TERNARY JORDAN HOMOMORPHISMS IN C^{*}-TERNARY ALGEBRAS

S. KABOLI GHARETAPEH ${ }^{1}$, MADJID ESHAGHI GORDJI ${ }^{2, *}$, M. B. GHAEMI ${ }^{3}$ AND E. RASHIDI ${ }^{4}$

Dedicated to Themistocles M. Rassias on the occasion of his sixtieth birthday

Abstract. In this note, we prove the Hyers-Ulam-Rassias stability of Jordan homomorphisms in C^{*}-ternary algebras for the following generalized CauchyJensen additive mapping:

$$
r f\left(\frac{s \sum_{j=1}^{p} x_{j}+t \sum_{j=1}^{d} x_{j}}{r}\right)=s \sum_{j=1}^{p} f\left(x_{j}\right)+t \sum_{j=1}^{d} f\left(x_{j}\right)
$$

and generalize some results concerning this functional equation.

1. Introduction

Ternary algebraic structures appear more or less naturally in various domain of theoretical and mathematical physics, for example the quark model inspired a particular brand of ternary algebraic system. One of such attempt has been proposed by Y. Nambu in 1973, and known under the name of "Nambu mechanics" since then [43] (see also [1, 45] and [46]).

A C^{*}-ternary algebra is a complex Banach space A, equipped with a ternary product $(x, y, z) \longmapsto[x, y, z]$ of A^{3} into A, which is \mathbb{C}-linear in the outer variables, conjugate \mathbb{C}-linear in the middle variable, and associative in the sense that $[x, y,[z, u, v]]=[x,[u, z, y], v]=[[x, y, z], u, v]$, and satisfies $\|[x, y, z]\| \leq$ $\|x\| \cdot\|y\| \cdot\|z\|$ and $\|[x, x, x]\|=\|x\|^{3}$. If a C^{*}-ternary algebra $(A,[., .,]$.$) has an iden-$ tity, i.e., an element $e \in A$ such that $x=[x, e, e]=[e, e, x]$ for all $x \in A$, then it is

[^0]routine to verify that A, endowed with $x o y:=[x, e, y]$ and $x^{*}:=[e, x, e]$, is a unital C^{*}-algebra. Conversely, if (A, o) is a unital $C^{*}-$ algebra, then $[x, y, z]:=x o y^{*} o z$ makes A into a C^{*}-ternary algebra.
A \mathbb{C}-linear mapping $H: A \rightarrow B$ between C^{*}-ternary algebras is called a ternary Jordan homomorphism if
$$
H([x, x, x])=[H(x), H(x), H(x)]
$$
for all $x \in A$.
The stability of functional equations started with the following question concerning stability of group homomorphisms proposed by S.M. Ulam [44] during a talk before a Mathematical Colloquium at the University of Wisconsin, Madison, in 1940:

Let $\left(G_{1},.\right)$ be a group and let $\left(G_{2}, *\right)$ be a metric group with the metric $d(.,$.$) .$ Given $\varepsilon>0$, can a $\delta>0$ be found so if a mapping $h: G_{1} \longrightarrow G_{2}$ satisfies the inequality $d(h(x . y), h(x) * h(y))<\delta$, for all $x, y \in G_{1}$, then a homomorphism $H: G_{1} \longrightarrow G_{2}$ exists with $d(h(x), H(x))<\varepsilon$, for all $x \in G_{1}$.
In 1941, Hyers [18] provide the first (partial) answer to Ulam's problem as follows:
If E and E^{\prime} are Banach spaces and $f: E \longrightarrow E^{\prime}$ is a mapping for which there is $\varepsilon>0$ such that $\|f(x+y)-f(x)-f(y)\| \leq \varepsilon$ for all $x, y \in E$, then there is a unique additive mapping $L: E \longrightarrow E^{\prime}$ such that $\|f(x)-L(x)\| \leq \varepsilon$ for all $x \in E$. Hyers?theorem was generalized by Aoki [3] for additive mappings and by Rassias [35] for linear mappings by considering an unbounded Cauchy difference. The paper of Rassias [35] has provided a lot of influence in the development of what we now call generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability of functional equations. On the other hand, J.M. Rassias (see [32]-[34]) solved the Ulam problem by involving a product of different powers of norms. In 1994, a generalization of the Rassias' theorem was obtained by Gǎvruta [17] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach. For more details about the results concerning such problems the reader is referred to [2]-[31] and [36]-[41].

