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Abstract. In this paper, we study the existence of global solutions for a class
of impulsive abstract functional differential equation with nonlocal conditions.
The results are obtained by using the Leray-Schauder alternative fixed point
theorem. An example is provided to illustrate the theory.

1. Introduction

In this work, we discuss the existence of global solutions for an impulsive ab-
stract functional differential equation with nonlocal conditions in the form

u′(t) = Au(t) + f(t, ut, u(ρ(t))), t ∈ I = [0,∞), (1.1)

u0 = g(u, ϕ) ∈ B, (1.2)

∆u(ti) = Ii(uti), (1.3)

where A is the infinitesimal generator of a C0-semigroup of bounded linear op-
erators (T (t))t≥0 defined on a Banach space (X, ‖ · ‖); I is an interval of the
form [0,∞); 0 < t1 < t2 < · · · < ti < · · · are pre-fixed numbers; the history
ut : (−∞, 0] → X, ut(θ) = u(t + θ), belongs to some abstract phase space B
defined axiomatically; ρ : [0,∞) → [0,∞), f : I × B ×X → X, Ii : B → X are
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IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS 103

appropriate functions and the symbol ∆ξ(t) represents the jump of the function
ξ at t, which is defined by ∆ξ(t) = ξ(t+)− ξ(t−).

Differential equations arise in many real world problems such as physics, popu-
lation dynamics, ecology, biological systems, biotechnology, optimal control, and
so forth. Much has been done the assumption that the state variables and sys-
tems parameters change continuously. However, one may easily visualize that
abrupt changes such as shock, harvesting, and disasters may occur in nature.
These phenomena are short-time perturbations whose duration is negligible in
comparison with the duration of the whole evolution process. Consequently, it
is natural to assume, in modeling these problems, that these perturbations act
instantaneously, that is in the form of impulses. The theory of impulsive differen-
tial equations has become an active area of investigation due to their applications
in the field such as mechanics, electrical engineering, medicine biology and so on;
see for instance [1, 3, 4, 7, 8, 9, 23, 26, 30, 35, 37, 38]. For more details on this
theory and on its applications we refer to the monographs of Benchohra [10],
Lakshmikantham [29], Bainov and Simeonov [5] and Samoilenko and Perestyuk
[39], and the papers of [2, 15, 16, 17, 18, 25, 31], where numerous properties of
their solutions are studied and detailed bibliographies are given.

The literature concerning differential equations with nonlocal conditions also
include ordinary differential equations, partial differential equations, abstract par-
tial functional differential equations. Related to this matter, we cite among others
works, [6, 11, 12, 13, 14, 20, 22, 28, 33, 34]. Our main results can been seen as
a generalization of the work in [21] and the above mentioned impulsive partial
functional differential equations.

2. Preliminaries

In this paper, A is the infinitesimal generator of a strongly continuous semi-
group of bounded linear operators (T (t))t≥0 defined on a Banach space (X, ‖ · ‖)
and M, δ are positive constants such that ‖T (t)‖ ≤ Me−δt for every t ≥ 0. For
the theory of strongly continuous semigroup, refer the reader to Pazy [36].

To consider the impulsive condition (1.3), it is convenient to introduce some
additional concepts and notations. We say that a function u : [σ, τ ] → X is a
normalized piecewise continuous function on [σ, τ ] if u is piecewise continuous
and left continuous on (σ, τ ]. We denote by PC([σ, τ ]; X) the space formed by
all normalized piecewise continuous functions from [σ, τ ] into X. In particular,
we introduce the space PC formed by all functions u : [0, a] → X such that u
is continuous at t 6= ti, i = 1, ..., n. It is clear that, PC([σ, τ ]; X) endowed with
the norm of uniform convergence, is a Banach space. On the other hand, the
notation PC([0,∞); X) stands for the space formed by all bounded normalized
piecewise continuous functions u : [0,∞) → X such that u|[0,a] ∈ PC([0, a]; X)
for all a > 0, endowed with the uniform convergence topology.

In what follows, for the case I = [0, a], we set t0 = 0, tn+1 = a, and for
u ∈ PC([0, a]; X), we denote by ũi ∈ C([ti, ti+1]; X), i = 0, 1, ..., n, the function
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given by

ũi(t) =

{
u(t), for t ∈ (t, ti+1],

u(t+i ), for t = ti.

