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JORDAN HOMOMORPHISMS IN PROPER JCQ∗-TRIPLES

S. KABOLI GHARETAPEH1, S. TALEBI2, CHOONKIL PARK3 AND MADJID ESHAGHI
GORDJI4,∗

Dedicated to Themistocles M. Rassias on the occasion of his sixtieth birthday

Abstract. In this paper, we investigate Jordan homomorphisms in proper
JCQ∗-triples associated with the generalized 3-variable Jesnsen functional
equation

rf(
x + y + z

r
) = f(x) + f(y) + f(z),

with r ∈ (0, 3) \ {1}. We moreover prove the Hyers-Ulam-Rassias stability of
Jordan homomorphisms in proper JCQ∗-triples.

1. Introduction and preliminaries

Let A be a linear space and A0 is a ∗-algebra contained in A as a subspace.
We say that A is a quasi ∗-algebra over A0 if

(i) the right and left multiplications of an element of A and an element of A0

are defined and linear;
(ii) x1(x2a) = (x1x2)a, (ax1)x2 = a(x1x2) and x1(ax2) = (x1a)x2 for all x1, x2 ∈

A0 and all a ∈ A;
(iii) an involution ∗, which extends the involution of A0, is defined in A with

the property (ab)∗ = b∗a∗ whenever the multiplication is defined.
A quasi ∗-algebra (A,A0) is said to be a locally convex quasi ∗-algebra if in A

a locally convex topology τ is defined such that
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(i) the involution is continuous and the multiplications are separately continu-
ous;

(ii) A0 is dense in A[τ ].
We should notify that a locally convex quasi ∗-algebra (A[τ ], A0) is complete.

For an overview on partial ∗-algebra and related topics we refer to [2].
In a series of papers [7, 15, 17, 18], many authors have considered a special

class of quasi ∗-algebras, called proper CQ∗-algebras, which arise as completions
of C∗-algebras. They can be introduced in the following way:

Let A be a right Banach module over the C∗-algebra A0 with involution ∗ and
C∗-norm ‖ · ‖0 such that A0 ⊂ A. We say that (A,A0) is a proper CQ∗-algebra if

(i) A0 is dense in A with respect to its norm ‖ · ‖;
(ii) (ab)∗ = b∗a∗ for all a, b ∈ A0;
(iii) ‖y‖0 = supa∈A,‖a‖≤1 ‖ay‖ for all y ∈ A0.
Several mathematician have contributed works on these subjects (see [1], [4]–

[10], [12]–[16], [19], [20], [26], [28], [36]–[38], [60], [61], [63], [64]).
A classical question in the theory of functional equations is that “when is it

true that a function which approximately satisfies a functional equation E must
be somehow close to an exact solution of E”. Such a problem was formulated by
Ulam [65] in 1940 and solved in the next year for the Cauchy functional equation
by Hyers [32]. It gave rise to the stability theory for functional equations.

In 1978, Th.M. Rassias [51] formulated and proved the following theorem, which
implies Hyers’ Theorem as a special case. Suppose that E and F are real normed
spaces with F a complete normed space, f : E → F is a function such that for
each fixed x ∈ E the mapping t 7−→ f(tx) is continuous on R. If there exist ε > 0
and p ∈ [0, 1) such that

‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p) (1.1)

for all x, y ∈ E, then there exists a unique linear function T : E → F such that

‖f(x)− T (x)‖ ≤ ε‖x‖p

(1− 2p−1)

for all x ∈ E. In 1991, Gajda [29] answered the question for p > 1, which was rased
by Th.M. Rassias. This new concept is known as Hyers-Ulam-Rassias stability
of functional equations. It was shown by Gajda [29], as well as by Th.M. Rassias
and Šemrl [57] that one cannot prove a Th.M. Rassias’ type theorem when p = 1.
The counterexamples of Gajda [29], as well as of Th.M. Rassias and Šemrl [57]
have stimulated several mathematicians to invent new definitions of approximately
additive or approximately linear mappings, cf. P. Găvruta [30], who among others
studied the Hyers-Ulam-Rassias stability of functional equations.