In this paper, we have analyzed some detail of C^{*}-ternary algebra. A detailed study of how we can have the Hyers-Ulam-Rassias stability of Jordan homomorphism in C^{*} ternary algebra associated with the following generalized CauchyJensen additive mapping

$$
r f\left(\frac{s \sum_{j=1}^{p} x_{j}+t \sum_{j=1}^{d} x_{j}}{r}\right)=s \sum_{j=1}^{p} f\left(x_{j}\right)+t \sum_{j=1}^{d} f\left(x_{j}\right)
$$

is given.

2. Stability of Jordan homomorphisms

Let A, B be C^{*}-ternary algebras. For a given mapping $f: A \longrightarrow B$, we define
$C_{\mu} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right):=r f\left(\frac{s \sum_{j=1}^{p} \mu x_{j}+t \sum_{j=1}^{d} \mu x_{j}}{r}\right)-s \sum_{j=1}^{p} \mu f\left(x_{j}\right)-t \sum_{j=1}^{d} \mu f\left(x_{j}\right)$
for all $\mu \in \mathbb{T}^{1}:=\{\lambda \in \mathbb{C}:|\lambda|=1\}$ and all $x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d} \in A$.
One can easily show that a mapping $f: A \longrightarrow A$ satisfies

$$
C_{\mu} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right)=0
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d} \in A$ if and only if

$$
f(\mu x+\lambda y)=\mu f(x)+\lambda f(y)
$$

for all $\mu, \lambda \in \mathbb{T}^{1}$ and all $x, y \in A$.
We will use the following lemmas in this paper:
Lemma 2.1. [29] Let $f: A \longrightarrow A$ be an additive mapping such that $f(\mu x)=$ $\mu f(x)$ for all $x \in A$ and all $\mu \in \mathbb{T}^{1}$. Then the mapping f is \mathbb{C}-linear.
Lemma 2.2. [26] Let $\left\{x_{n}\right\}_{n},\left\{y_{n}\right\}_{n}$ and $\left\{z_{n}\right\}_{n}$ be convergent sequences in A. Then the sequence $\left\{\left[x_{n}, y_{n}, z_{n}\right]\right\}_{n}$ is convergent in A.
Theorem 2.3. Let r, θ be non-negative real numbers such that $r \in(-\infty, 1) \cup$ $(3,+\infty)$, and let $f: A \longrightarrow A$ be a mapping such that

$$
\begin{equation*}
\left\|C_{\mu} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right)\right\|_{A} \leq \theta\left(\sum_{j=1}^{p}\left\|x_{j}\right\|_{A}^{r}+\sum_{j=1}^{d}\left\|y_{j}\right\|_{A}^{r}\right) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\|f([x, x, x])-[f(x), f(x), f(x)]\|_{A} \leq 3 \theta\|x\|_{A}^{r} \tag{2.2}
\end{equation*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d} \in A$. Then there exists a unique ternary Jordan homomorphism $h: A \longrightarrow A$ such that

$$
\begin{equation*}
\|f(x)-h(x)\|_{A} \leq \frac{2^{r}(p+d) \theta}{\left|2(p+2 d)^{r}-(p+2 d) 2^{r}\right|}\|x\|_{A}^{r} \tag{2.3}
\end{equation*}
$$

for all $x \in A$.

Proof. Letting $\mu=1$ and $x_{1}=\ldots=x_{p}=y_{1}, \ldots, y_{d}=x$ and $s=1, t=2$ in (2.1), we get

$$
\begin{equation*}
\|f((p+2 d) x)-(p+2 d) f(x)\| \leq(p+d) \theta\|x\|_{A}^{r} \tag{2.4}
\end{equation*}
$$

for all $x \in A$. So

$$
\left\|f(x)-(p+2 d) f\left(\frac{x}{p+2 d}\right)\right\| \leq \frac{(p+d) \theta}{2^{r}(p+2 d)^{r}}\|x\|_{A}^{r}
$$

for all $x \in A$. Hence

$$
\begin{align*}
\|(p+2 d)^{l} f\left(\frac{x}{(p+2 d)^{l}}\right. & -(p+2 d)^{m} f\left(\frac{x}{(p+2 d)^{m}}\left\|\leq \sum_{j=l}^{m-1}\right\|(p+2 d)^{j} f\left(\frac{x}{(p+2 d)^{j}}\right)\right. \\
& -(p+2 d)^{j+1} f\left(\frac{x}{(p+2 d)^{j+1}}\right)\left\|\leq \frac{\theta}{2^{r}} \sum_{j=l}^{m-1} \frac{(p+2 d)^{j}}{(p+2 d)^{r j}}\right\| x \|_{A}^{r} \tag{2.5}
\end{align*}
$$

for all non-negative integers m and l with $m>1$ and all $x \in A$. It follows from (2.5) that the sequence $\left\{(p+2 d)^{n} f\left(\frac{x}{(p+2 d)^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in A$.

