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Dedicated to Professor Themistocles M. Rassias on the occasion of his sixtieth birthday

Abstract. Recently, in [5], Najati and Moradlou proved Hyers-Ulam-Rassias
stability of the following quadratic mapping of Apollonius type

Q(z − x) + Q(z − y) =
1
2
Q(x− y) + 2Q

(
z − x + y

2

)

in non-Archimedean space. In this paper we establish Hyers-Ulam-Rassias sta-
bility of this functional equation in random normed spaces by direct method
and fixed point method. The concept of Hyers-Ulam-Rassias stability origi-
nated from Th. M. Rassias stability theorem that appeared in his paper: On
the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc.
72 (1978), 297-300.

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam
[10] concerning the stability of group homomorphisms. Hyers [4] gave a first
affirmative partial answer to the question of Ulam for Banach spaces. Hyers’s
theorem was generalized by Th. M. Rassias [6] for linear mappings by considering
an unbounded Cauchy difference.

Theorem 1.1. let f be an approximately additive mapping from a normed vector
space E into a Banach space E ′, i.e., f satisfies the inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖r + ‖y‖r)
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for all x, y ∈ E, where ε and r are constants with ε > 0 and 0 ≤ r < 1. Then the
mapping L : E → E ′ defined by L(x) = limn→∞ 2−nf(2nx) is the unique additive
mapping which satisfies

‖f(x + y)− L(x)‖ ≤ 2ε

2− 2r
‖x‖r

for all x ∈ E.

The paper of Th.M. Rassias [6] has provided a lot of influence in the devel-
opment of what we call generalized Hyers-Ulam stability or Hyers-Ulam-Rassias
stability of functional equations. A generalization of the Th.M. Rassias theorem
was obtained by Gǎvruta [3] by replacing the unbounded Cauchy difference by a
general control function in the spirit of Th. M. Rassias approach.
The functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y), (1.1)

is called a quadratic functional equation. In particular, every solution of the
quadratic functional equation is said to be a quadratic mapping. The Hyers-
Ulam-Rassias stability problem for the quadratic functional equation was proved
by Skof [9] for mappings f : X → Y , where X is a normed space and Y is a
Banach space. Cholewa [1] noticed that the theorem of Skof is still true if the
relevant domain X is replaced by an Abelian group. Czerwik [2] proved the
Hyers-Ulam-Rassias stability of the quadratic functional equation.
A. Najati and F. Moradlou [5], introduced the following functional equation

Q(z − x) + Q(z − y) =
1

2
Q(x− y) + 2Q

(
z − x + y

2

)
(1.2)

and he established the general solution and the generalized Hyers-Ulam- Rassias
stability problem for the functional equation (1.2) in non-Archimedean spaces.
In this paper, we establish the Hyers-Ulam-Rassias stability problem of functional
equation (1.2) in random normed spaces.
In the sequel, we shall adopt the usual terminology, notions and conventions
of the theory of random normed spaces as in [8]. Throughout this paper, the
spaces of all probability distribution functions is denoted by 4+. Elements of
4+ are functions F : R ∪ [−∞, +∞] → [0, 1], such that F is left continuous and
nondecreasing on R and F (0) = 0, F (+∞) = 1. It’s clear that the subset

D+ = {F ∈ 4+ : l−F (−∞) = 1},
where l−f(x) = limt→x− f(t), is a subset of4+. The space4+ is partially ordered
by the usual pointwise ordering of functions, that is for all t ∈ R, F ≤ G if and
only if F (t) ≤ G(t). For every a ≥ 0, Ha(t) is the element of D+ defined by

Ha(t) =

{
0 if t ≤ a
1 if t > a

.

One can easily show that the maximal element for 4+ in this order is the distri-
bution function H0(t).

