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STABILITY OF THE LOBACEVSKI EQUATION

GWANG HUI KIM

Dedicated to Themistocles M. Rassias on the occasion of his sixtieth birthday

Abstract. The aim of this paper is to investigate the superstability of the
Lobacevski equation

f
(x + y

2
)2 = f(x)f(y),

which is bounded by the unknown functions ϕ(x) or ϕ(y). The obtained result
is a generalization of P. Gǎvruta’s result in 1994.

1. Introduction

The stability problem of the functional equation was conjectured by Ulam [28]
during the conference in the university of Wisconsin in 1940. In the next year,
it was solved by Hyers [12] in the case of additive mapping, which is called the
Hyers-Ulam stability. Thereafter, this problem was improved by D.G. Bourgin
[6], T. Aoki [1], Th.M. Rassias [22], R. Ger [11], P. Gǎvruta [9], and G. L. Forti
[8], in which Rassias’s result is called the Hyers-Ulam-Rassias stability.

Thereafter some researchers in his named stability and its generalization have
studied the papers ([14]–[21]).

In 1979, J. Baker et al. in [5] developed the superstability, which is if f satisfies
the stability inequality |E1(f)−E2(f)| ≤ ε, then either f is bounded or E1(f) =
E2(f).

Baker [4] showed the superstability of the cosine functional equation (also called
the d’Alembert functional equation)

f(x + y) + f(x− y) = 2f(x)f(y). (A)
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The stability of the generalized functional equations of (A)

f(x + y) + f(x− y) = 2f(x)g(y), (Afg)

f(x + y)− f(x− y) = 2g(x)f(y), (Tgf )

was researched in papers ( [3, 13, 15]), in which (Afg), as the generalization of
the cosine functional equation (A), is called the Wilson functional equation, and
(Tgf ) is the mixed trigonometric functional equation.

The superstability bounded by a constant for the sine functional equation

f

(
x + y

2

)2

− f

(
x− y

2

)2

= f(x)f(y), (S)

was investigated by P.W. Cholewa [7] and was improved by R. Badora and R.
Ger [3].

Gǎvruta [10] proved the superstability of the Lobacevski equation

f

(
x + y

2

)2

= f(x)f(y) (L)

under the condition bounded by a constant, which is similar to the sine functional
equation and the exponential functional equation.

The aim of this paper is a generalization of P. Gǎvruta’s result [10], i.e. which
is to investigate the superstability of the Lobacevski equation (L) under the con-
dition bounded by a function (i.e. sense of Gǎvruta). Furthermore, the range of
the function in all results expands to the Banach space. For an simple example
of this equation, we can find the functional equation

(ex+y)
2

= exey.

In this paper, let (G, +) be a uniquely 2-divisible Abelian group (i.e. for each
x ∈ G there exists a unique y ∈ G such that y + y = x : such a y will be
denoted by x

2
), C the field of complex numbers, and R the field of real numbers,

R+ the set of positive reals. We assume that f and g are nonzero functions, ε is
a nonnegative real constant, and ϕ : G → R+ be a mapping.

2. Stability of the functional equation (L)

We will investigate the superstability of the Lobacevski equation (L).

Theorem 1. Let ϕ be a continuous function such that limn→∞ ϕ(xn) < ∞. Sup-
pose that f : G → C satisfies the inequality

∣∣∣∣∣f
(

x + y

2

)2

− f(x)f(y)

∣∣∣∣∣ ≤ ϕ(y) (2.1)

for all x, y ∈ G.

Then either |f(x)| ≤ |f(0)|+
√
|f(0)|2+4ϕ(0)

2
for all x ∈ G or f satisfies (L).
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Proof. Suppose that there exists x0 ∈ G such that

|f(x0)| >
|f(0)|+

√
|f(0)|2 + 4ϕ(0)

2
. (2.2)

We prove that there exists a sequence {xn} in G such that

lim
n→∞

|f(xn)| = ∞. (2.3)

Taking y = 0 in (2.1) and replacing x by 2x, we obtain∣∣f (x)2 − f(0)f(2x)
∣∣ ≤ ϕ(0) (2.4)

If f(0) = 0, from (2.4) it follows that

|f(x)| ≤
√

ϕ(0), ∀ x ∈ G. (2.5)

and from (2.2) we obtain |f(x0)| >
√

ϕ(0), contradiction.
Thus f(0) 6= 0. From (2.4) we also obtain

|f(0)||f(2x)| = |f(x)2 +
(
f(0)f(2x)− f(x)2

) |
≥ |f(x)|2 − |f(0)f(2x)− f(x)2|
≥ |f(x)|2 − ϕ(0), ∀ x ∈ G.