Since A is complete, the sequence $\left\{(p+2 d)^{n} f\left(\frac{x}{(p+2 d)^{n}}\right)\right\}$ converges. So one can define the mapping $h: A \longrightarrow A$ by

$$
h(x):=\lim _{n \longrightarrow \infty}(p+2 d)^{n} f\left(\frac{x}{(p+2 d)^{n}}\right)
$$

for all $x \in A$.
Moreover letting $l=0$ and passing the limit $m \longrightarrow \infty$ in (2.5), we get (2.3). It follows from (2.1) that

$$
\begin{aligned}
\| r h\left(\frac{(p+2 d) x}{r}\right) & -(p+2 d) h(x)\left\|\leq \lim _{n \longrightarrow \infty}(p+2 d)^{n}\right\| r f\left(\frac{x}{(p+2 d)^{n-1}}\right) \\
& -(p+2 d) f\left(\frac{x}{(p+2 d)^{n}}\right) \| \leq \lim _{n \longrightarrow \infty} \frac{(p+2 d)^{n}}{(p+2 d)^{n r}}\left(3 \theta\|x\|_{A}^{r}\right) \\
& =0
\end{aligned}
$$

for all $x \in A$. So

$$
r h\left(\frac{s \sum_{j=1}^{p} x_{j}+t \sum_{j=1}^{d} x_{j}}{r}\right)=s \sum_{j=1}^{p} h\left(x_{j}\right)+t \sum_{j=1}^{d} h\left(x_{j}\right)
$$

for all $x \in A$. By Lemma 2.1, the mapping $h: A \longrightarrow A$ is Cauchy additive. By the same reasoning as in the proof of Theorem 2.1 of [29], the mapping $h: A \longrightarrow A$ is \mathbb{C}-linear.
It follows from (2.2) that

$$
\begin{aligned}
\| h([x, x, x]) & -[h(x), h(x), h(x)]\left\|\leq \lim _{n \longrightarrow \infty}(p+2 d)^{3 n}\right\| f\left(\frac{[x, x, x]}{(p+2 d)^{3 n}}\right) \\
& -\left[f\left(\frac{x}{(p+2 d)^{n}}\right), f\left(\frac{x}{(p+2 d)^{n}}\right), f\left(\frac{x}{(p+2 d)^{n}}\right)\right] \| \\
& \leq \lim _{n \longrightarrow \infty} \frac{(p+2 d)^{3 n}}{(p+2 d)^{n r}}\left(3 \theta\|x\|_{A}^{r}\right)=0
\end{aligned}
$$

for all $x \in A$. So

$$
h([x, x, x])=[h(x), h(x), h(x)]
$$

for all $x \in A$.
Now, let $T: A \longrightarrow A$ be another Cauchy-Jensen additive mapping satisfying (2.3). Then we have

$$
\begin{aligned}
\| h(x) & -T(x)\left\|=(p+2 d)^{n}\right\| h\left(\frac{x}{(p+2 d)^{n}}\right)-T\left(\frac{x}{(p+2 d)^{n}}\right) \| \\
& \leq(p+2 d)^{n}\left(\left\|h\left(\frac{x}{(p+2 d)^{n}}\right)-f\left(\frac{x}{(p+2 d)^{n}}\right)\right\|+\left\|T\left(\frac{x}{(p+2 d)^{n}}\right)-f\left(x(p+2 d)^{n}\right)\right\|\right) \\
& \leq \frac{6(p+2 d)^{n} \theta}{\left((2)^{r}-(2)\right)(p+2 d)^{n r}}\|x\|_{A}^{r}
\end{aligned}
$$

which tends to zero as $n \longrightarrow \infty$ for all $x \in A$. So we can conclude that $h(x)=$ $T(x)$ for all $x \in A$. This proves the uniqueness property of h. Thus the mapping
$h: A \longrightarrow A$ is unique C^{*}-ternary algebra Jordan homomorphism satisfying (2.3).