Definition 1.2. A function T : [0, 1]2 → [0, 1] is a continuous triangular norm
(briefly a t-norm) if T satisfies the following conditions:
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(1) T is commutative and associative;
(2) T is continuous;
(3) T (x, 1) = x for all x ∈ [0, 1];
(4) T (x, y) ≤ T (z, w) whenever x ≤ z and y ≤ w for all x, y, z, w ∈ [0, 1].

Three typical examples of continuous t−norms are T (x, y) = xy, T (x, y) =
max{a + b − 1, 0} and T (x, y) = min(a, b). Recall that, if T is a t−norm and
{xn} is a given of numbers in [0, 1], T n

i=1xi is defined recursively by T 1
i=1x1 and

T n
i=1xi = T (T n−1

i=1 xi, xn) for n ≥ 2.

Definition 1.3. A random normed space(briefly RN -space) is a triple (X, Ψ, T ),
where X is a vector space, T is a continuous t-norm and Ψ : X → D+ is a map-
ping such that the following conditions hold:

(1) Ψx(t) = H0(t) for all t > 0 if and only if x = 0.
(2) Ψαx(t) = Ψx(

t
|α|) for all α ∈ R, α 6= 0, x ∈ X and t ≥ 0.

(3) Ψx+y(t + s) ≥ T (Ψx(t), Ψy(s)), for all x, y ∈ X and t, s ≥ 0.

Every normed space (X, ||.||) defines a random normed space (X, Ψ, TM) where
for every t > 0,

Ψu(t) =
t

t + ||u||
and TM is the minimum t-norm. This space is called the induced random normed
space.

Definition 1.4. Let (X, Ψ, T ) be an RN-space.

(1) A sequence {xn} in X is said to be convergent to x ∈ X in X if for all
t > 0, limn→∞Ψxn−x(t) = 1.

(2) A sequence {xn} in X is said to be Cauchy sequence in X if for all t > 0,
limn→∞Ψxn−xm(t) = 1.

(3) The RN -space (X, Ψ, T ) is said to be complete if every Cauchy sequence
in X is convergent.

Theorem 1.5. If (X, Ψ, T ) is RN-space and {xn} is a sequence such that xn → x,
then limn→∞ Ψxn(t) = Ψx(t).

Definition 1.6. Let X be a set. A function d : X × X → [0,∞] is called a
generalized metric on X if d satisfies

(1) d(x, y) = 0 if and only if x = y,
(2) d(x, y) = d(y, x) for all x, y ∈ X,
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 1.7. Let (X,d) be a complete generalized metric space and let J : X →
X be a strictly contractive mapping with Lipschitz constant L < 1. Then for each
given element x ∈ X, either

d(Jnx, Jn+1x) = ∞ (1.3)

for all nonnegative integers n or there exists a positive integer n0 such that
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(1) d(Jnx, Jn+1x) < ∞ for all n0 ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X| d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ 1

1−L
d(y, Jy) for all y ∈ Y .

2. RN-stability of the functional equation (1.2): direct method

In this section, we use direct method to prove the Hyres-Ulam-Rassias stability
of quadratic functional equations (1.2).

Theorem 2.1. Let X be a real linear space, (Z, Ψ,min) be an RN-space, ζ :
X3 → Z be a function such that for some 0 < α < 4,

Ψζ(2x,2y,2z)(t) ≥ Ψαζ(x,y,z)(t) ∀x ∈ X, t > 0, (2.1)

Q(0) = 0 and for all x, y, z ∈ X and t > 0

lim
n→∞

Ψζ(2nx,2ny,2nz)(4
nt) = 1.