Bourgin is the first mathematician dealing with the stability of ring homomor-
phisms. The topic of approximate ring homomorphisms was studied by a number
of mathematicians (see [3], [21]–[24], [33]–[35], [42], [55]) and references therein.

J.M. Rassias [47] following the spirit of the innovative approach of Th.M. Ras-
sias [51] for the unbounded Cauchy difference proved a similar stability theorem
in which he replaced the factor ‖x‖p + ‖y‖p by ‖x‖p · ‖y‖q for p, q ∈ R with
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p + q 6= 1 (see also [48] for a number of other new results). Several mathemati-
cian have contributed works on these subjects (see [39]–[43], [49], [50], [53]–[56],
[59]).

Let C be a C∗-algebra. Then C with the Jordan product x◦y := xy+yx
2

, is called
a Jordan C∗-algebra (see [40], [41]). A C∗-algebra A, endowed with the Jordan
triple product

{z, x, w} =
1

2
(zx∗w + wx∗z)

for all z, x, w ∈ A, is called a JC∗-triple (see [27]). Note that

{z, x, w} = (z ◦ x∗) ◦ w + (w ◦ x∗) ◦ z − (z ◦ w) ◦ x∗.

A proper CQ∗-algebra (A,A0), endowed with the Jordan triple product

{z, x, w} =
1

2
(zx∗w + wx∗z)

for all x ∈ A and all z, w ∈ A0, is called a proper JCQ∗-triple, and denoted by
(A, A0, {·, ·, ·}).

Let (A,A0{·, ·, ·}) and (B,B0{·, ·, ·}) be proper JCQ∗-triples. A C-linear map-
ping H : A → B is called a proper JCQ∗-triple Jordan homomorphism if H(z) ∈
B0 and

H({z, x, z}) = {H(z), H(x), H(z)}
for all z ∈ A0 and all x ∈ A. If, in addition, the mapping H : A → B and the
mapping H|A0 : A0 → B0 are bijective, then the mapping H : A → B is called a
proper JCQ∗-triple Jordan isomorphism.

In this paper, we investigate Jordan homomorphisms in proper JCQ∗-triples
for the 3-variable Jensen functional equation. Moreover, we prove the Hyers-
Ulam-Rassias stability of Jordan homomorphisms in proper JCQ∗-triples.

From now on, assume that (A,A0, {·, ·, ·}) is a proper JCQ∗-triple with C∗-
norm ‖ · ‖A0 and norm ‖ · ‖A, and that (B, B0, {·, ·, ·}) is a proper JCQ∗-triple
with C∗-norm ‖ · ‖B0 and norm ‖ · ‖B.

2. Jordan isomorphisms in proper JCQ∗-triples

We start our work with the following theorem, which investigate Jordan iso-
morphisms in proper JCQ∗-triples.

Theorem 2.1. Let r < 1 and θ be nonnegative real numbers, and let f : A → B
be a bijective mapping such that∥∥∥∥rf

(
µx + µy + µz

r

)
− µf(x)− µf(y)− µf(z)

∥∥∥∥
B

≤ θ · ‖x‖
r
3
A · ‖y‖

r
3
A · ‖z‖

r
3
A, (2.1)

∥∥∥∥rf

(
w0 + w1 + w2

r

)
− f(w0)− f(w1)− f(w2)

∥∥∥∥
B

≤ θ · ‖w0‖
r
3
A0
· ‖w1‖

r
3
A0
· ‖w2‖

r
3
A0

,(2.2)

f({w, x, w}) = {f(w), f(x), f(w)} (2.3)

for all µ ∈ T1, all w, w0, w1, w2 ∈ A0 and all x, y, z ∈ A. If limn→∞ rn

3n f
(

3ne
rn

)
= e′

and f |A0 : A0 → B0 is bijective, then the mapping f : A → B is a proper
JCQ∗-triple Jordan isomorphism.
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Proof. Let us assume µ = 1 and x = y = z in (2.1). Then we get
∥∥∥∥rf

(
3x

r

)
− 3f(x)