Thus

|f(2x)| ≥ |f(x)|2 − ϕ(0)

|f(0)| , ∀ x ∈ G. (2.6)

We denote

α =
|f(0)|+

√
|f(0)|2 + 4ϕ(0)

2
, β = |f(x0)| − α. (2.7)

Then
|f(x0)| = α + β (2.8)

and by (2.2), β > 0.
We will prove by induction that

f(2nx0) ≥ α + 2nβ, ∀ n ∈ N. (2.9)

Taking x = x0 in (2.6) and making use of (2.8) we obtain

|f(2x0)| ≥ (α + β)2 − ϕ(0)

|f(0)| = α +
2αβ + β2

|f(0)| ≥ α + 2β (2.10)

because
α2 = α|f(0)|+ ϕ(0)

and
α ≥ |f(0)|, β > 0. (2.11)

Thus (2.9) is valid for n = 1.
Now suppose that (2.9) is true for a n ∈ N . Taking x = 2nx0 in (2.6) and

applying (2.11) we get

f(2n+1x0) ≥ (α + 2nβ)2 − ϕ(0)

|f(0)| = α +
2n+1αβ + 22nβ2

|f(0)| ≥ α + 2n+1β, (2.12)
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which completes the induction.
In virtue of (2.11) and(2.12) the sequence xn = 2nx0, n ∈ N satisfies (2.3).
We consider x, y ∈ G. From (2.1) it follows that∣∣∣∣∣f

(
xn + x

2

)2

− f(xn)f(x)

∣∣∣∣∣ ≤ ϕ(x) ∀n ∈ N (2.13)

i.e. ∣∣∣∣∣f(x)− f
(

xn+x
2

)2

f(xn)

∣∣∣∣∣ ≤
ϕ(x)

|f(xn)| ∀n ∈ N (2.14)

whence by (2.3) we obtain

f(x) = lim
n→∞

f
(

x+xn

2

)2

f(xn)
. (2.15)

From (2.15) we have

f(x)f(y) =

[
lim

n→∞
f

(
x+xn

2

)
f

(
y+xn

2

)

f(xn)

]2

(2.16)

and

f

(
x + y

2

)2

=

[
lim

n→∞
f

(
x+y+2xn

4

)2

f(xn)

]2

(2.17)

The relation (2.1) implies∣∣∣∣∣
f

(
x+xn

2

)
f

(
y+xn

2

)

f(xn)
− f

(
x+y+2xn

4

)2

f(xn)

∣∣∣∣∣ ≤
ϕ(y+xn

2
)

|f(xn)| , ∀n ∈ N. (2.18)

Using by the assumption of ϕ and (2.3), the right side of (2.18) converges to
zero as n → ∞. From (2.16), (2.17), and (2.18), we arrived the required result
(L). ¤
Remark 1. If f : G → R is bounded function satisfying (L), that is∣∣∣∣∣f

(
x + y

2

)2

− f(x)f(y)

∣∣∣∣∣ ≤ ϕ(y) (2.19)

then

|f(x)| ≤
|f(0)|+

√
|f(0)|2 + 4ϕ(0)

2
for all x ∈ G. (2.20)

In fact, suppose that f : G → R satisfies (2.19) and

M := sup{|f(x)| : x ∈ G} >
|f(0)|+

√
|f(0)|2 + 4ϕ(0)

2
. (2.21)

There exists a sequence {(xn) : n ∈ N} in G such that

lim
n→∞

|f(
xn

2
)| = M.
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Then for sufficiently large n ∈ N, we have

|f
(

xn + 0

2

)2

− f(xn)f(0)|

≥ | |f
(

xn + 0

2

)
|2 − |f(xn)||f(0)| |

≥ M2 −M |f(0)|. (2.22)

Moreover from (2.21) and (2.22), we have

lim
n→∞

∣∣∣∣∣f
(

xn + 0

2

)2

− f(xn)f(0)

∣∣∣∣∣ ≥ M2 −M |f(0)| > ϕ(0). (2.23)

We know from (2.19) that

|f
(

xn + 0

2

)2

− f(xn)f(0)| ≤ ϕ(0) (2.24)

for some n ∈ N, which contradicts (2.23).