Theorem 2.4. Let r, s and θ be non-negative real numbers such that $0<r<$ $1,0<s<3$ (respectively, $r>1, s>3$) and let $d \geq 2$. Suppose that $f: A \longrightarrow A$ is a mapping with $f(0)=0$, satisfying (2.1) and

$$
\begin{equation*}
\|f([x, x, x])-[f(x), f(x), f(x)]\|_{A} \leq 3 \theta\|x\|_{A}^{s} \tag{2.4}
\end{equation*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x \in A$. Then there exists a unique C^{*}-ternary algebra Jordan homomorphism $h: A \longrightarrow A$ such that

$$
\begin{equation*}
\|f(x)-h(x)\|_{A} \leq \frac{d \theta}{2\left|d-d^{r}\right|}\|x\|_{A}^{r} \tag{2.5}
\end{equation*}
$$

for all $x \in A$.
Proof. Case I. $0<r<1$ and $0<s<3$.
Letting $\mu=1, x_{1}=\ldots=x_{p}=0$ and $y_{1}=\ldots=y_{d}=x$ and $t=1$ in (2.1), we get

$$
\begin{equation*}
\|f(d x)-d f(x)\|_{A} \leq \frac{d \theta}{2}\|x\|_{A}^{r} \tag{2.6}
\end{equation*}
$$

for all $x \in A$. If we replace x by d^{n} in (2.6) and divide both sides of (2.6) to d^{n+1}, we get

$$
\left\|\frac{1}{d^{n+1}} f\left(d^{n+1} x\right)-\frac{1}{d^{n}} f\left(d^{n} x\right)\right\|_{A} \leq \frac{\theta}{2} d^{(r-1) n}\|x\|_{A}^{r}
$$

for all $x \in A$ and all non-negative integers n. Therefore,

$$
\begin{equation*}
\left\|\frac{1}{d^{n+1}} f\left(d^{n+1} x\right)-\frac{1}{d^{m}} f\left(d^{m} x\right)\right\|_{A} \leq \frac{\theta}{2} \sum_{i=m}^{n} d^{(r-1) i}\|x\|_{A}^{r} \tag{2.7}
\end{equation*}
$$

for all $x \in A$ and all non-negative integers $n \geq m$. From this it follows that the sequence $\left\{\frac{1}{d^{n}} f\left(d^{n} x\right)\right\}$ is Cauchy for all $x \in A$. Since A is complete, the sequence $\left\{\frac{1}{d^{n}} f\left(d^{n} x\right)\right\}$ converges. Thus one can define the mapping $h: A \longrightarrow A$ by

$$
h(x):=\lim _{n \longrightarrow \infty} \frac{1}{d^{n}} f\left(d^{n} x\right)
$$

for all $x \in A$. Moreover, letting $m=0$ and passing the limit $n \longrightarrow \infty$ in (2.7) we get (2.5). It follows from (2.1) that

$$
\begin{aligned}
& \left\|r h\left(\frac{s \sum_{j=1}^{p} \mu x_{j}+t \sum_{j=1}^{d} \mu y_{j}}{r}\right)-s \sum_{j=1}^{p} \mu h\left(x_{j}\right)-t \sum_{j=1}^{d} \mu h\left(y_{j}\right)\right\|_{A} \\
& \quad=\lim _{n \longrightarrow \infty} \frac{1}{d^{n}}\left\|r f\left(d^{n} \frac{s \sum_{j=1}^{p} \mu x_{j}+t \sum_{j=1}^{d} \mu y_{j}}{r}\right)-s \sum_{j=1}^{p} \mu f\left(d^{n} x_{j}\right)-t \sum_{j=1}^{d} \mu f\left(d^{n} y_{j}\right)\right\|_{A} \\
& \quad \leq \lim _{n \longrightarrow \infty} \frac{d^{n r}}{d^{n}} \theta\left(\sum_{j=1}^{p}\left\|x_{j}\right\|_{A}^{r}+\sum_{j=1}^{d}\left\|y_{j}\right\|_{A}^{r}\right)=0
\end{aligned}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d} \in A$. Hence

$$
r h\left(\frac{s \sum_{j=1}^{p} \mu x_{j}+t \sum_{j=1}^{d} \mu y_{j}}{r}\right)=s \sum_{j=1}^{p} \mu h\left(x_{j}\right)+t \sum_{j=1}^{d} \mu h\left(y_{j}\right)
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d} \in A$. So $h(\lambda x+\mu y)=\lambda h(x)+\mu h(y)$ for all $\lambda, \mu \in \mathbb{T}^{1}$ and all $x, y \in A$. Therefore by Lemma 2.1, the mapping $h: A \longrightarrow A$ is \mathbb{C}-linear.
It follows from Lemma 2.2 and (2.4) that