∥∥∥∥
B

≤ θ‖x‖r
A (2.4)

for all x ∈ A. So ∥∥∥∥f(x)− r

3
f

(
3x

r

)∥∥∥∥
B

≤ θ

3
‖x‖r

A

for all x ∈ A. Hence
∥∥∥∥

rl

3l
f

(
3lx

rl

)
− rm

3m
f

(
3mx

rm

)∥∥∥∥
B

≤
m−1∑

j=l

∥∥∥∥
rj

3j
f

(
3jx

rj

)
− rj+1

3j+1
f

(
3j+1x

rj+1

)∥∥∥∥
B

(2.5)

≤ θ

3

m−1∑

j=l

rj3rj

3jrrj
‖x‖r

A

for all nonnegative integers m and l with m > l and all x ∈ A. From this it follows
that the sequence

{
rn

3n f
(

3nx
rn

)}
is a Cauchy sequence for all x ∈ A. Since B is

complete, the sequence
{

rn

3n f
(

3nx
rn

)}
converges. Thus one can define the mapping

H : A → B by

H(x) := lim
n→∞

rn

3n
f

(
3nx

rn

)

for all x ∈ A. Since f({w, x, w}) = {f(w), f(x), f(w)} for all w ∈ A0 and all
x ∈ A,

H({w, x, w}) = lim
n→∞

r3n

33n

{
f

(
3nw

rn

)
, f

(
3nx

rn

)
, f

(
3nw

rn

)}

= lim
n→∞

{
rn

3n
f

(
3nw

rn

)
,
rn

3n
f

(
3nx

rn

)
,
rn

3n
f

(
3nw

rn

)}

= {H(w), H(x), H(w)}
for all w ∈ A0 and all x ∈ A.

It follows from (2.2) that H(w) := limn→∞ rn

3n f
(

3nw
rn

) ∈ B0 for all w ∈ A0.
By (2.2), we can show that H is additive, and by (2.1), we can show that H is
C-linear.

On the other hand, by the assumption,

H(x) = H(ex) = lim
n→∞

r2n

32n
f

(
32nex

r2n

)
= lim

n→∞
r2n

32n
f

({
3ne

rn
,
3ne

rn
, x

})

= lim
n→∞

{
rn

3n
f

(
3ne

rn

)
,
rn

3n
f

(
3ne

rn

)
, f(x)

}
= {e′, e′, f(x)}

= f(x)

for all x ∈ A. Hence the bijective mapping f : A → B is a proper JCQ∗-triple
Jordan isomorphism. ¤
Theorem 2.2. Let 1 < r < 3 and θ be nonnegative real numbers, and let f : A →
B be a bijective mapping satisfying (2.1), (2.2) and (2.3). If limn→∞ 3n

rn f
(

rne
3n

)
= e′
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and f |A0 : A0 → B0 is bijective, then the mapping f : A → B is a proper JCQ∗-
triple Jordan isomorphism.

Proof. By the same reasoning as in the proof of Theorem 2.1, there is a unique
C-linear mapping H : A → B satisfying H(w) ∈ B0 for all w ∈ A0. The mapping
H : A → B is given by

H(x) := lim
n→∞

3n

rn
f

(
rnx

3n

)

for all x ∈ A.
The rest of the proof is similar to the proof of Theorem 2.1. ¤

3. Jordan homomorphisms in proper JCQ∗-triples

We investigate Jordan homomorphisms in proper JCQ∗-triples.

Theorem 3.1. Let r ∈ (0, 3) \ {1} and θ be nonnegative real numbers and f :
A → B a mapping satisfying f(w) ∈ B0 for all w ∈ A0 such that

‖µf(x) + f(y) + f(z)‖B + ‖f({w, a, w})− {f(w), f(a), f(w)}‖B

≤
∥∥rf

(
µx+y+z

r

)∥∥
B

+ θ(2‖w‖3r
A + ‖a‖3r

A ) (3.1)

for all µ ∈ T1 := {λ ∈ C : |λ|= 1}, all w ∈ A0 and all x, y, z ∈ A. Then the
mapping f : A → B is a proper JCQ∗-triple Jordan homomorphism.

