The Journal of Nonlinear Sciences and Applications http://www.tjnsa.com

JORDAN HOMOMORPHISMS IN PROPER JCQ*-TRIPLES

S. KABOLI GHARETAPEH¹, S. TALEBI², CHOONKIL PARK³ AND MADJID ESHAGHI GORDJI^{4,*}

Dedicated to Themistocles M. Rassias on the occasion of his sixtieth birthday

ABSTRACT. In this paper, we investigate Jordan homomorphisms in proper $JCQ^*\mbox{-triples}$ associated with the generalized 3-variable Jesnsen functional equation

$$rf(\frac{x+y+z}{r}) = f(x) + f(y) + f(z),$$

with $r \in (0,3) \setminus \{1\}$. We moreover prove the Hyers-Ulam-Rassias stability of Jordan homomorphisms in proper JCQ^* -triples.

1. INTRODUCTION AND PRELIMINARIES

Let A be a linear space and A_0 is a *-algebra contained in A as a subspace. We say that A is a quasi *-algebra over A_0 if

(i) the right and left multiplications of an element of A and an element of A_0 are defined and linear;

(ii) $x_1(x_2a) = (x_1x_2)a$, $(ax_1)x_2 = a(x_1x_2)$ and $x_1(ax_2) = (x_1a)x_2$ for all $x_1, x_2 \in A_0$ and all $a \in A$;

(iii) an involution *, which extends the involution of A_0 , is defined in A with the property $(ab)^* = b^*a^*$ whenever the multiplication is defined.

A quasi *-algebra (A, A_0) is said to be a locally convex quasi *-algebra if in A a locally convex topology τ is defined such that

Date: Received: August 29, 2010; Revised: November 22, 2010.

^{© 2010} N.A.G

^{*}Corresponding author.

²⁰⁰⁰ Mathematics Subject Classification. Primary 17C65, 47L60, 47Jxx, 39B52, 46L05.

Key words and phrases. Hyers-Ulam-Rassias stability; proper JCQ^* -triple Jordan homomorphism.

(i) the involution is continuous and the multiplications are separately continuous;

(ii) A_0 is dense in $A[\tau]$.

We should notify that a locally convex quasi *-algebra $(A[\tau], A_0)$ is complete. For an overview on partial *-algebra and related topics we refer to [2].

In a series of papers [7, 15, 17, 18], many authors have considered a special class of quasi *-algebras, called *proper* CQ^* -algebras, which arise as completions of C^* -algebras. They can be introduced in the following way:

Let A be a right Banach module over the C^{*}-algebra A_0 with involution * and C^{*}-norm $\|\cdot\|_0$ such that $A_0 \subset A$. We say that (A, A_0) is a proper CQ^* -algebra if

(i) A_0 is dense in A with respect to its norm $\|\cdot\|$;

(ii) $(ab)^* = b^*a^*$ for all $a, b \in A_0$;

(iii) $||y||_0 = \sup_{a \in A, ||a|| \le 1} ||ay||$ for all $y \in A_0$.

Several mathematician have contributed works on these subjects (see [1], [4]–[10], [12]–[16], [19], [20], [26], [28], [36]–[38], [60], [61], [63], [64]).

A classical question in the theory of functional equations is that "when is it true that a function which approximately satisfies a functional equation \mathcal{E} must be somehow close to an exact solution of \mathcal{E} ". Such a problem was formulated by Ulam [65] in 1940 and solved in the next year for the Cauchy functional equation by Hyers [32]. It gave rise to the *stability theory* for functional equations.

In 1978, Th.M. Rassias [51] formulated and proved the following theorem, which implies Hyers' Theorem as a special case. Suppose that E and F are real normed spaces with F a complete normed space, $f: E \to F$ is a function such that for each fixed $x \in E$ the mapping $t \longmapsto f(tx)$ is continuous on \mathbb{R} . If there exist $\epsilon > 0$ and $p \in [0, 1)$ such that

$$||f(x+y) - f(x) - f(y)|| \le \epsilon (||x||^p + ||y||^p)$$
(1.1)

for all $x, y \in E$, then there exists a unique linear function $T: E \to F$ such that

$$||f(x) - T(x)|| \le \frac{\epsilon ||x||^p}{(1 - 2^{p-1})}$$

for all $x \in E$. In 1991, Gajda [29] answered the question for p > 1, which was rased by Th.M. Rassias. This new concept is known as Hyers-Ulam-Rassias stability of functional equations. It was shown by Gajda [29], as well as by Th.M. Rassias and Šemrl [57] that one cannot prove a Th.M. Rassias' type theorem when p = 1. The counterexamples of Gajda [29], as well as of Th.M. Rassias and Šemrl [57] have stimulated several mathematicians to invent new definitions of *approximately additive* or *approximately linear* mappings, cf. P. Găvruta [30], who among others studied the Hyers-Ulam-Rassias stability of functional equations.

Bourgin is the first mathematician dealing with the stability of ring homomorphisms. The topic of approximate ring homomorphisms was studied by a number of mathematicians (see [3], [21]–[24], [33]–[35], [42], [55]) and references therein.