$$
\begin{aligned}
\| h([x, x, x]) & -[h(x), h(x), h(x)]\left\|_{A}=\lim _{n \longrightarrow \infty} \frac{1}{d^{3 n}}\right\| f\left(\left[d^{n} x, d^{n} x, d^{n} x\right]\right) \\
& -\left[f\left(d^{n} x\right), f\left(d^{n} x\right), f\left(d^{n} x\right)\right] \|_{A} \leq \theta \lim _{n \longrightarrow \infty} \frac{d^{n s}}{d^{3 n}}\left(\|x\|_{A}^{s}+\|x\|_{A}^{s}+\|x\|_{A}^{s}\right) \\
& =0
\end{aligned}
$$

for all $x \in A$. Thus

$$
h([x, x, x])=[h(x), h(x), h(x)]
$$

for all $x \in A$.
We can proved that the mapping $h: A \longrightarrow A$ is a unique C^{*}-ternary algebra Jordan homomorphism satisfying (2.5), as desired (see [26]).
Case II. $r>1, s>3$.
We can define the mapping $h: A \longrightarrow A$ by

$$
h(x):=\lim _{n \longrightarrow \infty} d^{n} f\left(d^{-n} x\right)
$$

for all $x \in A$. The rest of the proof is similar to the proof of case I.
Theorem 2.5. Let r, θ be non-negative real numbers such that $r \in\left(-\infty, \frac{1}{p+d}\right) \cup$ $(1,+\infty)$, and let $f: A \longrightarrow A$ be a mapping such that

$$
\begin{equation*}
\left\|C_{\mu} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right)\right\|_{A} \leq \theta \prod_{j=1}^{p}\left\|x_{j}\right\|_{A}^{r} \cdot \prod_{j=1}^{d}\left\|y_{j}\right\|_{A}^{r} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\|f([x, x, x])-[f(x), f(x), f(x)]\|_{A} \leq \theta\|x\|_{A}^{3 r} \tag{2.9}
\end{equation*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d} \in A$. Then there exists a unique ternary Jordan homomorphism $h: A \longrightarrow A$ such that

$$
\|f(x)-h(x)\|_{A} \leq \frac{2^{(p+d) r} \theta}{\left|2(p+2 d)^{(p+d) r}-2^{(p+d) r}(p+2 d)\right|}\|x\|_{A}^{(p+d) r}
$$

for all $x \in A$.
Proof. Letting $\mu=1$ and $x_{1}=\ldots=x_{p}=y_{1}, \ldots, y_{d}=x$ and $s=1, t=2$ in (2.8), we get

$$
\begin{equation*}
\|f((p+2 d) x)-(p+2 d) f(x)\| \leq(p+d) \theta\|x\|_{A}^{3 r} \tag{2.10}
\end{equation*}
$$

for all $x \in A$. So

$$
\left\|f(x)-(p+2 d) f\left(\frac{x}{p+2 d}\right)\right\| \leq \frac{\theta}{(p+2 d)^{(p+d) r}}\|x\|_{A}^{(p+d) r}
$$

for all $x \in A$. Hence,

$$
\begin{align*}
\|(p+2 d)^{l} f\left(\frac{x}{(p+2 d)^{l}}\right. & -(p+2 d)^{m} f\left(\frac{x}{(p+2 d)^{m}} \|\right. \\
& \leq \sum_{j=l}^{m-1}\left\|(p+2 d)^{j} f\left(\frac{x}{(p+2 d)^{j}}\right)-(p+2 d)^{j+1} f\left(\frac{x}{(p+2 d)^{j+1}}\right)\right\| \\
& \leq \frac{\theta}{(p+2 d)^{(p+d) r}} \sum_{j=l}^{m-1} \frac{(p+2 d)^{j}}{(p+2 d)^{(p+d) r j}}\|x\|_{A}^{(p+d) r} \tag{2.11}
\end{align*}
$$

for all non-negative integers m and l with $m>1$ and all $x \in A$. It follows from (2.11) that the sequence $\left\{(p+2 d)^{n} f\left(\frac{x}{(p+2 d)^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in A$. Since A is complete, the sequence $\left\{(p+2 d)^{n} f\left(\frac{x}{(p+2 d)^{n}}\right)\right\}$ converges. So one can define the mapping $h: A \longrightarrow A$ by

$$
h(x):=\lim _{n \longrightarrow \infty}(p+2 d)^{n} f\left(\frac{x}{(p+2 d)^{n}}\right)
$$