Theorem 2. Let ϕ be a continuous function such that limn→∞ ϕ(xn) < ∞. Sup-
pose that f : G → C satisfies the inequality∣∣∣∣∣f

(
x + y

2

)2

− f(x)f(y)

∣∣∣∣∣ ≤ ϕ(x) (2.25)

for all x, y ∈ G.

Then either |f(x)| ≤ |f(0)|+
√
|f(0)|2+4ϕ(0)

2
for all x ∈ G or f satisfies (L).

Proof. The proof is very similar to Theorem 1. ¤

Corollary 1. Let ϕ be a continuous function such that limn→∞ ϕ(xn) < ∞.
Suppose that f : G → C satisfies the inequality∣∣∣∣∣f

(
x + y

2

)2

− f(x)f(y)

∣∣∣∣∣ ≤ min{ϕ(x), ϕ(y)}

for all x, y ∈ G.

Then either |f(x)| ≤ |f(0)|+
√
|f(0)|2+4ϕ(0)

2
for all x ∈ G or f satisfies (L).

Corollary 2. Suppose that f : G → C satisfies the inequality∣∣∣∣∣f
(

x + y

2

)2

− f(x)f(y)

∣∣∣∣∣ ≤ ε

for all x, y ∈ G.

Then either |f(x)| ≤ |f(0)|+
√
|f(0)|2+4ε

2
for all x ∈ G or f satisfies (L).

In all the above results presented in this paper, the range of functions on the
Abelian group can be extended to the semisimple commutative Banach space.
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Theorem 3. Let (E, ‖ · ‖) be a semisimple commutative Banach space. Let ϕ be
a continuous function such that limn→∞ ϕ(xn) < ∞ .

For an arbitrary linear multiplicative functional x∗ ∈ E∗,
Assume that f : G → E satisfies one of each inequalities∥∥∥∥∥f

(
x + y

2

)2

− f(x)f(y)

∥∥∥∥∥ ≤
{

(i) ϕ(y)
(ii) ϕ(x)

(2.26)

for all x, y ∈ G

Then either ‖(x∗ ◦ f)(x)‖ ≤ |f(0)|+
√
|f(0)|2+4ϕ(0)

2
for all x ∈ G or f satisfies (L).

Proof. For the case ϕ(y), assume that (2.26) holds and arbitrarily fixes a linear
multiplicative functional x∗ ∈ E∗. As is well known, we have ‖x∗‖ = 1, hence,
for every x, y ∈ G, we have

ϕ(x) ≥
∥∥∥∥∥f

(
x + y

2

)2

− f(x)f(y)

∥∥∥∥∥

= sup
‖y∗‖=1

∣∣y∗(f
(

x + y

2

)2

− f(x)f(y)
)∣∣

≥
∣∣x∗(f

(
x + y

2

)2 )− x∗
(
f(x)

)
x∗

(
f(y)

)∣∣,

which states that the superposition x∗ ◦ f yield a solution of inequality (2.1) in
Theorem 1. Since, by assumption, the boundedness of the superposition x∗ ◦ f ,
an appeal to Theorem 1 shows that the superposition x∗ ◦ f solves (L), that is

(x∗ ◦ f)
(x + y

2

)2
= (x∗ ◦ f)(x)(x∗ ◦ f)(y).

Since x∗ is a linear multiplicative functional, we get

x∗
(

f

(
x + y

2

)2

− f(x)f(y)

)
= 0.

Hence a unrestricted choice of x∗ implies that

f

(
x + y

2

)2

− f(x)f(y) ∈
⋂
{ker x∗ : x∗ ∈ E∗}

Since the space E is semisimple,
⋂{ker x∗ : x∗ ∈ E∗} = 0, which means that f

satisfies the claimed equation (L).
The case ϕ(x) also runs along the above process. ¤

Corollary 3. Let (E, ‖ · ‖) be a semisimple commutative Banach space. Let ϕ be
a continuous function such that limn→∞ ϕ(xn) < ∞ .

For an arbitrary linear multiplicative functional x∗ ∈ E∗,
Assume that f : G → E satisfies one of each inequalities∥∥∥∥∥f

(
x + y

2

)2

− f(x)f(y)

∥∥∥∥∥ ≤ ε
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for all x, y ∈ G

Then either ‖(x∗ ◦ f)(x)‖ ≤ |f(0)|+
√
|f(0)|2+4ϕ(0)

2
for all x ∈ G or f satisfies (L).
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