Proof. Letting µ = 1, x = y = z = a = w = 0 in (3.1), we obtain

‖3f(0)‖B + ‖f(0)− {f(0), f(0), f(0)}‖B ≤ ‖rf(0)‖B.

It follows that
‖3f(0)‖B ≤ ‖rf(0)‖B,

and f(0) = 0.
Letting a = w = 0 in (3.1), we obtain

‖µf(x) + f(y) + f(z)‖B ≤
∥∥∥∥rf

(
µx + y + z

r

)∥∥∥∥
B

(3.2)

for all x, y, z ∈ A.
Letting µ = 1, x = −y, z = 0 in (3.2), we obtain

‖f(x) + f(−x) + f(0)‖B ≤ ‖rf(0)‖B = 0.

Hence, f(−x) = −f(x) for all x ∈ A.
Letting µ = 1, z = −x− y in (3.2), by the oddness of f , we get

‖f(x) + f(y)− f(x + y)‖B = ‖f(x) + f(y) + f(−x− y)‖B ≤ ‖rf(0)‖B = 0

for all x, y ∈ A. It follows that f(x) + f(y) = f(x + y) for all x, y ∈ A. So
f : A → B is Cauchy additive.

Letting z = 0 and y = −µx in (3.2), we get f(µx) = µf(x) for all x ∈ A. By
the same reasoning as in the proof of Theorem 2.1 of [40], the mapping f : A → B
is C-linear.

(i) Assume that r < 1. It follows from (3.1) that
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‖f({w, x, w})− {f(w), f(x), f(w)}‖B ≤ θ(2‖w‖3r
A + ‖x‖3r

A ) (3.3)

for all w ∈ A0 and all x ∈ A. By (3.3), we get

‖f({w, x, w}) − {f(w), f(x), f(w)}‖B

= lim
n→∞

1

8n
‖f(8n{w, x, w})− {f(2nw), f(2nx), f(2nw)}‖B

≤ lim
n→∞

8nr

8n
θ(2‖w‖3r

A + ‖x‖3r
A ) = 0

for all w ∈ A0 and all x ∈ A. So

f({w, x, w}) = {f(w), f(x), f(w)}
for all w ∈ A0 and all x ∈ A.

(ii) Assume that r > 1. By a similar method to the proof of the case (i), one
can prove that the mapping f : A → B satisfies

f({w, x, w}) = {f(w), f(x), f(w)}
for all w ∈ A0 and all x ∈ A.

Since f(w) ∈ B0 for all w ∈ A0, the mapping f : A → B is a proper JCQ∗-
triple homomorphism, as desired. ¤
Theorem 3.2. Let r ∈ (0, 3) \ {1} and θ be nonnegative real numbers, and
f : A → B a mapping satisfying (3.1) and f(w) ∈ B0 for all w ∈ A0 such that

‖f({w, x, w})− {f(w), f(x), f(w)}‖B ≤ θ · ‖w‖2r
A · ‖x‖r

A (3.4)

for all w ∈ A0 and all x ∈ A. Then the mapping f : A → B is a proper
JCQ∗-triple Jordan homomorphism.

Proof. By the same reasoning as in the proof of Theorem 3.1, the mapping f :
A → B is C-linear.

(i) Assume that r < 1. By (3.4),

‖f({w, x, w}) − {f(w), f(x), f(w)}‖B

= lim
n→∞

1

8n
‖f(8n{w, x, w})− {f(2nw), f(2nx), f(2nw)}‖B

≤ lim
n→∞

8nr

8n
θ · ‖w‖2r

A · ‖x‖r
A = 0

for all w ∈ A0 and all x ∈ A. So

f({w, x, w}) = {f(w), f(x), f(w)}
for all w ∈ A0 and all x ∈ A.

(ii) Assume that r > 1. By a similar method to the proof of the case (i), one
can prove that the mapping f : A → B satisfies

f({w, x, w}) = {f(w), f(x), f(w)}
for all w ∈ A0 and all x ∈ A.

