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ON THE STABILITY OF SOME QUADRATIC FUNCTIONAL
EQUATION

M. ADAM1

This paper is dedicated to the 60th Anniversary of Professor Themistocles M. Rassias

Abstract. In this paper we establish the general solution of the functional
equation which is closely associated with the quadratic functional equation
and we investigate the Hyers-Ulam-Rassias stability of this equation in Banach
spaces.

1. Introduction and preliminaries

The quadratic functional equation

Q(x + y) + Q(x− y) = 2Q(x) + 2Q(y) (1.1)

and its generalizations has been studied by many authors in various classes of
functions (see, e.g., [4, 6, 8]). For more general information on the stability
of functional equations, refer to [3, 5, 7, 9, 10, 11, 12, 13, 15]. The quadratic
functional equation was also used to characterize inner product spaces (see [1, 2,
14]). It is well known that a square norm on an inner product space X satisfies
the important parallelogram equality

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2, x, y ∈ X.

It is easily to check that a square norm also satisfies the equality

‖x− z‖2 + ‖y − z‖2 =
1

2
‖x− y‖2 + 2

∥∥∥∥
x + y

2
− z

∥∥∥∥
2

, x, y, z ∈ X.
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Motivated by this result we consider the following functional equation

f(x− z) + f(y − z) =
1

2
f(x− y) + 2f

(
x + y

2
− z

)
(1.2)

and its pexiderized version

f(x− z) + g(y − z) = h(x− y) + k

(
x + y

2
− z

)
. (1.3)

Clearly, the mapping R 3 x → ax2 ∈ R, a ∈ R, satisfies (1.2). Our purpose
is to determine all solutions of equations (1.2), (1.3) and investigate the Hyers-
Ulam-Rassias stability of equation (1.2).

2. General solutions of equations (1.2) and (1.3)

Throughout this section we assume that X and Y are uniquely 2-divisible abelian
groups.

Theorem 2.1. In the class of functions f : X → Y equations (1.1) and (1.2) are
equivalent.

Proof. Assume that Q : X → Y is a solution of equation (1.1). Then Q is even
and Q(0) = 0. Setting y = x in (1.1) we get Q(2x) = 4Q(x), hence

Q(x) = 4Q
(x

2

)
, x ∈ X. (2.1)

Replacing x and y by x− z and y − z in (1.1), respectively, we obtain

Q(x + y − 2z) + Q(x− y) = 2Q(x− z) + 2Q(y − z), x, y, z ∈ X.

Therefore on account of (2.1) one can easily check that Q is a solution of (1.2).
Assume that f : X → Y is a solution of equation (1.2). Putting x = y = z = 0

in (1.2) we obtain f(0) = 0. Setting y = z = 0 in (1.2) we get

1

2
f(x) = 2f

(x

2

)
, x ∈ X.

Replacing x by x + y in the above equality we obtain

1

2
f(x + y) = 2f

(
x + y

2

)
, x, y ∈ X. (2.2)

Setting z = 0 in (1.2) we have

f(x) + f(y) =
1

2
f(x− y) + 2f

(
x + y

2

)
, x, y ∈ X,

which means by virtue of (2.2) that f satisfies (1.1). ¤

Theorem 2.2. Let functions f, g, h, k : X → Y satisfy (1.3). Then there exist
a quadratic function Q : X → Y , two additive functions E, F : X → Y and
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constants C1, C2, C3, C4 such that C1 + C2 = C3 + C4 and

f(x) = Q(x) + E(x) + C1,

g(x) = Q(x) + F (x) + C2,

h(x) =
1

2
Q(x) +

1

2
E(x)− 1

2
F (x) + C3,

k(x) = 2Q(x) + E(x) + F (x) + C4

for all x ∈ X.

Proof. Since the group Y is uniquely divisible by 2 (i.e. the map X 3 x → x+x ∈
Y is bijective), then we may split f into its even and odd parts fe, fo : X → Y by

fe(x) :=
f(x) + f(−x)

2
, fo(x) :=

f(x)− f(−x)

2
, x ∈ X.