Let (Y, µ,min) be a complete RN-space. If Q : X → Y is a mapping such that
for all x, y, z ∈ X and t > 0,

µQ(z−x)+Q(z−y)− 1
2
Q(x−y)−2Q(z−x+y

2
)(t) ≥ Ψζ(x,y,z)(t), (2.2)

then there is a unique quadratic mapping R : X → Y such that

R(x) := lim
n→∞

4−nQ(2nx),

and

µQ(x)−R(x)(t) ≥ Ψζ(x,−x,x)

((4− α)t

2

)
. (2.3)

Proof. Putting y = −x and z = x in (2.2) we see that for all x ∈ X and all t > 0,

µQ(2x)
4

−Q(x)
(t) ≥ Ψζ(x,−x,x)(2t). (2.4)

Replacing x by 2nx in (2.4) and using (2.1), we obtain

µQ(2n+1x)

4n+1 −Q(2nx)
4n

(t) ≥ Ψψ(2nx,−2nx,2nx)(2× 4nt) ≥ Ψζ(x,−x,x)

(2× 4nt

αn

)
. (2.5)

So

µQ(2nx)
4n −Q(x)

( n−1∑

k=0

tαk

2× 4k

)
= µ∑n−1

k=0
Q(2k+1x)

4k+1 −Q(2kx)

4k

( n−1∑

k=0

tαk

2× 4k

)

≥ T n−1
k=0 µQ(2k+1x)

4k+1 −Q(2kx)

4k

( tαk

2× 4k

)
(2.6)

≥ T n−1
k=0

(
Ψζ(x,−x,x)(t)

)

= Ψζ(x,−x,x)(t).

This implies that

µQ(2nx)
4n −Q(x)

(t) ≥ Ψψ(x,−x,x)

( t∑n−1
k=0

αk

2×4k

)
. (2.7)



86 H. AZADI KENARY, KH. SHAFAAT, M. SHAFEI AND G. TAKBIRI

Replacing x by 2px in (2.6), we obtain

µQ(2n+px)

4n+p −Q(2px)
4p

(t) ≥ Ψζ(2px,−2px,2px)

( t∑n−1
k=0

αk

2×4k+p

)

≥ Ψψ(x,−x,x)

( t∑n−1
k=0

αk+p

2×4k+p

)
(2.8)

= Ψζ(x,−x,x)

( t∑n+p−1
k=p

αk

2×4k

)
.

As

lim
p,n→∞

Ψζ(x,−x,x)

( t∑n+p−1
k=p

αk

2×4k

)
= 1,

then
{

Q(2nx)
4n

}∞
n=1

is a Cauchy sequence in complete RN-space (Y, µ,min), so there

exist some point R(x) ∈ Y such that

lim
n→∞

4−nQ(2nx) = R(x).

Fix x ∈ X and put p = 0 in (2.8). Then we obtain

µQ(2nx)
4n −Q(x)

(t) ≥ Ψζ(x,−x,x)

( t∑n−1
k=0

αk

2×4k

)
, (2.9)

and so, for every ε > 0, we have

µR(x)−Q(x)(t + ε) ≥ T
(
µ

R(x)−Q(2nx)
4n

(ε), µQ(2nx)
4n −Q(x)

(t)
)

(2.10)

≥ T
(
µ

R(x)−Q(2nx)
4n

(ε), Ψζ(x,−x,x)

( t∑n−1
k=0

αk

2×4k

))
.

Taking the limit as n →∞ and using (2.10), we get

µR(x)−Q(x)(t + ε) ≥ Ψψ(x,−x,x)

((4− α)t

2

)
. (2.11)

Since ε was arbitrary by taking ε → 0 in (2.11), we get

µR(x)−Q(x)(t) ≥ Ψζ(x,−x,x)

((4− α)t

2

)
(2.12)

Replacing x, y and z by 2nx, 2ny and 2nz, respectively, in (2.2), we get for all
x, y, z ∈ X and for all t > 0,

µ 1
4n [Q(2nz−2nx)+Q(2nz−2ny)− 1

2
Q(2nx−2ny)−2Q(2nz− x+y

2n−1 )](t) ≥ Ψζ(2nx,2ny,2nz)(4
nt).

(2.13)
Since limn→∞ Ψζ(2nx,2ny,2nz)(4

nt) = 1, we conclude that

R(z − x) + R(z − y) =
1

2
R(x− y) + 2R

(
z − x + y

2

)
.