Therefore, the mapping f : A → B is a proper JCQ∗-triple Jordan homomor-
phism. ¤
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4. Stability of Jordan homomorphisms in proper JCQ∗-triples

In this section, we prove the Hyers-Ulam-Rassias stability of Jordan homomor-
phisms in proper JCQ∗-triples.

Theorem 4.1. Let 0 < r < 1 and θ be nonnegative real numbers, and let f :
A → B be a mapping such that f(w) ∈ B0 for all w ∈ A0 and∥∥∥∥rf

(
µx + µy + µz

r

)
− µf(x)− µf(y)− µf(z)

∥∥∥∥
B

+

∥∥∥∥rf

(
w0 + w1 + w2

r

)
− f(w0)− f(w1)− f(w2)

∥∥∥∥
B

(4.1)

≤ θ · ‖x‖
r
3
A · ‖y‖

r
3
A · ‖z‖

r
3
A + θ · ‖w0‖

r
3
A0
· ‖w1‖

r
3
A0
· ‖w2‖

r
3
A0

,

‖f({w, x, w})− {f(w), f(x), f(w)}‖B ≤ θ · ‖w‖2r
A · ‖x‖r

A (4.2)

for all µ ∈ T1, all w, w0, w1, w2 ∈ A0 and all x, y, z ∈ A. Then there exists a
unique proper JCQ∗-triple Jordan homomorphism H : A → B such that

‖f(x)−H(x)‖B ≤ rrθ

3 · rr − r · 3r
‖x‖r

A (4.3)

for all x ∈ A.

Proof. It follows from (4.1) that∥∥∥∥rf

(
µx + µy + µz

r

)
− µf(x)− µf(y)− µf(z)

∥∥∥∥
B

≤ θ · ‖x‖
r
3
A · ‖y‖

r
3
A · ‖z‖

r
3
A (4.4)

for all µ ∈ T1 and all x, y, z ∈ A. Let us assume µ = 1 and x = y = z in (4.4).
Then we get ∥∥∥∥rf

(
3x

r

)
− 3f(x)

∥∥∥∥
B

≤ θ‖x‖r
A

for all x ∈ A. So ∥∥∥∥f(x)− r

3
f

(
3x

r

)∥∥∥∥
B

≤ θ

3
‖x‖r

A

for all x ∈ A. Hence
∥∥∥∥

rl

3l
f

(
3lx

rl

)
− rm

3m
f

(
3mx

rm

)∥∥∥∥
B

≤
m−1∑

j=l

∥∥∥∥
rj

3j
f

(
3jx

rj

)
− rj+1

3j+1
f

(
3j+1x

rj+1

)∥∥∥∥
B

(4.5)

≤ θ

3

m−1∑

j=l

rj3rj

3jrrj
‖x‖r

A

for all nonnegative integers m and l with m > l and all x ∈ A. From this it follows
that the sequence

{
rn

3n f
(

3nx
rn

)}
is a Cauchy sequence for all x ∈ A. Since B is

complete, the sequence
{

rn

3n f
(

3nx
rn

)}
converges. Thus one can define the mapping

H : A → B by

H(x) := lim
n→∞

rn

3n
f

(
3nx

rn

)
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for all x ∈ A. Moreover, letting l = 0 and passing the limit m →∞ in (4.5), we
get (4.3).

It follows from (4.4) that
∥∥∥∥rH

(
µ(x + y + z)

r

)
− µH(x)− µH(y)− µH(z)

∥∥∥∥
B

= lim
n→∞

rn

3n

∥∥∥∥2f

(
3nµ(x + y + z)

rn

)
− µf

(
3nx

rn

)
− µf

(
3ny

rn

)
− µf

(
3nz

rn

)∥∥∥∥
B

≤ lim
n→∞

rn3nrθ

3n2nr
‖x‖

r
3
A · ‖y‖

r
3
A · ‖z‖

r
3
A = 0

for all µ ∈ T1 and all x, y, z ∈ A. So

rH

(
µx + µy + µz

r

)
= µH(x) + µH(y) + µH(z)

for all µ ∈ T1 and all x, y, z ∈ A. By the same reasoning as in the proof of
Theorem 2.1 of [40], the mapping H : A → B is C-linear.