Clearly, fe is even, fo is odd and f = fe + fo. Similarly we define ge, go, he, ho,
ke, ko. Obviously fo(0) = go(0) = ho(0) = ko(0) = 0. Since functions f, g, h, k
satisfy (1.3), then

fe(x− z) + ge(y − z) = he(x− y) + ke

(
x + y

2
− z

)
, x, y, z ∈ X, (2.3)

fo(x− z) + go(y − z) = ho(x− y) + ko

(
x + y

2
− z

)
, x, y, z ∈ X. (2.4)

Let C1 := fe(0), C2 := ge(0), C3 := he(0), C4 := ke(0). Setting x = y = z = 0 in
(2.3) we get C1 + C2 = C3 + C4. Let

f1(x) := fe(x)− C1,

g1(x) := ge(x)− C2,

h1(x) := he(x)− C3,

k1(x) := ke(x)− C4

for all x ∈ X. Then f1, g1, h1, k1 are also even and f1(0) = g1(0) = h1(0) =
k1(0) = 0. Moreover

f1(x− z) + g1(y − z) = h1(x− y) + k1

(
x + y

2
− z

)
, x, y, z ∈ X. (2.5)

Setting, successively, y = x, z = 0 and x = z = 0 and y = z = 0 in (2.5), we get

f1(x) + g1(x) = k1(x), (2.6)

g1(x) = h1(x) + k1

(x

2

)
, (2.7)

f1(x) = h1(x) + k1

(x

2

)
(2.8)

for all x ∈ X. Comparing (2.7) and (2.8) we arrive at

f1(x) = g1(x), x ∈ X. (2.9)

Applying (2.9) to (2.6) one gets

k1(x) = 2f1(x), x ∈ X. (2.10)
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Replacing x by x
2

in (2.10) we obtain

k1

(x

2

)
= 2f1

(x

2

)
, x ∈ X. (2.11)

From (2.8) and (2.11) we have

f1(x) = h1(x) + 2f1

(x

2

)
, x ∈ X. (2.12)

Setting y = 0 and z = x
2

in (2.5) we get

f1

(x

2

)
+ g1

(x

2

)
= h1(x), x ∈ X. (2.13)

Applying (2.9) to (2.13) one gets

h1(x) = 2f1

(x

2

)
, x ∈ X. (2.14)

Comparing (2.12) and (2.14) we arrive at

h1(x) =
1

2
f1(x), x ∈ X.

Therefore

f1(x) = g1(x) = 2h1(x) =
1

2
k1(x), x ∈ X.

Hence f1 satisfies (1.2) and on account of Theorem 2.1 we define f1(x) := Q(x)
for all x ∈ X, where Q : X → Y is a quadratic function. Thus

fe(x) = Q(x) + C1,

ge(x) = Q(x) + C2,

he(x) =
1

2
Q(x) + C3,

ke(x) = 2Q(x) + C4

for all x ∈ X.
Setting, successively, y = x, z = 0 and x = z = 0 and y = z = 0 in (2.4), we

get

fo(x) + go(x) = ko(x), (2.15)

go(x) = −ho(x) + ko

(x

2

)
, (2.16)

fo(x) = ho(x) + ko

(x

2

)
(2.17)

for all x ∈ X. Comparing (2.15), (2.16) and (2.17) we arrive at

ko(x) = 2ko

(x

2

)
, x ∈ X. (2.18)

Putting y = 0 and z = x
2

in (2.4) we have

fo

(x

2

)
− go

(x

2

)
= ho(x), x ∈ X. (2.19)

From (2.16) and (2.17) we obtain

fo(x)− go(x) = 2ho(x), x ∈ X, (2.20)
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hence

fo

(x

2

)
− go

(x

2

)
= 2ho

(x

2

)
, x ∈ X. (2.21)

Comparing (2.19) and (2.21) we see that

ho(x) = 2ho

(x

2

)
, x ∈ X. (2.22)

Setting z = 0 in (2.4) we get

fo(x) + go(y) = ho(x− y) + ko

(
x + y

2

)
, x, y ∈ X. (2.23)

Interchanging the roles of variables in (2.23) we obtain

fo(y) + go(x) = −ho(x− y) + ko

(
x + y

2

)
, x, y ∈ X. (2.24)

Adding (2.23) and (2.24), and applying (2.15) and (2.18) we get

ko(x) + ko(y) = fo(x) + go(x) + fo(y) + go(y)