Moreover, for B ⊂ PC, we employ the notation B̃i, i = 0, 1, ..., n, for the sets

B̃i = {ũi : u ∈ B}.
Lemma 2.1. A set B ⊂ PC is relatively compact in PC([0, a]; X) if, and only if,

the set B̃i, is relatively compact in the space C([ti, ti+1]; X) for every i = 0, 1, ..., n.

In this paper, the phase space B is a linear space of functions mapping (−∞, 0]
into X endowed with a seminorm ‖ · ‖B and verifying the following axioms.

(A) If x : (−∞, a) → X, a > 0, is continuous on [0, a) and x0 ∈ B, then for
every t ∈ [0, a) the following conditions hold:
(i) xt is in B.
(ii) ‖x(t)‖ ≤ H‖xt‖B.
(iii) ‖xt‖B ≤ K(t) sup{‖x(s)‖ : 0 ≤ s ≤ t} + M(t)‖x0‖B, where H > 0 is

a constant; K,M : [0,∞) → [1,∞), K is continuous, M is locally
bounded and H, K, M are independent of x(·).

(B) The space B is complete.

Remark 2.2. In this paper, K is a positive constant such that supt≥0{K(t),M(t)}
≤ K. We know from that the functions M(·), K(·) are bounded if, for instance,
B is a fading memory space, see [27, pp. 190] for additional details.

Example 2.3. The phase space PCr × Lp(ρ,X)
Let r ≥ 0, 1 ≤ p < ∞, and ρ : (−∞,−r] → R be a non-negative measurable

function which satisfies the conditions (g-5)-(g-6) of [14]. Briefly, this means that
ρ is locally integrable and there exists a non-negative locally bounded function γ
on (−∞, 0] such that ρ(ξ + θ) ≤ γ(ξ)ρ(θ), for all ξ ≤ 0 and θ ∈ (−∞,−r) \Nξ,
where Nξ ⊆ (−∞,−r) is a set whose Lebesgue measure zero.

The space B = PCr×Lp(ρ,X) consists of all classes of functions ψ : (−∞, 0] →
X such that ψ is continuous on [−r, 0], Lebesgue-measurable, and ρ‖ψ‖p is
Lebesgue integrable on (−∞,−r). The seminorm in PCr×Lp(ρ,X) is defined as
follows:

‖ψ‖B = sup{‖ψ(θ)‖ : −r ≤ θ ≤ 0}+
( ∫ −r

−∞
ρ(θ)‖ψ(θ)‖pdθ

) 1
p
.

The space B = PCr × Lp(ρ,X) satisfies axioms (A) and (B). Moreover, when

r = 0 and p = 2, one can take H = 1, M(t) = γ(−t)
1
2 and K(t) = 1 +( ∫ 0

−t
ρ(θ)dθ

) 1
2 for t ≥ 0 (see [27, Theorem 1.3.8]). We also note that if the

conditions (g-5)-(g-7) of [27] hold, then B is a uniform fading memory.

For additional details concerning phase space, we cite [27]
In this paper, h : [0,∞) → R be a positive, continuous and non-decreasing

function such that h(0) = 1 and limt→∞ h(t) = ∞. In the sequel, PC([0,∞); X)
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and (PCh)
0(X) are the spaces defined by

PC([0,∞); X) =





x|[0,a]
∈ PC([0, a]; X),

∀a ∈ (0, +∞) \ {ti : i ∈ N},
x : [0,∞) → X : x0 = 0,

‖x‖∞ = supt≥0 ‖x(t)‖ < +∞,

(PC)0
h(X) =

{
x ∈ PC([0,∞); X) : lim

t→∞
‖x(t)‖
h(t)

= 0
}

,

endowed with the norms ‖x‖∞ = supt≥0 ‖x(t)‖ and ‖x‖PCh
= supt≥0

‖x(t)‖
h(t)

, re-

spectively.
Additionally, we define the space

BPC0
h(X) =

{
u ∈ PC(R, X) : u0 ∈ B, u|[0,∞)

∈ PC0
h(X)

}

endowed with the norm ‖u‖BPC0
h

= ‖u0‖B + ‖u|[0,∞)
‖h.

We recall here the following compactness criterion.

Lemma 2.4. A bounded set B ⊂ (PC)0
h(X) is relatively compact in (PC)0

h(X) if,
and only if:

(a) The set Ba = {u|[0,a]
: u ∈ B} is relatively compact in PC([0, a]; X), for

all a ∈ (0,∞) \ {ti; i ∈ N}.
(b) limt→∞

‖x(t)‖
h(t)

= 0, uniformly for x ∈ B.