J.M. Rassias [47] following the spirit of the innovative approach of Th.M. Rassias [51] for the unbounded Cauchy difference proved a similar stability theorem in which he replaced the factor $||x||^p + ||y||^p$ by $||x||^p \cdot ||y||^q$ for $p, q \in \mathbb{R}$ with $p + q \neq 1$ (see also [48] for a number of other new results). Several mathematician have contributed works on these subjects (see [39]–[43], [49], [50], [53]–[56], [59]).

Let C be a C^* -algebra. Then C with the Jordan product $x \circ y := \frac{xy+yx}{2}$, is called a *Jordan* C^* -algebra (see [40], [41]). A C^* -algebra A, endowed with the Jordan triple product

$$\{z, x, w\} = \frac{1}{2}(zx^*w + wx^*z)$$

for all $z, x, w \in A$, is called a JC^* -triple (see [27]). Note that

$$\{z, x, w\} = (z \circ x^*) \circ w + (w \circ x^*) \circ z - (z \circ w) \circ x^*.$$

A proper CQ^* -algebra (A, A_0) , endowed with the Jordan triple product

$$\{z, x, w\} = \frac{1}{2}(zx^*w + wx^*z)$$

for all $x \in A$ and all $z, w \in A_0$, is called a *proper JCQ*^{*}-triple, and denoted by $(A, A_0, \{\cdot, \cdot, \cdot\})$.

Let $(A, A_0\{\cdot, \cdot, \cdot\})$ and $(B, B_0\{\cdot, \cdot, \cdot\})$ be proper JCQ^* -triples. A \mathbb{C} -linear mapping $H : A \to B$ is called a *proper* JCQ^* -triple Jordan homomorphism if $H(z) \in B_0$ and

$$H(\{z, x, z\}) = \{H(z), H(x), H(z)\}$$

for all $z \in A_0$ and all $x \in A$. If, in addition, the mapping $H : A \to B$ and the mapping $H|_{A_0} : A_0 \to B_0$ are bijective, then the mapping $H : A \to B$ is called a proper JCQ^* -triple Jordan isomorphism.

In this paper, we investigate Jordan homomorphisms in proper JCQ^* -triples for the 3-variable Jensen functional equation. Moreover, we prove the Hyers-Ulam-Rassias stability of Jordan homomorphisms in proper JCQ^* -triples.

From now on, assume that $(A, A_0, \{\cdot, \cdot, \cdot\})$ is a proper JCQ^* -triple with C^* norm $\|\cdot\|_{A_0}$ and norm $\|\cdot\|_A$, and that $(B, B_0, \{\cdot, \cdot, \cdot\})$ is a proper JCQ^* -triple
with C^* -norm $\|\cdot\|_{B_0}$ and norm $\|\cdot\|_B$.

2. Jordan isomorphisms in proper JCQ^* -triples

We start our work with the following theorem, which investigate Jordan isomorphisms in proper JCQ^* -triples.

Theorem 2.1. Let r < 1 and θ be nonnegative real numbers, and let $f : A \to B$ be a bijective mapping such that

$$\left\| rf\left(\frac{\mu x + \mu y + \mu z}{r}\right) - \mu f(x) - \mu f(y) - \mu f(z) \right\|_{B} \le \theta \cdot \|x\|_{A}^{\frac{r}{3}} \cdot \|y\|_{A}^{\frac{r}{3}} \cdot \|z\|_{A}^{\frac{r}{3}}, \quad (2.1)$$

$$\left\| rf\left(\frac{w_{0} + w_{1} + w_{2}}{r}\right) - f(w_{0}) - f(w_{1}) - f(w_{0}) \right\|_{B} \le \theta \cdot \|w_{0}\|_{\frac{r}{3}}^{\frac{r}{3}} \cdot \|w_{1}\|_{A}^{\frac{r}{3}} \cdot \|w_{0}\|_{\frac{r}{3}}^{\frac{r}{3}} \cdot \|w_{0}\|_{\frac{r}{3}}^{\frac{r}{$$

$$\left\| rf\left(\frac{-1}{r}\right) - f(w_0) - f(w_1) - f(w_2) \right\|_B \le \theta \cdot \|w_0\|_{A_0}^3 \cdot \|w_1\|_{A_0}^3 \cdot \|w_2\|_{A_0}^{2,2},$$

$$f(\{w, x, w\}) = \{f(w), f(x), f(w)\}$$

$$(2.3)$$

for all $\mu \in \mathbb{T}^1$, all $w, w_0, w_1, w_2 \in A_0$ and all $x, y, z \in A$. If $\lim_{n \to \infty} \frac{r^n}{3^n} f\left(\frac{3^n e}{r^n}\right) = e'$ and $f|_{A_0} : A_0 \to B_0$ is bijective, then the mapping $f : A \to B$ is a proper JCQ^* -triple Jordan isomorphism. *Proof.* Let us assume $\mu = 1$ and x = y = z in (2.1). Then we get

$$\left\| rf\left(\frac{3x}{r}\right) - 3f(x) \right\|_{B} \le \theta \|x\|_{A}^{r}$$