= 2ko

(
x + y

2

)

= ko(x + y), x, y ∈ X,

i.e. ko is an additive function. Subtracting (2.24) from (2.23) and applying (2.20)
we have

2ho(x)− 2ho(y) = fo(x)− go(x)− fo(y) + go(y)

= 2ho(x− y), x, y ∈ X,

hence replacing y by −y in the above equation we see that ho is also an additive
function. Since the functions ho and ko are additive, then (2.17) and (2.16)
immediately imply that the functions fo and go are also additive. Let

fo(x) := E(x), go(x) := F (x), x ∈ X,

where E, F : X → Y are additive functions. Therefore from (2.20) and (2.15) we
have

ho(x) =
1

2
E(x)− 1

2
F (x), x ∈ X,

ko(x) = E(x) + F (x), x ∈ X.

Finally, since f = fe + fo, then

f(x) = Q(x) + E(x) + C1, x ∈ X.

Similarly

g(x) = Q(x) + F (x) + C2,

h(x) =
1

2
Q(x) +

1

2
E(x)− 1

2
F (x) + C3,

k(x) = 2Q(x) + E(x) + F (x) + C4

for all x ∈ X, which completes the proof. ¤
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3. Stability of equation (1.2)

Throughout this section we assume that X is a uniquely 2-divisible abelian group
and Y is a Banach space. By N we denote the set of positive integers. Theorem 2.2
allows us to prove the Hyers-Ulam-Rassias stability of equation (1.3). However,
in this paper we will only prove the stability of equation (1.2).

Theorem 3.1. Let f : X → Y be a function satisfying the inequality

∥∥∥∥f(x− z) + f(y − z)− 1

2
f(x− y)− 2f

(
x + y

2
− z

)∥∥∥∥ ≤ ϕ(x, y, z) (3.1)

for all x, y, z ∈ X, where ϕ : X × X × X → [0,∞) is a function fulfilling the
following conditions

lim
n→∞

ϕ(2nx, 2ny, 2nz)

4n
= 0, x, y, z ∈ X,

ψ(x) := 2
∞∑

k=1

ϕ(2k+1x, 2kx, 2kx)

4k
< ∞, x ∈ X.

Then there exists a unique quadratic function Q : X → Y such that

∥∥f(x)−Q(x)
∥∥ ≤ ψ(x) + 2ψ(0), x ∈ X.

Proof. Putting x = y = z = 0 in (3.1) we obtain

∥∥f(0)
∥∥ ≤ 2ϕ(0, 0, 0). (3.2)

Replacing x by 4x and setting y = z = 2x in (3.1) we get

∥∥∥∥
1

2
f(2x) + f(0)− 2f(x)

∥∥∥∥ ≤ ϕ(4x, 2x, 2x), x ∈ X.

Defining a new function f1 : X → Y by f1(x) := f(x)− 2
3
f(0) for all x ∈ X and

dividing the above inequality by 2 we have

∥∥∥∥f1(x)− 1

4
f1(2x)

∥∥∥∥ ≤
1

2
ϕ(4x, 2x, 2x), x ∈ X. (3.3)

Now we show by induction that

∥∥∥∥f1(x)− 1

4n
f1(2

nx)

∥∥∥∥ ≤ 2
n∑

k=1

ϕ(2k+1x, 2kx, 2kx)

4k
, x ∈ X. (3.4)
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For n = 1 we have (3.3). Assume the validity of the inequality (3.4) for some
n ∈ N and for all x ∈ X. We will prove it for n + 1. Thus∥∥∥∥f1(x)− 1

4n+1
f1(2

n+1x)

∥∥∥∥ ≤
∥∥∥∥f1(x)− 1

4
f1(2x)

∥∥∥∥ +

∥∥∥∥
1

4
f1(2x)− 1

4n+1
f1(2

n · 2x)

∥∥∥∥

≤ 1

2
ϕ(4x, 2x, 2x) +

1

2

n∑

k=1

ϕ(2k+2x, 2k+1x, 2k+1x)

4k

= 2
n+1∑

k=1

ϕ(2k+1x, 2kx, 2kx)

