀x ∈ E.

We denote by I : E → E the identity operator, i.e., Ix = x, ∀x ∈ X. If
S ∈ L(E), we denote by S−1 ∈ L(E) (if such operator exists) the operator
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defined by:

S−1Sx = SS−1x = x, ∀x ∈ E.

2. Fixed point theorem

The main result of this paper is the following.

Theorem 2.1. Let (X, d) be a complete cone metric space, P be a normal cone
with normal constant k (k ≥ 1). Suppose the mapping T : X → X satisfies the
following contractive condition:

d(Tx, Ty) ≤ A1(x, y)d(x, y) + A2(x, y)d(x, Tx) + A3(x, y)d(y, Ty) (2.1)

+A4(x, y)d(x, Ty) + A4(x, y)d(y, Tx),

for all x, y ∈ X, where Ai : X ×X → L(E), i = 1, · · · , 4. Further, assume that
for all x, y ∈ X, we have:

∃α ∈ [0, 1/k) |
4∑

i=1

‖Ai(x, y)‖+ ‖A4(x, y)‖ ≤ α (2.2)

∃ β ∈ [0, 1) | ‖S(x, y)‖ ≤ β (2.3)

(A1(x, y) + A2(x, y))(P ) ⊆ P (2.4)

A2(x, y)(P ) ⊆ P (2.5)

A4(x, y)(P ) ⊆ P (2.6)

(I − A3(x, y)− A4(x, y))−1(P ) ⊆ P. (2.7)

Here, S : X ×X → L(E) is given by:

S(x, y) = (I −A3(x, y)−A4(x, y))−1(A1(x, y) + A2(x, y) + A4(x, y)), ∀x, y ∈ X.

Then, T has a unique fixed point.

Proof. Let x ∈ X be arbitrary and define the sequence (xn)n∈N ⊂ X by:

x0 = x, x1 = Tx0, · · · , xn = Txn−1 = T nx0, · · ·
By (2.1), we get:

d(xn, xn+1) = d(Txn−1, Txn)

≤ A1(xn−1, xn)d(xn−1, xn) + A2(xn−1, xn)d(xn−1, xn)

+A3(xn−1, xn)d(xn, xn+1) + A4(xn−1, xn)d(xn−1, xn+1)

+A4(xn−1, xn)d(xn, xn)

= (A1(xn−1, xn) + A2(xn−1, xn))d(xn−1, xn) + A3(xn−1, xn)d(xn, xn+1)

+A4(xn−1, xn)d(xn−1, xn+1).

Using the triangular inequality, we get:

d(xn−1, xn+1) ≤ d(xn−1, xn) + d(xn, xn+1),

i.e.,

d(xn−1, xn) + d(xn, xn+1)− d(xn−1, xn+1) ∈ P.
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From (2.6), it follows that:

A4(xn−1, xn)[d(xn−1, xn) + d(xn, xn+1)− d(xn−1, xn+1)] ∈ P,

i.e.,

A4(xn−1, xn)d(xn−1, xn+1) ≤ A4(xn−1, xn)d(xn−1, xn) + A4(xn−1, xn)d(xn, xn+1).

Then, we have:

d(xn, xn+1) ≤ (A1(xn−1, xn) + A2(xn−1, xn) + A4(xn−1, xn))d(xn−1, xn)

+(A3(xn−1, xn) + A4(xn−1, xn))d(xn, xn+1).

Hence,

(I − A3(xn−1, xn)− A4(xn−1, xn))d(xn, xn+1) ≤ (A1(xn−1, xn) + A2(xn−1, xn)

+A4(xn−1, xn))d(xn−1, xn).

Using (2.7), we get:

d(xn, xn+1) ≤ S(xn−1, xn)d(xn−1, xn). (2.8)

It is not difficult to see that under hypotheses (2.4), (2.6) and (2.7), we have:

S(x, y)(P ) ⊆ P, ∀x, y ∈ X.

Using this remark, (2.8) and proceeding by iterations, we get:

d(xn, xn+1) ≤ S(xn−1, xn)S(xn−2, xn−1) · · ·S(x0, x1)d(x0, x1),

which implies by (2.3) that:

‖d(xn, xn+1)‖ ≤ k‖S(xn−1, xn)‖‖S(xn−2, xn−1)‖ · · · ‖S(x0, x1)‖‖d(x0, x1)‖ ≤ kβn‖d(x0, x1)‖.
For any positive integer p, we have:

d(xn, xn+p) ≤
p∑

i=1

d(xn+i−1, xn+i),

which implies that:

‖d(xn, xn+p)‖ ≤ k

p∑
i=1

‖d(xn+i−1, xn+i)‖

≤ k2

p∑
i=1

βn+i−1‖d(x0, x1)‖

≤ k2 βn

1− β
‖d(x0, x1)‖. (2.9)

Since β ∈ [0, 1), βn → 0 as n → +∞. So from (2.9) it follows that the sequence
(xn)n∈N is Cauchy. Since (X, d) is complete, there is a point u ∈ X such that:

lim
n→+∞

d(Txn, u) = lim
n→+∞

d(xn, u) = lim
n→+∞

d(xn, xn+1) = 0. (2.10)
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Now, using the contractive condition (2.1), we get:

d(Tu, Txn) ≤ A1(u, xn)d(u, xn) + A2(u, xn)d(u, Tu)

+A3(u, xn)d(xn, xn+1) + A4(u, xn)d(u, xn+1)

+A4(u, xn)d(xn, Tu).