To prove the uniqueness of the quadratic mapping R, assume that there exist
another quadratic mapping S : X → Y which satisfies (2.3). By induction one
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can easily show that for all n ∈ N and every x ∈ X, R(2nx) = 4nR(x) and
S(mnx) = 4nS(x). So

µR(x)−S(x)(t) = lim
n→∞

µR(2nx)
4n −S(2nx)

4n
(t) (2.14)

≥ lim
n→∞

min
{

µR(2nx)
4n −Q(2nx)

4n

( t

2

)
, µS(2nx)

4n −Q(2nx)
4n

( t

2

)}

≥ lim
n→∞

Ψζ(2nx,−2nx,2nx)

(4n(4− α)t

4

)

≥ lim
n→∞

Ψζ(x,−x,x)

(4n(4− α)t

4αn

)
.

Since limn→∞
4n(4−α)t

4αn = ∞, we get

lim
n→∞

Ψζ(x,−x,x)

(4n(4− α)t

4αn

)
= 1.

Therefore, it follows that for all t > 0, µR(x)−S(x)(t) = 1 and so R(x) = S(x).
This complete the proof. ¤

Corollary 2.2. Let X be a real linear space, (Z, Ψ, min) be an RN-space, and
(Y, µ, min) a complete RN-space. Let 0 < p < 1 and z0 ∈ Z. If Q : X → Y is a
mapping that for all x, y ∈ X and t > 0,

µQ(z−x)+Q(z−y)− 1
2
Q(x−y)−2Q(z−x+y

2
)(t) ≥ Ψ||y||py0(t), (2.15)

then there is a unique quadratic mapping R : X → Y such that

R(x) = lim
n→∞

4−nQ(2nx), (2.16)

and

µQ(x)−R(x)(t) ≥ Ψ‖x‖pz0

((4− 4p)t

2

)
. (2.17)

Proof. Let α = 4p and ζ : X3 → Z be defined by ζ(x, y, z) = ||y||pz0. ¤

Corollary 2.3. Let X be a real linear space, (Z, Ψ, min) be an RN-space, and
(Y, µ, min) a complete RN-space. Let 0 < p < 1 and z0 ∈ Z. If Q : X → Y is a
mapping that for all x, y, z ∈ X and t > 0,

µQ(z−x)+Q(z−y)− 1
2
Q(x−y)−2Q(z−x+y

2
)(t) ≥ Ψ(||x||p+||y||p+||z||p)z0(t), (2.18)

then there is a unique quadratic mapping R : X → Y such that

R(x) = lim
n→∞

4−nQ(2nx), (2.19)

and

µQ(x)−R(x)(t) ≥ Ψ||x||pz0

((4− 4p)t

6

)
. (2.20)

Proof. Let α = 4p and ζ : X3 → Z be defined by ζ(x, y, z) = (||x||p + ||y||p +
||z||p)z0. ¤
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Corollary 2.4. Let X be a real linear space, (Z, Ψ, min) be an RN-space, and
(Y, µ, min) a complete RN-space. Let z0 ∈ Z. If Q : X → Y is a mapping that
for all x, y, z ∈ X and t > 0,

µQ(z−x)+Q(z−y)− 1
2
Q(x−y)−2Q(z−x+y

2
)(t) ≥ Ψδz0(t), (2.21)

then there is a unique quadratic mapping R : X → Y such that for all x ∈ X and
t > 0,

R(x) = lim
n→∞

4−nQ(2nx), (2.22)

and

µQ(x)−R(x)(t) ≥ Ψδz0

(3t

2

)
. (2.23)

Proof. Let α = 1 and ψ : X3 → Z be defined by ψ(x, y) = δz0. ¤

3. RN-Stability of the functional equation (1.2): fixed point method

Theorem 3.1. Let X be a linear space, (Y, µ, TM) be a complete RN-space and Λ
be a mapping from X3 to D+(Λ(x, y, z) is denoted by Λx,y,z) such that, for some
0 < α < 1