Now, let T : A → B be another 3-variable Jensen mapping satisfying (4.3).
Then we have

‖H(x) − T (x)‖B =
rn

3n

∥∥∥∥H

(
3nx

rn

)
− T

(
3nx

rn

)∥∥∥∥
B

≤ rn

3n

(∥∥∥∥H

(
3nx

rn

)
− f

(
3nx

rn

)∥∥∥∥
B

+

∥∥∥∥T

(
3nx

rn

)
− f

(
3nx

rn

)∥∥∥∥
B

)

≤ rr+1rn3nrθ

3nrnr(3 · rr − r · 3r)
‖x‖r

A,

which tends to zero as n →∞ for all x ∈ A. So we can conclude that H(x) = T (x)
for all x ∈ A. This proves the uniqueness of H.

On the other hand, by (4.1), we get
∥∥∥∥rf

(
w0 + w1 + w2

r

)
− f(w0)− f(w1)− f(w2)

∥∥∥∥
B

≤ θ · ‖w0‖
r
3
A0
· ‖w1‖

r
3
A0
· ‖w2‖

r
3
A0
(4.6)

for all w, w0, w1, w2 ∈ A0 and all x, y, z ∈ A.
It follows from (4.6) that H(w) = limn→∞ rn

3n f
(

3nw
rn

) ∈ B0 for all w ∈ A0. So
it follows from (4.2) that

‖H({w, x, w}) − {H(w), H(x), H(w)}‖B

= lim
n→∞

r3n

33n

∥∥∥∥f

(
33n{w, x, w}

r3n

)
−

{
f

(
3nw

rn

)
, f

(
3nx

rn

)
, f

(
3nw

rn

)}∥∥∥∥
B

≤ lim
n→∞

r3n33nr

33nr3nr
θ · ‖w‖2r

A · ‖x‖r
A = 0

for all w ∈ A0 and all x ∈ A. So

H({w, x, w}) = {H(w), H(x), H(w)}
for all w ∈ A0 and all x ∈ A.
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Thus the mapping H : A → B is a unique proper JCQ∗-triple Jordan homo-
morphism satisfying (4.3), and the proof is complete. ¤
Theorem 4.2. Let 1 < r < 3 and θ be nonnegative real numbers, and let f :
A → B be a mapping satisfying (4.1) and (4.2) such that f(w) ∈ B0 for all
w ∈ A0. Then there exists a unique proper JCQ∗-triple Jordan homomorphism
H : A → B such that

‖f(x)−H(x)‖B ≤ rrθ

r · 3r − 3 · rr
‖x‖r

A (4.7)

for all x ∈ A.

Proof. It follows from (4.1) that∥∥∥∥f(x)− 3

r
f

(rx

3

)∥∥∥∥
B

≤ rrθ

r · 3r
‖x‖r

A

for all x ∈ A. So
∥∥∥∥

3l

rl
f

(
rlx

3l

)
− 3m

rm
f

(
rmx

3m

)∥∥∥∥
B

≤
m−1∑

j=l

∥∥∥∥
3j

rj
f

(
rjx

3j

)
− 3j+1

rj+1
f

(
rj+1x

3j+1

)∥∥∥∥
B

≤ rrθ

r · 3r

m−1∑

j=l

3jrjr

rj3jr
‖x‖r

A (4.8)

for all nonnegative integers m and l with m > l and all x ∈ A. From this it follows
that the sequence

{
3n

rn f
(

rnx
3n

)}
is a Cauchy sequence for all x ∈ A. Since B is

complete, the sequence
{

3n

rn f
(

rnx
3n

)}
converges. So one can define the mapping

H : A → B by

H(x) := lim
n→∞

3n

rn
f

(
rnx

3n

)

for all x ∈ A. Moreover, letting l = 0 and passing the limit m →∞ in (4.8), we
get (4.7).

The rest of the proof is similar to the proof of Theorem 4.1. ¤
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