$$\tag{2.4}$$

for all $x \in A$. So

$$\left\| f(x) - \frac{r}{3}f\left(\frac{3x}{r}\right) \right\|_{B} \le \frac{\theta}{3} \|x\|_{A}^{r}$$

for all $x \in A$. Hence

$$\left\| \frac{r^{l}}{3^{l}} f\left(\frac{3^{l}x}{r^{l}}\right) - \frac{r^{m}}{3^{m}} f\left(\frac{3^{m}x}{r^{m}}\right) \right\|_{B} \leq \sum_{j=l}^{m-1} \left\| \frac{r^{j}}{3^{j}} f\left(\frac{3^{j}x}{r^{j}}\right) - \frac{r^{j+1}}{3^{j+1}} f\left(\frac{3^{j+1}x}{r^{j+1}}\right) \right\|_{B}^{(2.5)} \leq \frac{\theta}{3} \sum_{j=l}^{m-1} \frac{r^{j}3^{rj}}{3^{j}r^{rj}} \|x\|_{A}^{r}$$

for all nonnegative integers m and l with m > l and all $x \in A$. From this it follows that the sequence $\left\{\frac{r^n}{3^n}f\left(\frac{3^nx}{r^n}\right)\right\}$ is a Cauchy sequence for all $x \in A$. Since B is complete, the sequence $\left\{\frac{r^n}{3^n}f\left(\frac{3^nx}{r^n}\right)\right\}$ converges. Thus one can define the mapping $H: A \to B$ by

$$H(x) := \lim_{n \to \infty} \frac{r^n}{3^n} f\left(\frac{3^n x}{r^n}\right)$$

for all $x \in A$. Since $f(\{w, x, w\}) = \{f(w), f(x), f(w)\}$ for all $w \in A_0$ and all $x \in A$,

$$H(\{w, x, w\}) = \lim_{n \to \infty} \frac{r^{3n}}{3^{3n}} \left\{ f\left(\frac{3^n w}{r^n}\right), f\left(\frac{3^n x}{r^n}\right), f\left(\frac{3^n w}{r^n}\right) \right\}$$
$$= \lim_{n \to \infty} \left\{ \frac{r^n}{3^n} f\left(\frac{3^n w}{r^n}\right), \frac{r^n}{3^n} f\left(\frac{3^n x}{r^n}\right), \frac{r^n}{3^n} f\left(\frac{3^n w}{r^n}\right) \right\}$$
$$= \left\{ H(w), H(x), H(w) \right\}$$

for all $w \in A_0$ and all $x \in A$.

It follows from (2.2) that $H(w) := \lim_{n\to\infty} \frac{r^n}{3^n} f\left(\frac{3^n w}{r^n}\right) \in B_0$ for all $w \in A_0$. By (2.2), we can show that H is additive, and by (2.1), we can show that H is \mathbb{C} -linear.

On the other hand, by the assumption,

$$H(x) = H(ex) = \lim_{n \to \infty} \frac{r^{2n}}{3^{2n}} f\left(\frac{3^{2n}ex}{r^{2n}}\right) = \lim_{n \to \infty} \frac{r^{2n}}{3^{2n}} f\left(\left\{\frac{3^n e}{r^n}, \frac{3^n e}{r^n}, x\right\}\right)$$
$$= \lim_{n \to \infty} \left\{\frac{r^n}{3^n} f\left(\frac{3^n e}{r^n}\right), \frac{r^n}{3^n} f\left(\frac{3^n e}{r^n}\right), f(x)\right\} = \{e', e', f(x)\}$$
$$= f(x)$$

for all $x \in A$. Hence the bijective mapping $f : A \to B$ is a proper JCQ^* -triple Jordan isomorphism.

Theorem 2.2. Let 1 < r < 3 and θ be nonnegative real numbers, and let $f : A \to B$ be a bijective mapping satisfying (2.1), (2.2) and (2.3). If $\lim_{n\to\infty} \frac{3^n}{r^n} f\left(\frac{r^n e}{3^n}\right) = e'$

and $f|_{A_0} : A_0 \to B_0$ is bijective, then the mapping $f : A \to B$ is a proper JCQ^* -triple Jordan isomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.1, there is a unique \mathbb{C} -linear mapping $H : A \to B$ satisfying $H(w) \in B_0$ for all $w \in A_0$. The mapping $H : A \to B$ is given by

$$H(x) := \lim_{n \to \infty} \frac{3^n}{r^n} f\left(\frac{r^n x}{3^n}\right)$$

for all $x \in A$.

The rest of the proof is similar to the proof of Theorem 2.1.

3. Jordan homomorphisms in proper JCQ^* -triples

We investigate Jordan homomorphisms in proper JCQ^* -triples.

Theorem 3.1. Let $r \in (0,3) \setminus \{1\}$ and θ be nonnegative real numbers and $f : A \to B$ a mapping satisfying $f(w) \in B_0$ for all $w \in A_0$ such that

$$\|\mu f(x) + f(y) + f(z)\|_{B} + \|f(\{w, a, w\}) - \{f(w), f(a), f(w)\}\|_{B}$$

$$\leq \left\| rf\left(\frac{\mu x + y + z}{r}\right) \right\|_{B} + \theta(2\|w\|_{A}^{3r} + \|a\|_{A}^{3r})$$
(3.1)

for all $\mu \in \mathbb{T}^1 := \{\lambda \in \mathbb{C} : |\lambda| = 1\}$, all $w \in A_0$ and all $x, y, z \in A$. Then the mapping $f : A \to B$ is a proper JCQ^* -triple Jordan homomorphism.