4k
, x ∈ X,

which proves (3.4) for all n ∈ N. Hence by (3.4) we obtain that
∥∥∥∥
f1(2

nx)

4n
− f1(2

mx)

4m

∥∥∥∥ =
1

4m

∥∥∥∥
f1(2

nx)

4n−m
− f1(2

mx)

∥∥∥∥

≤ 2

4m

n−m∑

k=1

ϕ(2k+m+1x, 2k+mx, 2k+mx)

4k

= 2
n∑

k=m+1

ϕ(2k+1x, 2kx, 2kx)

4k

for all x ∈ X and m,n ∈ N with n > m. Since the right-hand side of the above

inequality tends to zero as m → ∞, then
{

f1(2nx)
4n

}
n∈N

is a Cauchy sequence for

all x ∈ X and thus converges by the completeness of Y . Therefore we can define
a function Q : X → Y by

Q(x) = lim
n→∞

f1(2
nx)

4n
, x ∈ X.

Note that Q(0) = 0 and Q is even. Replacing x, y, z by 2nx, 2ny, 2nz in (3.1)
and dividing both sides by 4n, and after then taking the limit in the resulting
inequality as n →∞, we have

Q(x− z) + Q(y − z)− 1

2
Q(x− y)− 2Q

(
x + y

2
− z

)
= 0, x, y, z ∈ X.

Therefore on account of Theorem 2.1 a function Q is quadratic.
Taking the limit in (3.4) as n →∞, we obtain

∥∥f1(x)−Q(x)
∥∥ ≤ 2

∞∑

k=1

ϕ(2k+1x, 2kx, 2kx)

4k
, x ∈ X,

i.e. from (3.2) and the definition of f1 we get

∥∥f(x)−Q(x)
∥∥ ≤ 2

∞∑

k=1

ϕ(2k+1x, 2kx, 2kx)

4k
+

2

3

∥∥f(0)
∥∥

≤ ψ(x) +
4

3
ϕ(0, 0, 0)

= ψ(x) + 2ψ(0), x ∈ X. (3.5)
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To prove the uniqueness, let Q1 be another quadratic function satisfying (3.5).
Thus we have

∥∥Q(x)−Q1(x)
∥∥ ≤

∥∥∥∥
Q(2nx)

4n
− f1(2

nx)

4n

∥∥∥∥ +

∥∥∥∥
Q1(2

nx)

4n
− f1(2

nx)

4n

∥∥∥∥

=
1

4n

[∥∥Q(2nx)− f1(2
nx)

∥∥ +
∥∥Q1(2

nx)− f1(2
nx)

∥∥
]

≤ 2

4n

[
ψ(2nx) + 4ψ(0)

]
, x ∈ X.

Taking the limit as n →∞, we conclude that Q(x) = Q1(x) for all x ∈ X, which
completes the proof. ¤
Theorem 3.2. Let f : X → Y be a function satisfying the inequality∥∥∥∥f(x− z) + f(y − z)− 1

2
f(x− y)− 2f

(
x + y

2
− z

)∥∥∥∥ ≤ ϕ∗(x, y, z) (3.6)

for all x, y, z ∈ X, where ϕ∗ : X × X × X → [0,∞) is a function fulfilling the
following conditions

lim
n→∞

4nϕ∗
( x

2n
,

y

2n
,

z

2n

)
= 0, x, y, z ∈ X,

ψ∗(x) :=
1

2

∞∑

k=1

4kϕ∗
( x

2k−2
,

x

2k−1
,

x

2k−1

)
< ∞, x ∈ X. (3.7)

Then there exists a unique quadratic function Q : X → Y such that∥∥f(x)−Q(x)
∥∥ ≤ ψ∗(x), x ∈ X.

Proof. Setting x = 0 in (3.7) we get
∞∑

k=1

4kϕ∗(0, 0, 0) < ∞, hence ϕ∗(0, 0, 0) = 0.