4
,

Λ2x,2y,2z(t) ≤ Λx,y,z(αt) (3.1)

for all x, y, z ∈ X and all t > 0. Let Q : X → Y be a quadratic mapping satisfying

µQ(z−x)+Q(z−y)− 1
2
Q(x−y)−2Q(z−x+y

2
)(t) ≥ Λx,y,z(t) (3.2)

for all x, y, z ∈ X and all t > 0. Then

R(x) := lim
n→∞

4nQ
( x

2n

)
(3.3)

exists for each x ∈ X and defines a unique quadratic mapping R : X → Y such
that

µQ(x)−R(x)(t) ≥ Λx,−x,x

((1− 4α)t

2α

)
. (3.4)

for all x, y, z ∈ X and all t > 0.

Proof. Putting y = −x and z = x in (3.2), we have

µ 1
2
Q(2x)−2Q(x)(t) ≥ Λx,−x,x(t), (3.5)

for all x ∈ X and all t > 0. Consider the set

S := {g : X → Y } (3.6)

and introduce the generalized metric on S :

d(f, g) = inf
{

u ∈ R+ : µg(x)−h(x)(ut) ≥ Λx,−x,x(t),∀x ∈ X, ∀t > 0
}

, (3.7)

where, as usual, inf∅ = +∞. It is easy to show that (S, d) is complete. Now we
consider the linear mapping J : S → S such that

Jh(x) := 4h
(x

2

)
(3.8)
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for all x ∈ X and we prove that J is a strictly contractive mapping with the
Lipschitz constant 4α. Let g, h ∈ S be given such that d(g, h) < ε. Then

µg(x)−h(x)(εt) ≥ Λx,−x,x(t) (3.9)

for all x ∈ X and all t > 0. Hence

µJg(x)−Jh(x)(4αεt) = µ4g(x
2
)−4h(x

2
)(4αεt)

= µg(x
2
)−h(x

2
)(αεt) (3.10)

≥ Λx
2
,−x

2
, x
2
(αt)

≥ Λx,−x,x(t)

for all x ∈ X and all t > 0. So d(g, h) < ε implies that d(Jg, Jh) < 4αε. This
means that

d(Jg, Jh) ≤ 4αd(g, h) (3.11)

for all g, h ∈ S. It follows from (3.5) that

µQ(x)−4Q(x
2
)(αt) ≥ Λx,−x,x(t) (3.12)

for all x ∈ X and all t > 0. So

d(Q, JQ) ≤ 2α < 1. (3.13)

By Theorem (1.7), there exists a mapping R : X → Y satisfying the following:

(1) R is a fixed point of J , that is

R
(x

2

)
=

1

4
R(x) (3.14)

for all x ∈ X. The mapping R is a unique fixed point of J in the set

Ω = {h ∈ S : d(g, h) < ∞}. (3.15)

This implies that R is a unique mapping satisfying (3.14) such that there
exists a u ∈ (0,∞) satisfying

µQ(x)−R(x)(ut) ≥ Λx,−x,x(t) (3.16)

for all x ∈ X and all t > 0;
(2) d(JnQ,R) → 0 as n →∞. This implies the equality

lim
n→∞

4nQ
( x

2n

)
= R(x) (3.17)

for all x ∈ X.
(3) d(Q,R) ≤ d(Q,JQ)

1−4α
with Q ∈ Ω, which implies the inequality

d(Q,R) ≤ 2α

1− 4α
(3.18)

from which it follows

µQ(x)−R(x)

( 2αt

1− 4α

)
≥ Λx,−x,x(t) (3.19)
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for all x ∈ X and all t > 0. This implies that the inequality (3.4) holds.
Replacing x, y and z by 2nx, 2ny and 2nz, respectively in (3.2), we obtain