Proof. Letting $\mu = 1, x = y = z = a = w = 0$ in (3.1), we obtain

$$||3f(0)||_B + ||f(0) - \{f(0), f(0), f(0)\}||_B \le ||rf(0)||_B$$

It follows that

$$||3f(0)||_B \le ||rf(0)||_B,$$

and f(0) = 0.

Letting a = w = 0 in (3.1), we obtain

$$\|\mu f(x) + f(y) + f(z)\|_B \leq \left\| rf\left(\frac{\mu x + y + z}{r}\right) \right\|_B$$
(3.2)

for all $x, y, z \in A$.

Letting $\mu = 1, x = -y, z = 0$ in (3.2), we obtain

$$||f(x) + f(-x) + f(0)||_B \le ||rf(0)||_B = 0.$$

Hence, f(-x) = -f(x) for all $x \in A$.

Letting $\mu = 1, z = -x - y$ in (3.2), by the oddness of f, we get

$$||f(x) + f(y) - f(x+y)||_B = ||f(x) + f(y) + f(-x-y)||_B \le ||rf(0)||_B = 0$$

for all $x, y \in A$. It follows that f(x) + f(y) = f(x + y) for all $x, y \in A$. So $f: A \to B$ is Cauchy additive.

Letting z = 0 and $y = -\mu x$ in (3.2), we get $f(\mu x) = \mu f(x)$ for all $x \in A$. By the same reasoning as in the proof of Theorem 2.1 of [40], the mapping $f : A \to B$ is \mathbb{C} -linear.

(i) Assume that r < 1. It follows from (3.1) that

$$\|f(\{w, x, w\}) - \{f(w), f(x), f(w)\}\|_{B} \leq \theta(2\|w\|_{A}^{3r} + \|x\|_{A}^{3r})$$
(3.3)

for all $w \in A_0$ and all $x \in A$. By (3.3), we get

$$\begin{split} \|f(\{w, x, w\}) &- \{f(w), f(x), f(w)\}\|_{B} \\ &= \lim_{n \to \infty} \frac{1}{8^{n}} \|f(8^{n}\{w, x, w\}) - \{f(2^{n}w), f(2^{n}x), f(2^{n}w)\}\|_{B} \\ &\leq \lim_{n \to \infty} \frac{8^{nr}}{8^{n}} \theta(2\|w\|_{A}^{3r} + \|x\|_{A}^{3r}) = 0 \end{split}$$

for all $w \in A_0$ and all $x \in A$. So

$$f(\{w, x, w\}) = \{f(w), f(x), f(w)\}$$

for all $w \in A_0$ and all $x \in A$.

(ii) Assume that r > 1. By a similar method to the proof of the case (i), one can prove that the mapping $f : A \to B$ satisfies

$$f(\{w, x, w\}) = \{f(w), f(x), f(w)\}$$

for all $w \in A_0$ and all $x \in A$.

Since $f(w) \in B_0$ for all $w \in A_0$, the mapping $f : A \to B$ is a proper JCQ^* -triple homomorphism, as desired.

Theorem 3.2. Let $r \in (0,3) \setminus \{1\}$ and θ be nonnegative real numbers, and $f: A \to B$ a mapping satisfying (3.1) and $f(w) \in B_0$ for all $w \in A_0$ such that

$$||f(\{w, x, w\}) - \{f(w), f(x), f(w)\}||_B \le \theta \cdot ||w||_A^{2r} \cdot ||x||_A^r$$
(3.4)

for all $w \in A_0$ and all $x \in A$. Then the mapping $f : A \to B$ is a proper JCQ^* -triple Jordan homomorphism.

Proof. By the same reasoning as in the proof of Theorem 3.1, the mapping $f : A \to B$ is \mathbb{C} -linear.

(i) Assume that r < 1. By (3.4),

$$\begin{split} \|f(\{w, x, w\}) &- \{f(w), f(x), f(w)\}\|_{B} \\ &= \lim_{n \to \infty} \frac{1}{8^{n}} \|f(8^{n}\{w, x, w\}) - \{f(2^{n}w), f(2^{n}x), f(2^{n}w)\}\|_{B} \\ &\leq \lim_{n \to \infty} \frac{8^{nr}}{8^{n}} \theta \cdot \|w\|_{A}^{2r} \cdot \|x\|_{A}^{r} = 0 \end{split}$$

for all $w \in A_0$ and all $x \in A$. So

$$f(\{w, x, w\}) = \{f(w), f(x), f(w)\}$$

for all $w \in A_0$ and all $x \in A$.

(ii) Assume that r > 1. By a similar method to the proof of the case (i), one can prove that the mapping $f : A \to B$ satisfies

$$f(\{w, x, w\}) = \{f(w), f(x), f(w)\}$$

for all $w \in A_0$ and all $x \in A$.