Putting x = y = z = 0 in (3.6) we obtain
∥∥f(0)

∥∥ ≤ 2ϕ∗(0, 0, 0) = 0, i.e. f(0) = 0.
Replacing x by 2x and setting y = z = x in (3.6), and multiplying both sides of
the resulting inequality by 2 we get∥∥∥f(x)− 4f

(x

2

)∥∥∥ ≤ 2ϕ∗(2x, x, x), x ∈ X. (3.8)

An induction argument implies easily that
∥∥∥f(x)− 4nf

( x

2n

)∥∥∥ ≤ 1

2

n∑

k=1

4kϕ∗
( x

2k−2
,

x

2k−1
,

x

2k−1

)
, x ∈ X. (3.9)

Proceeding similarly as in the proof of Theorem 3.1, we easily have that{
4nf

(
x
2n

)}
n∈N is a Cauchy sequence for all x ∈ X and we can define a func-

tion Q : X → Y by

Q(x) = lim
n→∞

4nf
( x

2n

)
, x ∈ X.

Note that Q(0) = 0 and Q is even. Taking the limit in (3.9) as n →∞, we obtain

∥∥f(x)−Q(x)
∥∥ ≤ 1

2

∞∑

k=1

4kϕ∗
( x

2k−2
,

x

2k−1
,

x

2k−1

)
= ψ∗(x), x ∈ X. (3.10)
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As we did in the proof of Theorem 3.1, we can similarly show that Q is a unique
quadratic function satisfying (3.10). The proof is completed. ¤
Corollary 3.3. Let ε ≥ 0 and p 6= 2 be fixed real numbers. Assume that a
function f : X → Y satisfies the inequality∥∥∥∥f(x− z) + f(y − z)− 1

2
f(x− y)− 2f

(
x + y

2
− z

)∥∥∥∥ ≤ ε
(‖x‖p + ‖y‖p + ‖z‖p

)

(3.11)
for all x, y, z ∈ X (x, y, z ∈ X\{0} if p < 0). Then there exists a unique quadratic
function Q : X → Y such that

∥∥f(x)−Q(x)
∥∥ ≤ 2p+1(2p + 2)ε‖x‖p

|4− 2p| , x ∈ X.

Proof. We apply Theorems 3.1 and 3.2 with ϕ(x, y, z) = ϕ∗(x, y, z) := ε
(‖x‖p +

‖y‖p + ‖z‖p
)

for all x, y, z ∈ X (x, y, z ∈ X\{0} if p < 0). It is not hard to check
that these Theorems can be applied to the above function with p < 2 and p > 2,
respectively. If p < 2, we have

ψ(x) = 2
∞∑

k=1

ϕ(2k+1x, 2kx, 2kx)

4k

= 2(2p + 2)
∞∑

k=1

2k(p−2)ε‖x‖p

=
2p+1(2p + 2)ε‖x‖p

4− 2p

for all x ∈ X (x ∈ X\{0} if p < 0). If p > 2, we have

ψ∗(x) =
1

2

∞∑

k=1

4kϕ∗
( x

2k−2
,

x

2k−1
,

x

2k−1

)

= 2p−1(2p + 2)
∞∑

k=1

2k(2−p)ε‖x‖p

=
2p+1(2p + 2)ε‖x‖p

2p − 4

for all x ∈ X. Thus applying Theorems 3.1 and 3.2 to the two cases p < 2 and
p > 2, respectively, we obtain easily the result. ¤
Corollary 3.4. Let ε ≥ 0 be fixed real number. Assume that a function f : X →
Y satisfies the inequality∥∥∥∥f(x− z) + f(y − z)− 1

2
f(x− y)− 2f

(
x + y

2
− z

)∥∥∥∥ ≤ ε (3.12)

for all x, y, z ∈ X. Then there exists a unique quadratic function Q : X → Y
such that ∥∥f(x)−Q(x)

∥∥ ≤ 2ε, x ∈ X. (3.13)
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Proof. Putting ϕ(x, y, z) := ε in Theorem 3.1, we get immediately the result. ¤
Remark 3.5. Observe that the estimation (3.13) in Corollary 3.4 cannot be sharp-
ened. To see that, fix a vector e ∈ Y from the unit ball, and define a func-
tion f : X → Y by the formula f(x) = 2εe for all x ∈ X. Then inequality
(3.12) is satisfied, so there exists a quadratic function Q : X → Y such that the
condition (3.13) holds. Since the function f is bounded, then Q = 0. Thus∥∥f(x)−Q(x)

∥∥ = ‖2εe‖ = 2ε for all x ∈ X.
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