for all $x \in A$.
Moreover letting $l=0$ and passing the limit $m \longrightarrow \infty$ in (2.11), we get (2.9). The rest of the proof is similar to the proof of Theorem 2.3.
Theorem 2.6. Let $r, s, p, r_{1}, \ldots, r_{p}, s_{1}, \ldots, s_{d}$ and θ be non-negative real numbers such that $r+s+p \neq 3$ and $r_{k}>0\left(s_{k}>0\right)$ for some $1 \leq k \leq p(1 \leq k \leq d)$. Let $f: A \longrightarrow A$ be a mapping satisfying

$$
\begin{equation*}
\left\|C_{\mu} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right)\right\|_{A} \leq \theta \prod_{j=1}^{p}\left\|x_{j}\right\|_{A}^{r_{j}} \cdot \prod_{j=1}^{d}\left\|y_{j}\right\|_{A}^{s_{j}} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\|f([x, x, x])-[f(x), f(x), f(x)]\|_{A} \leq \theta\|x\|_{A}^{r+s+p} \tag{2.13}
\end{equation*}
$$

for all $\mu \in \mathbb{T}^{1}$ and all $x, x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d} \in A$. Then the mapping $f: A \longrightarrow A$ is a ternary Jordan homomorphism (we put $\|\cdot\|_{A}^{0}=1$).
Proof. We can show that $f(\mu x+\lambda y)=\mu f(x)+\lambda f(y)$ for all $\lambda, \mu \in \mathbb{T}^{1}$ and $x, y \in A$ (see [26]). Therefor, by Lemma 2.1 the mapping $f: A \longrightarrow A$ is \mathbb{C}-linear. Let $r+s+p>3$. Then it follows from (2.13) that

$$
\begin{aligned}
& \|f([x, x, x])-[f(x), f(x), f(x)]\|_{A} \\
& \lim _{n \longrightarrow \infty} 8^{n}\left\|f\left(\left[\frac{x}{2^{n}}, \frac{x}{2^{n}}, \frac{x}{2^{n}}\right]\right)-\left[f\left(\frac{x}{2^{n}}\right), f\left(\frac{x}{2^{n}}\right), f\left(\frac{x}{2^{n}}\right)\right]\right\|_{A} \\
& \leq \theta\|x\|_{A}^{r}\|x\|_{A}^{s}\|x\|_{A}^{p} \lim _{n \longrightarrow \infty}\left(\frac{8}{2^{r+s+p}}\right)^{n}=0
\end{aligned}
$$

for all $x \in A$. Therefore,

$$
\begin{equation*}
f([x, x, x])=[f(x), f(x), f(x)] \tag{2.14}
\end{equation*}
$$

for all $x \in A$. Similarly, for $r+s+p<3$, we get (2.14).

3. Superstability of ternary Jordan homomorphisms

Throughout this section, assume that A is a unital C^{*}-algebra with unite element e, and with norm $\|\cdot\|_{A}$.
We investigate superstability of ternary Jordan homomorphisms in C^{*}-ternary algebras associated with the functional equation $C_{\mu} f\left(x_{1}, \ldots, x_{p}, y_{1}, \ldots, y_{d}\right)=0$.

Theorem 3.1. Let $r>1, s>3$ and θ be non-negative real numbers, and let $f: A \longrightarrow A$ be a mapping satisfying (2.1) and (2.2). If there exists a real number $\lambda>1(0<\lambda<1)$ and an element $x_{0} \in A$ such that $\lim _{n \rightarrow \infty} \frac{1}{\lambda^{n}} f\left(\lambda^{n} x_{0}\right)=$ $e\left(\lim _{n \longrightarrow \infty} \lambda^{n} f\left(\frac{x_{0}}{\lambda^{n}}\right)=e\right)$), then the mapping $f: A \longrightarrow A$ is a ternary Jordan homomorphism.

Proof. By using of Section 2, there exists a unique ternary Jordan homomorphism $h: A \longrightarrow A$ such that

$$
\begin{equation*}
h(x)=\lim _{n \longrightarrow \infty} \frac{1}{\lambda^{n}} f\left(\lambda^{n} x\right),\left(h(x)=\lim _{n \longrightarrow \infty} \lambda^{n} f\left(\frac{x}{\lambda^{n}}\right)\right. \tag{3.2}
\end{equation*}
$$

for all $x \in A, \lambda>1(0<\lambda<1)$. Therefore, by the assumption we get that $h\left(x_{0}\right)=e$. Let $\lambda>1$ and $\lim _{n \rightarrow \infty} \frac{1}{\lambda^{n}} f\left(\lambda^{n} x_{0}\right)=e$. It follows from (2.4) that