Therefore, the mapping $f: A \to B$ is a proper JCQ^* -triple Jordan homomorphism.

76 S. KABOLI GHARETAPEH, S. TALEBI, C. PARK, M. ESHAGHI GORDJI

4. Stability of Jordan homomorphisms in proper JCQ^* -triples

In this section, we prove the Hyers-Ulam-Rassias stability of Jordan homomorphisms in proper JCQ^* -triples.

Theorem 4.1. Let 0 < r < 1 and θ be nonnegative real numbers, and let $f : A \to B$ be a mapping such that $f(w) \in B_0$ for all $w \in A_0$ and

$$\begin{aligned} \left\| rf\left(\frac{\mu x + \mu y + \mu z}{r}\right) - \mu f(x) - \mu f(y) - \mu f(z) \right\|_{B} \\ &+ \left\| rf\left(\frac{w_{0} + w_{1} + w_{2}}{r}\right) - f(w_{0}) - f(w_{1}) - f(w_{2}) \right\|_{B} \\ &\leq \theta \cdot \left\| x \right\|_{A}^{\frac{r}{3}} \cdot \left\| y \right\|_{A}^{\frac{r}{3}} \cdot \left\| z \right\|_{A}^{\frac{r}{3}} + \theta \cdot \left\| w_{0} \right\|_{A_{0}}^{\frac{r}{3}} \cdot \left\| w_{1} \right\|_{A_{0}}^{\frac{r}{3}} \cdot \left\| w_{2} \right\|_{A_{0}}^{\frac{r}{3}}, \\ &\| f(\{w, x, w\}) - \{f(w), f(x), f(w)\} \|_{B} \leq \theta \cdot \left\| w \right\|_{A}^{2r} \cdot \left\| x \right\|_{A}^{r} \end{aligned}$$
(4.2)

for all $\mu \in \mathbb{T}^1$, all $w, w_0, w_1, w_2 \in A_0$ and all $x, y, z \in A$. Then there exists a unique proper JCQ^* -triple Jordan homomorphism $H : A \to B$ such that

$$\|f(x) - H(x)\|_{B} \le \frac{r^{r}\theta}{3 \cdot r^{r} - r \cdot 3^{r}} \|x\|_{A}^{r}$$
(4.3)

for all $x \in A$.

Proof. It follows from (4.1) that

$$\left\| rf\left(\frac{\mu x + \mu y + \mu z}{r}\right) - \mu f(x) - \mu f(y) - \mu f(z) \right\|_{B} \le \theta \cdot \|x\|_{A}^{\frac{r}{3}} \cdot \|y\|_{A}^{\frac{r}{3}} \cdot \|z\|_{A}^{\frac{r}{3}} (4.4)$$

for all $\mu \in \mathbb{T}^1$ and all $x, y, z \in A$. Let us assume $\mu = 1$ and x = y = z in (4.4). Then we get

$$\left\| rf\left(\frac{3x}{r}\right) - 3f(x) \right\|_{B} \le \theta \|x\|_{A}^{r}$$

for all $x \in A$. So

$$\left\| f(x) - \frac{r}{3}f\left(\frac{3x}{r}\right) \right\|_{B} \le \frac{\theta}{3} \|x\|_{A}^{r}$$

for all $x \in A$. Hence

$$\left\| \frac{r^{l}}{3^{l}} f\left(\frac{3^{l}x}{r^{l}}\right) - \frac{r^{m}}{3^{m}} f\left(\frac{3^{m}x}{r^{m}}\right) \right\|_{B} \leq \sum_{j=l}^{m-1} \left\| \frac{r^{j}}{3^{j}} f\left(\frac{3^{j}x}{r^{j}}\right) - \frac{r^{j+1}}{3^{j+1}} f\left(\frac{3^{j+1}x}{r^{j+1}}\right) \right\|_{B}^{(4.5)} \leq \frac{\theta}{3} \sum_{j=l}^{m-1} \frac{r^{j}3^{rj}}{3^{j}r^{rj}} \|x\|_{A}^{r}$$

for all nonnegative integers m and l with m > l and all $x \in A$. From this it follows that the sequence $\left\{\frac{r^n}{3^n}f\left(\frac{3^nx}{r^n}\right)\right\}$ is a Cauchy sequence for all $x \in A$. Since B is complete, the sequence $\left\{\frac{r^n}{3^n}f\left(\frac{3^nx}{r^n}\right)\right\}$ converges. Thus one can define the mapping $H: A \to B$ by

$$H(x) := \lim_{n \to \infty} \frac{r^n}{3^n} f\left(\frac{3^n x}{r^n}\right)$$

for all $x \in A$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (4.5), we get (4.3).