µ4n[Q( z
2n− x

2n )+Q( z
2n− y

2n )− 1
2
Q( x

2n− y
2n )−2Q( z

2n− x+y

2n+1 )](t) ≥ Λ x
2n , y

2n , z
2n

( t

4n

)
(3.20)

≥ Λx,y,z

(( 1

4α

)n

t
)

for all x, y, z ∈ X, all t > 0 and all n ∈ N. Since limn→∞ Λx,y,z

((
1
4α

)n

t
)

= 1 for

all x, y, z ∈ X and all t > 0, then we deduce that

µR(z−x)+R(z−y)− 1
2
R(x−y)−2R(z−x+y

2
)(t) = 1,

for all x, y, z ∈ X and all t > 0. Thus the mapping R : X → Y is quadratic. ¤
Corollary 3.2. Let θ ≥ 0 and let p be a real number with p > 1. Let X be a
normed vector space with norm ‖.‖. Let Q : X → Y be a mapping satisfying

µQ(z−x)+Q(z−y)− 1
2
Q(x−y)−2Q(z−x+y

2
)(t) ≥

t

t + θ(‖x‖p + ‖y‖p + ‖z‖p)
(3.21)

for all x, y, z ∈ X and all t > 0. Then

R(x) := lim
n→∞

4nQ
( x

2n

)
(3.22)

exists for each x ∈ X and defines a quadratic mapping R : X → Y such that

µQ(x)−R(x)(t) ≥ (4p − 4)t

(4p − 4)t + 6θ‖x‖p
(3.23)

Proof. The proof follows from Theorem (3.1) by taking

Λx,y,z(t) =
t

t + θ(‖x‖p + ‖y‖p + ‖z‖p)
(3.24)

for all x, y, z ∈ X and all t > 0. Then we can choose α = 4−p and we get the
desired result. ¤

Similarly, we can obtain the following. We will omit the proof.

Theorem 3.3. Let X be a linear space, (Y, µ, TM) be a complete RN-space and Λ
be a mapping from X3 to D+(Λ(x, y, z) is denoted by Λx,y,z) such that, for some
0 < α < 4,

Λx
2
, y
2
, z
2
(t) ≤ Λx,y,z(αt) (3.25)

for all x, y, z ∈ X and all t > 0. Let Q : X → Y be a quadratic mapping satisfying

µQ(z−x)+Q(z−y)− 1
2
Q(x−y)−2Q(z−x+y

2
)(t) ≥ Λx,y,z(t) (3.26)

for all x, y, z ∈ X and all t > 0. Then

R(x) := lim
n→∞

Q(2nx)

4n
(3.27)

exists for each x ∈ X and defines a unique quadratic mapping R : X → Y such
that

µQ(x)−R(x)(t) ≥ Λx,−x,x

((4− α)t

2

)
. (3.28)
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for all x ∈ X and all t > 0.

Corollary 3.4. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let X be
a normed vector space with norm ‖.‖. Let Q : X → Y be a quadratic mapping
satisfying

µQ(z−x)+Q(z−y)− 1
2
Q(x−y)−2Q(z−x+y

2
)(t) ≥

t

t + θ(‖x‖p + ‖y‖p + ‖z‖p)
(3.29)

for all x, y, z ∈ X and all t > 0. Then

R(x) := lim
n→∞

Q(2nx)

4n
(3.30)

exists for each x ∈ X and defines an quadratic mapping R : X → Y such that

µQ(x)−R(x)(t) ≥ (4− 4p)t

(4− 4p)t + 6θ‖x‖p
(3.31)

Proof. The proof follows from Theorem (3.3) by taking

Λx,y,z(t) =
t

t + θ(‖x‖p + ‖y‖p + ‖z‖p)

for all x, y ∈ X and all t > 0. Then we can choose α = 4p and we get the desired
result. ¤
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