$$
\begin{aligned}
\|[h(x), h(x), h(x)] & -[h(x), h(x), f(x)]\left\|_{A}=\right\| h[x, x, x]-[h(x), h(x), f(x)] \|_{A} \\
& =\lim _{n \longrightarrow \infty} \frac{1}{\lambda^{2 n}} \| f\left(\left[\lambda^{n} x, \lambda^{n} x, x\right]\right)-\left[f\left(\lambda^{n} x\right), f\left(\lambda^{n} x\right), f(x) \|_{A}\right. \\
& \leq \theta \lim _{n \longrightarrow \infty} \frac{1}{\lambda^{2 n}}\left(\lambda^{n s}\|x\|_{A}^{s}+\lambda^{n s}\|x\|_{A}^{s}+\|x\|_{A}^{s}\right)=0
\end{aligned}
$$

for all $x \in A$. So $[h(x), h(x), h(x)]=[h(x), h(x), f(x)]$ for all $x \in A$. Letting $x=x_{0}$ in the last equality, we get $f(x)=h(x)$ for all $x \in A$. Similarly, one can show that $h(x)=f(x)$ for all $x \in A$ when $0<\lambda<1$ and $\lim _{n \rightarrow \infty} \lambda^{n} f\left(\frac{x_{0}}{\lambda^{n}}\right)=e$. Therefore, the mapping $f: A \longrightarrow A$ is a ternary Jordan homomorphism.

Theorem 3.2. Let $r<1, s<2$ and θ be non-negative real numbers, and let $f: A \longrightarrow A$ be a mapping satisfying (2.1) and (2.2). If there exists a real number $\lambda>1(0<\lambda<1)$ and an element $x_{0} \in A$ such that $\lim _{n \rightarrow \infty} \frac{1}{\lambda^{n}} f\left(\lambda^{n} x_{0}\right)=$ $e\left(\lim _{n \longrightarrow \infty} \lambda^{n} f\left(\frac{x_{0}}{\lambda^{n}}\right)=e\right)$, then the mapping $f: A \longrightarrow A$ is a ternary Jordan homomorphism.

Proof. The proof is similar to the proof of Theorem 3.1.