It follows from (4.4) that

$$\begin{split} & \left\| rH\left(\frac{\mu(x+y+z)}{r}\right) - \mu H(x) - \mu H(y) - \mu H(z) \right\|_{B} \\ &= \lim_{n \to \infty} \frac{r^{n}}{3^{n}} \left\| 2f\left(\frac{3^{n}\mu(x+y+z)}{r^{n}}\right) - \mu f\left(\frac{3^{n}x}{r^{n}}\right) - \mu f\left(\frac{3^{n}y}{r^{n}}\right) - \mu f\left(\frac{3^{n}z}{r^{n}}\right) \right\|_{B} \\ &\leq \lim_{n \to \infty} \frac{r^{n}3^{nr}\theta}{3^{n}2^{nr}} \|x\|_{A}^{\frac{r}{3}} \cdot \|y\|_{A}^{\frac{r}{3}} \cdot \|z\|_{A}^{\frac{r}{3}} = 0 \end{split}$$

for all $\mu \in \mathbb{T}^1$ and all $x, y, z \in A$. So

$$rH\left(\frac{\mu x + \mu y + \mu z}{r}\right) = \mu H(x) + \mu H(y) + \mu H(z)$$

for all $\mu \in \mathbb{T}^1$ and all $x, y, z \in A$. By the same reasoning as in the proof of Theorem 2.1 of [40], the mapping $H : A \to B$ is \mathbb{C} -linear.

Now, let $T:A\to B$ be another 3-variable Jensen mapping satisfying (4.3). Then we have

$$\begin{split} \|H(x) &- T(x)\|_{B} = \frac{r^{n}}{3^{n}} \left\| H\left(\frac{3^{n}x}{r^{n}}\right) - T\left(\frac{3^{n}x}{r^{n}}\right) \right\|_{B} \\ &\leq \frac{r^{n}}{3^{n}} \left(\left\| H\left(\frac{3^{n}x}{r^{n}}\right) - f\left(\frac{3^{n}x}{r^{n}}\right) \right\|_{B} + \left\| T\left(\frac{3^{n}x}{r^{n}}\right) - f\left(\frac{3^{n}x}{r^{n}}\right) \right\|_{B} \right) \\ &\leq \frac{r^{r+1}r^{n}3^{nr}\theta}{3^{n}r^{nr}(3\cdot r^{r} - r\cdot 3^{r})} \|x\|_{A}^{r}, \end{split}$$

which tends to zero as $n \to \infty$ for all $x \in A$. So we can conclude that H(x) = T(x) for all $x \in A$. This proves the uniqueness of H.

On the other hand, by (4.1), we get

$$\left\| rf\left(\frac{w_0 + w_1 + w_2}{r}\right) - f(w_0) - f(w_1) - f(w_2) \right\|_B \le \theta \cdot \|w_0\|_{A_0}^{\frac{r}{3}} \cdot \|w_1\|_{A_0}^{\frac{r}{3}} \cdot \|w_2\|_{A_0}^{\frac{r}{3}} (4.6)$$

for all $w, w_0, w_1, w_2 \in A_0$ and all $x, y, z \in A$.

It follows from (4.6) that $H(w) = \lim_{n \to \infty} \frac{r^n}{3^n} f\left(\frac{3^n w}{r^n}\right) \in B_0$ for all $w \in A_0$. So it follows from (4.2) that

$$\begin{split} \|H(\{w, x, w\}) &- \{H(w), H(x), H(w)\}\|_{B} \\ &= \lim_{n \to \infty} \frac{r^{3n}}{3^{3n}} \left\| f\left(\frac{3^{3n}\{w, x, w\}}{r^{3n}}\right) - \left\{ f\left(\frac{3^{n}w}{r^{n}}\right), f\left(\frac{3^{n}x}{r^{n}}\right), f\left(\frac{3^{n}w}{r^{n}}\right) \right\} \right\|_{B} \\ &\leq \lim_{n \to \infty} \frac{r^{3n}3^{3nr}}{3^{3n}r^{3nr}} \theta \cdot \|w\|_{A}^{2r} \cdot \|x\|_{A}^{r} = 0 \end{split}$$

for all $w \in A_0$ and all $x \in A$. So

$$H(\{w, x, w\}) = \{H(w), H(x), H(w)\}$$

for all $w \in A_0$ and all $x \in A$.

Thus the mapping $H : A \to B$ is a unique proper JCQ^* -triple Jordan homomorphism satisfying (4.3), and the proof is complete.

Theorem 4.2. Let 1 < r < 3 and θ be nonnegative real numbers, and let $f : A \to B$ be a mapping satisfying (4.1) and (4.2) such that $f(w) \in B_0$ for all $w \in A_0$. Then there exists a unique proper JCQ^* -triple Jordan homomorphism $H : A \to B$ such that

$$\|f(x) - H(x)\|_{B} \le \frac{r^{r}\theta}{r \cdot 3^{r} - 3 \cdot r^{r}} \|x\|_{A}^{r}$$
(4.7)

for all $x \in A$.