By the triangular inequality, we have:

d(u, Tu) ≤ d(u, xn+1) + d(xn+1, Tu)

d(xn, Tu) ≤ d(xn, Txn) + d(Txn, Tu).

By (2.5) and (2.6), we get:

A2(u, xn)d(u, Tu) ≤ A2(u, xn)(d(u, xn+1) + d(xn+1, Tu))

A4(u, xn)d(xn, Tu) ≤ A4(u, xn)d(xn, Txn) + A4(u, xn)d(Txn, Tu).

Hence,

d(Tu, Txn) ≤ A1(u, xn)d(u, xn) + (A2(u, xn) + A4(u, xn))d(u, xn+1)

+(A2(u, xn) + A4(u, xn))d(xn+1, Tu)

+(A3(u, xn) + A4(u, xn))d(xn, xn+1).

Using (2.2), this inequality implies that:

‖d(Tu, Txn)‖ ≤ kα

1− kα
(‖d(u, xn)‖+ ‖d(u, xn+1)‖+ ‖d(xn, xn+1)‖).

From (2.10), it follows immediately that:

lim
n→+∞

d(Tu, Txn) = 0. (2.11)

Then, (2.10), (2.11) and the uniqueness of the limit imply that u = Tu, i.e., u is
a fixed point of T . So we proved that T has least one fixed point u ∈ X.

Now, if v ∈ X is another fixed point of T , by (2.1), we get:

d(u, v) = d(Tu, Tv) ≤ A1(u, v)d(u, v) + 2A4(u, v)d(u, v),

which implies that:

‖d(u, v)‖ ≤ k(‖A1(u, v)‖+ 2‖A4(u, v)‖)‖d(u, v)‖ ≤ kα‖d(u, v)‖,
i.e.,

(1− kα)‖d(u, v)‖ ≤ 0.

Since 0 ≤ α < 1/k, we get d(u, v) = 0, i.e., u = v. So the proof of the theorem is
complete. ¤

Now, we will show that Theorem 2.5 of Ćirić [8] is a particular case of Theorem
2.1.

Corollary 2.2. Let (X, d) be a complete metric space and T : X → X be a
mapping satisfying the following contractive condition:

d(Tx, Ty) ≤ a1(x, y)d(x, y) + a2(x, y)d(x, Tx) + a3(x, y)d(y, Ty) (2.12)

+a4(x, y)(d(x, Ty) + d(y, Tx)),
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for all x, y ∈ X, where ai : X × X → [0, +∞), i = 1, · · · , 4 and
4∑

i=1

αi(x, y) +

α4(x, y) ≤ α for each x, y ∈ X and some α ∈ [0, 1). Then, T has a unique fixed
point.

Proof. We take E = R (with the usual norm) and P = [0, +∞). Then, (X, d)
is a complete cone metric space and P is a normal cone with normal constant
k = 1. For each i = 1, · · · , 4, we define Ai : X ×X → L(E) by:

Ai(x, y) : t ∈ R 7→ ai(x, y)t,

for all x, y ∈ X. let us check now that all the required hypotheses of Theorem
2.1 are satisfied.

• Condition (2.12) implies that:

d(Tx, Ty) ≤ A1(x, y)d(x, y) + A2(x, y)d(x, Tx) + A3(x, y)d(y, Ty)

+A4(x, y)d(x, Ty) + A4(x, y)d(y, Tx),

for all x, y ∈ X. Then, condition (2.1) of Theorem 2.1 is satisfied.
• For all i = 1, · · · , 4, we have:

‖Ai(x, y)‖ = ai(x, y), ∀x, y ∈ X.

Then,
4∑

i=1

‖Ai(x, y)‖+ ‖A4(x, y)‖ ≤ α, ∀ x, y ∈ X

and condition (2.2) of Theorem 2.1 is satisfied.
• For all x, y ∈ X, we have:

S(x, y)t =
a1(x, y) + a2(x, y) + a4(x, y)

1− a3(x, y)− a4(x, y)
t, ∀ t ∈ R.

Then, for all x, y ∈ X, we have:

‖S(x, y)‖ =
a1(x, y) + a2(x, y) + a4(x, y)

1− a3(x, y)− a4(x, y)
.

Since α ∈ [0, 1), we have:

a1(x, y) + a2(x, y) + a4(x, y) + αa3(x, y) + αa4(x, y) ≤ α, ∀x, y ∈ X.

Then,
‖S(x, y)‖ ≤ α, ∀x, y ∈ X

and condition (2.3) of Theorem 2.1 holds with β = α.
• Conditions (2.4), (2.5) and (2.6) are easy to check.
• For all x, y ∈ X, we have:

(I − A3(x, y)− A4(x, y))−1s =
s

1− a3(x, y)− a4(x, y)
, ∀ s ∈ R.

Since a3(x, y) + a4(x, y) < 1 for all x, y ∈ X, then

s ≥ 0 ⇒ (I − A3(x, y)− A4(x, y))−1s ≥ 0.

Hence, condition (2.7) of Theorem 2.1 is satisfied.
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Now, we are able to apply Theorem 2.1 and then, T has a unique fixed point. ¤

3. Open problem

We present the following open problem.
In hypothesis (2.2), we assumed that α ∈ [0, 1/k), where k is the normal

constant of the cone P . What can we say about the case when α ∈ [1/k, 1) with
k > 1?
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