References

[1] V. Abramov, R. Kerner and B. Le Roy, Hypersymmetry: a Z_{3} graded generalization of supersymmetry, J. Math. Phys., 38 (1997), 1650-1669.
[2] J. Aczel, J. Dhombres, Functional Equations in Several Variables, Cambridge Univ. Press, 1989.
[3] T. Aoki, On the stability of the linear transformationin Banach spaces. J. Math. Soc. Japan 2 (1950), 64-66.
[4] P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
[5] S. Czerwik, On the stability of the quadratic mapping in normed spaces. Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59-64.
[6] S. Czerwik, Functional Equations and Inequalities in Several Variables. World Scientific, London (2002).
[7] A. Ebadian, A. Najati, M. Eshaghi Gordji, On approximate additive-quartic and quadratic-cubic functional equations in two variables on abelian groups, Results. Math, DOI 10.1007/s00025-010-0018-4 (2010).
[8] M. Eshaghi Gordji, M.B. Ghaemi, S. Kaboli Gharetapeh, S. Shams, A. Ebadian, On the stability of J^{*}-derivations, Journal of Geometry and Physics, 60 (2010), 454-459.
[9] M. Eshaghi Gordji, S. Kaboli Gharetapeh, T. Karimi, E. Rashidi and M. Aghaei, Ternary Jordan derivations on C^{*}-ternary algebras, Journal of Computational Analysis and Applications, VOL.12,(2010), 463-470.
[10] M. Eshaghi Gordji, S. Kaboli-Gharetapeh, C. Park and S. Zolfaghri, Stability of an additive-cubic-quartic functional equation, Advances in Difference EquationsVolume 2009 (2009), Article ID 395693, 20 pages.
[11] M. Eshaghi Gordji, S. Kaboli Gharetapeh, J.M. Rassias and S. Zolfaghari, Solution and stability of a mixed type additive, quadratic and cubic functional equation, Advances in difference equations, Volume 2009, Article ID 826130, 17 pages,
[12] M. Eshaghi Gordji, T. Karimi, S. Kaboli Gharetapeh, Approximately n-Jordan homomorphisms on Banach algebras, J. Ineq. Appl. Volume 2009, Article ID 870843, 8 pages.
[13] M. Eshaghi Gordji, H. Khodaei, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Analysis.TMA, 71 (2009), 5629-5643.
[14] M. Eshaghi Gordji, H. Khodaei, On the Generalized Hyers-Ulam-Rassias Stability of Quadratic Functional Equations, Abstract and Applied Analysis Volume 2009, Article ID 923476, 11 pages.
[15] M. Eshaghi Gordji and A. Najati, Approximately J^{*}-homomorphisms: A fixed point approach, Journal of Geometry and Physics, 60 (2010), 809-814.
[16] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci., 14 (1991), 431-434.
[17] P. Găvruta, A generalization of the Hyers?Ulam?Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
[18] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27 (1941), 222-224.
[19] D.H. Hyers, G. Isac, T.M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998.
[20] H. Khodaei, Th.M. Rassias, Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl., 1 (2010), 22-41.
[21] K.W. Jun, H.M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation. J. Math. Anal. Appl., 274 (2002), 867-878.
[22] K.W. Jun, H.M. Kim, I.S. Chang, On the Hyers-Ulam stability of an Euler?Lagrange type cubic functional equation, J. Comput. Anal. Appl., 7 (2005), 21-33.
[23] S.-M. Jung, Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Amer. Math. Soc., 126 (1998), 3137-3143.
[24] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press Inc., Palm Harbor, Florida, 2001.
[25] S.-M. Jung, Stability of the quadratic equation of Pexider type, Abh. Math. Sem. Univ. Hamburg, 70 (2000), 175-190.
[26] A. Najati and C. Park, Homomorphisms and derivations C^{*}-ternary algebras, preprint.
[27] C. Park, Lie *-homomorphisms between Lie C^{*}-algebras and Lie *-derivations on Lie C^{*}-algebras, J. Math. Anal. Appl., 293 (2004), 419-434.
[28] C. Park, Homomorphisms between Lie $J C^{*}$-algebras and Cauchy-Rassias stability of Lie $J C^{*}$ - algebra derivations, J. Lie Theory, 15 (2005), 393-414.
[29] C. Park, Homomorphisms between Poisson $J C^{*}$-algebras, Bull. Braz. Math. Soc., 36 (2005), 79-97.
[30] C. Park, Isomorphisms between C^{*}-ternary algebras, J. Math. Phys., 47 Article ID 103512(2006).
[31] C. Park, Hyers-Ulam-Rassias stability of a generalized Euler-Lagrange type additive mapping and isomorphisms between C^{*}-algebras, Bull. Belgian Math. Soc.-Simon Stevin, 13 (2006), 619-631.
[32] J.M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal., 46 (1982) 126-130.
[33] J.M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sc. Math., 108 (1984), 445-446.
[34] J.M. Rassias, On a new approximation of approximately linear mappings by linear mappings, Discuss. Math., 7 (1985), 193-196.
[35] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[36] Th.M. Rassias, New characterization of inner product spaces, Bull. Sci. Math., 108 (1984), 95-99.
[37] Th.M. Rassias, P. Šemrl, On the behaviour of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc., 114 (1992), 989-993.
[38] Th. M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Mayh. Anal. Appl., 246 (2000), 352-378.
[39] Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., 251 (2000), 264-284.
[40] Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math., 62 (2000), 23-130.
[41] Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordecht, Boston and London, (2003).
[42] F. Skof, Local properties and approximations of operators, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113-129.
[43] L. Takhtajan, On foundation of the generalized Nambu mechanics, Comm. Math. Phys., 160 (1994), 295-315.
[44] S.M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Editions. Wiley, New York 1964.
[45] L. Vainerman and R. Kerner, On special classes of n-algebras, J. Math. Phys. 37 (1996), 2553-2565.
[46] H. Zettl, A characterization of ternary rings of operators, Adv. Math. 48 (1983), 117-143.
${ }^{1}$ Department of Mathematics, Payame Noor University, Mashhad Branch, Mashhad, Iran

E-mail address: simin.kaboli@gmail.com
${ }^{2,4}$ Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran

E-mail address: madjid.eshaghi@gmail.com; ehsanerashidi@gmail.com
${ }^{3}$ Department of Mathematics, Iran University of Science and Technology, Tehran, Iran

E-mail address: mghaemi@iust.ac.ir

[^0]: Date: Received: August 14, 2010; Revised: November 15, 2010.

 * Corresponding author
 (c) 2010 N.A.G.

 2000 Mathematics Subject Classification. Primary 39B52; Secondary 39B82, 46B99, 17A40.
 Key words and phrases. Hyers-Ulam-Rassias stability; C^{*}-ternary algebra.