78

Proof. It follows from (4.1) that

$$\left\| f(x) - \frac{3}{r} f\left(\frac{rx}{3}\right) \right\|_{B} \le \frac{r^{r}\theta}{r \cdot 3^{r}} \|x\|_{A}^{r}$$

for all $x \in A$. So

$$\left\|\frac{3^{l}}{r^{l}}f\left(\frac{r^{l}x}{3^{l}}\right) - \frac{3^{m}}{r^{m}}f\left(\frac{r^{m}x}{3^{m}}\right)\right\|_{B} \leq \sum_{j=l}^{m-1} \left\|\frac{3^{j}}{r^{j}}f\left(\frac{r^{j}x}{3^{j}}\right) - \frac{3^{j+1}}{r^{j+1}}f\left(\frac{r^{j+1}x}{3^{j+1}}\right)\right\|_{B}$$
$$\leq \frac{r^{r}\theta}{r\cdot 3^{r}}\sum_{j=l}^{m-1}\frac{3^{j}r^{jr}}{r^{j}3^{jr}}\|x\|_{A}^{r}$$
(4.8)

for all nonnegative integers m and l with m > l and all $x \in A$. From this it follows that the sequence $\left\{\frac{3^n}{r^n}f\left(\frac{r^nx}{3^n}\right)\right\}$ is a Cauchy sequence for all $x \in A$. Since B is complete, the sequence $\left\{\frac{3^n}{r^n}f\left(\frac{r^nx}{3^n}\right)\right\}$ converges. So one can define the mapping $H: A \to B$ by

$$H(x) := \lim_{n \to \infty} \frac{3^n}{r^n} f\left(\frac{r^n x}{3^n}\right)$$

for all $x \in A$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (4.8), we get (4.7).

The rest of the proof is similar to the proof of Theorem 4.1.

Acknowledgement

The third author was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2009-0070788).

References

- G. Alli and G.L. Sewell, New methods and structures in the theory of the multi-mode Dicke laser model, J. Math. Phys. 36 (1995), 5598–5626.
- [2] J.P. Antoine, A. Inoue and C. Trapani, Partial *-Algebras and Their Operator Realizations, Kluwer, Dordrecht, 2002.
- [3] R. Badora, On approximate ring homomorphisms, J. Math. Anal. Appl. 276, (2002) 589–597.
- [4] F. Bagarello, Applications of topological *-algebras of unbounded operators, J. Math. Phys. 39 (1998), 6091–6105.

- [5] F. Bagarello, Fixed point results in topological *-algebras of unbounded operators, Publ. RIMS Kyoto Univ. 37 (2001), 397–418.
- [6] F. Bagarello, Applications of topological *-algebras of unbounded operators to modified quons, Nuovo Cimento B 117 (2002), 593–611.
- [7] F. Bagarello, A. Inoue and C. Trapani, Some classes of topological quasi *-algebras, Proc. Amer. Math. Soc. 129 (2001), 2973–2980.
- [8] F. Bagarello, A. Inoue and C. Trapani, *-derivations of quasi-*-algebras, Int. J. Math. Math. Sci. 21 (2004), 1077–1096.
- [9] F. Bagarello, A. Inoue and C. Trapani, Exponentiating derivations of quasi-*-algebras: possible approaches and applications, Int. J. Math. Math. Sci. 2005 (2005), 2805–2820.
- [10] F. Bagarello and W. Karwowski, Partial *-algebras of closed linear operators in Hilbert space, Publ. RIMS Kyoto Univ. 21 (1985), 205–236; 22 (1986), 507–511.
- [11] F. Bagarello and G. Morchio, Dynamics of mean-field spin models from basic results in abstract differential equations, J. Stat. Phys. 66 (1992), 849–866.
- [12] F. Bagarello and G.L. Sewell, New structures in the theory of the laser model II: Microscopic dynamics and a non-equilibrium entropy principle, J. Math. Phys. 39 (1998), 2730–2747.
- [13] F. Bagarello and C. Trapani, Almost mean field Ising model: an algebraic approach, J. Stat. Phys. 65 (1991), 469–482.
- [14] F. Bagarello and C. Trapani, A note on the algebraic approach to the "almost" mean field Heisenberg model, Nuovo Cimento B 108 (1993), 779–784.
- [15] F. Bagarello and C. Trapani, States and representations of CQ*-algebras, Ann. Inst. H. Poincaré 61 (1994), 103–133.
- [16] F. Bagarello and C. Trapani, The Heisenberg dynamics of spin systems: a quasi-*-algebras approach, J. Math. Phys. 37 (1996), 4219–4234.
- [17] F. Bagarello and C. Trapani, CQ*-algebras: structure properties, Publ. RIMS Kyoto Univ. 32 (1996), 85–116.
- [18] F. Bagarello and C. Trapani, Morphisms of certain Banach C^{*}-modules, Publ. RIMS Kyoto Univ. 36 (2000), 681–705.
- [19] F. Bagarello and C. Trapani, Algebraic dynamics in O*-algebras: a perturbative approach, J. Math. Phys. 43 (2002), 3280–3292.
- [20] F. Bagarello, C. Trapani and S. Triolo, Quasi *-algebras of measurable operators, Studia Math. 172 (2006), 289–305.
- [21] J. Baker, J. Lawrence and F. Zorzitto, The stability of the equation f(x+y) = f(x)f(y), Proc. Amer. Math. Soc. 74 (1979), no. 2, 242–246.
- [22] D.G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J. 16, (1949). 385–397.
- [23] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, London, Singapore and Hong Kong, 2002.
- [24] S. Czerwik, Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Palm Harbor, Florida, 2003.
- [25] G.O.S. Ekhaguere, Partial W^{*}-dynamical systems, in Current Topics in Operator Algebras, Proceedings of the Satellite Conference of ICM-90, pp. 202–217, World Scientific, Singapore, 1991.
- [26] G. Epifanio and C. Trapani, Quasi-*-algebras valued quantized fields, Ann. Inst. H. Poincaré 46 (1987), 175–185.
- [27] R.J. Fleming and J.E. Jamison, Isometries on Banach Spaces: Function Spaces, Monographs and Surveys in Pure and Applied Mathematics Vol. 129, Chapman & Hall/CRC, Boca Raton, London, New York and Washington D.C., 2003.
- [28] K. Fredenhagen and J. Hertel, Local algebras of observables and pointlike localized fields, Commun. Math. Phys. 80 (1981), 555–561.
- [29] Z. Gajda, On stability of additive mappings, Int. J. Math. Math. Sci. 14 (1991), 431–434.

- [30] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431–436.
- [31] R. Haag and D. Kastler, An algebraic approach to quantum field theory, J. Math. Phys. 5 (1964), 848–861.
- [32] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224.
- [33] D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
- [34] D.H. Hyers and Th.M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125–153.
- [35] B.E. Johnson, Approximately multiplicative maps between Banach algebras, J. London Math. Soc. (2) 37 (1988) 294–316.
- [36] G. Lassner, Algebras of unbounded operators and quantum dynamics, Physica 124 A (1984), 471–480.
- [37] G. Morchio and F. Strocchi, Mathematical structures for long range dynamics and symmetry breaking, J. Math. Phys. 28 (1987), 622–635.
- [38] R. Pallu de la Barriére, Algèbres unitaires et espaces d'Ambrose, Ann. Ecole Norm. Sup. 70 (1953), 381–401.
- [39] C. Park, Lie *-homomorphisms between Lie C*-algebras and Lie *-derivations on Lie C*-algebras, J. Math. Anal. Appl. 293 (2004), 419–434.
- [40] C. Park, Homomorphisms between Poisson JC*-algebras, Bull. Braz. Math. Soc. 36 (2005), 79–97.
- [41] C. Park, Homomorphisms between Lie JC*-algebras and Cauchy-Rassias stability of Lie JC*-algebra derivations, J. Lie Theory 15 (2005), 393–414.
- [42] C. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras, Bull. Sci. Math. 132 (2008), no. 2, 87–96.
- [43] C. Park, Isomorphisms between unital C*-algebras, J. Math. Anal. Appl. 307 (2005), 753–762.
- [44] C. Park, Approximate homomorphisms on JB*-triples, J. Math. Anal. Appl. 306 (2005), 375–381.
- [45] C. Park, Isomorphisms between C*-ternary algebras, J. Math. Phys. 47, no. 10, 103512 (2006).
- [46] C. Park, Y. Cho and M. Han, Functional inequalities associated with Jordan-von Neumann type additive functional equations, J. Inequal. Appl. 2007, 41820 (2007).
- [47] J.M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. 108 (1984), 445–446.
- [48] J.M. Rassias, Solution of a problem of Ulam, J. Approx. Theory 57 (1989), 268–273.
- [49] J.M. Rassias, Refined Hyers-Ulam approximation of approximately Jensen type mappings, Bull. Sci. Math. 131 (2007), 89–98.
- [50] J.M. Rassias and M.J. Rassias, Asymptotic behavior of alternative Jensen and Jensen type functional equations, Bull. Sci. Math. 129 (2005), 545–558.
- [51] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
- [52] Th.M. Rassias, Problem 16; 2, Report of the 27th International Symp. on Functional Equations, Aequationes Math. 39 (1990), 292–293; 309.
- [53] Th.M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352–378.
- [54] Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264–284.
- [55] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), 23–130.
- [56] Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston and London, 2003.

- [57] Th.M. Rassias and P. Šemrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325–338.
- [58] G.L. Sewell, *Quantum Mechanics and its Emergent Macrophysics*, Princeton University Press, Princeton and Oxford, 2002.
- [59] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113–129.
- [60] R.F. Streater and A.S. Wightman, PCT, Spin and Statistics and All That, Benjamin Inc., New York, 1964.
- [61] W. Thirring and A. Wehrl, On the mathematical structure of the B.C.S.-model, Commun. Math. Phys. 4 (1967), 303–314.
- [62] C. Trapani, Quasi-*-algebras of operators and their applications, Rev. Math. Phys. 7 (1995), 1303–1332.
- [63] C. Trapani, Some seminorms on quasi-*-algebras, Studia Math. 158 (2003), 99–115.
- [64] C. Trapani, Bounded elements and spectrum in Banach quasi *-algebras, Studia Math. 172 (2006), 249–273.
- [65] S.M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960.

^{1,2}Department of Mathematics, Payame Noor University, Mashhad Branch, Mashhad, Iran

E-mail address: simin.kaboli@gmail.com; talebis@pnu.ac.ir

³Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea

E-mail address: baak@hanyang.ac.kr

⁴Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran

E-mail address: madjid.eshaghi@gmail.com