Theorem 2.5. ([19, Theorem 6.5.4] Leray-Schauder Alternative Theorem). Let
D be a closed convex subset of a Banach space (Z, ‖ · ‖Z) and assume that 0 ∈ D.
Let F : D → D be a completely continuous map, then the set {x ∈ D : x = λF (x),
0 < λ < 1} is unbounded or the map F has a fixed point in D.

Theorem 2.6. ([32, Theorem 4.3.2]). Let D be a convex, bounded and closed
subset of a Banach space (Z, ‖ · ‖Z) and F : D → D be a condensing map. Then
F has a fixed point in D.

3. Existence of mild solutions

In this section, we study the existence of mild solutions for the nonlocal abstract
Cauchy problem (1.1)-(1.3). To treat this system, we introduce the following
conditions.

H1 The function ρ : [0,∞) → [0,∞) is continuous and ρ(t) ≤ t for every
t ≥ 0.

H2 The function f : I×B×X → X is continuous and there exist an integrable
function m : [0,∞) → [0,∞) and a nondecreasing continuous function
W : [0,∞) → (0,∞) such that ‖f(t, ψ, x)‖ ≤ m(t)W (‖ψ‖B + ‖x‖), for
every (t, ψ, x) ∈ [0,∞)× B ×X.

H3 The function g : BPC0
h(X)×B → B is continuous and there exists Lg ≥ 0

such that

‖g(u, ϕ)− g(v, ϕ)‖B ≤ Lg‖u− v‖BPC0
h
, u, v ∈ BPC0

h(X).
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H4 The function g(·, ϕ) : BPC0
h(X) → B is completely continuous and uni-

formly bounded. In the sequel, N is a positive constant such that
‖g(ψ, ϕ)‖B ≤ N for every ψ ∈ BPC0

h(X).
H5 The maps Ii : B → X are completely continuous and uniformly bounded,

i ∈ N. In what follows, we use the notation Ni = sup{‖Ii(φ)‖ : φ ∈ B}.
H6 There are positive constants Li, such that

‖Ii(ψ1)− Ii(ψ2)‖ ≤ Li‖ψ1 − ψ2‖B, ψ1, ψ2 ∈ B, i ∈ N.

In this work, we adopt the following concept of mild solutions for (1.1)-(1.3).

Definition 3.1. A function u ∈ PC(R, X) is called a mild solution of system
(1.1)-(1.3) if u0 = g(u, ϕ) and

u(t) = T (t)g(u, ϕ)(0) +

∫ t

0

T (t− s)f(s, us, u(ρ(s)))ds

+
∑

0<ti<t

T (t− ti)Ii(uti), t ∈ I = [0,∞).

Now, we can establish the principal results of this section.

Theorem 3.2. Assume H1, H2, H4, H5 and H6 be hold and that the following
properties are verified.

(a) The set
{
T (t)f(s, ψ, x) : (s, ψ, x) ∈ [0, t]×Br(0,B)×Br(0, X)

}
is relatively

compact in X for every t ≥ 0 and all r > 0.
(b) For every K > 0, limt→∞ 1

h(t)

∫ t

0
m(s)(Kh(s))ds = 0.

If MK(1 + H)
∫∞

0
m(s)ds <

∫∞
c

ds
W (s)

, where c = KN(1 + H)(1 + MH)

+ MK∑∞
i=1 Ni, then there exists a mild solution for the system (1.1)-(1.3).

Proof. Let Γ : BPC0
h(I : X) → BPC0

h(X) be the operator defined by (Γu)0 =
g(u, ϕ) and

Γu(t) = T (t)g(u, ϕ)(0) +

∫ t

0

T (t− s)f(s, us, u(ρ(s)))ds

+
∑

0<ti<t

T (t− ti)Ii(uti), t ≥ 0.

Next we prove that Γ verifies the conditions in Theorem 2.5. To begin, we note
that for u ∈ BPC0

h(X) and t ≥ 0, ‖u(t)‖ ≤ ‖u|I‖hh(t). If K is the constant in
Remark 2.2, then

‖Γu(t)‖
h(t)

≤ MNH

h(t)
+

M

h(t)

∫ t

0

m(s)W (2K‖u‖BPC0
h
h(s))ds +

M

h(t)

∞∑
i=1

Ni,

which from (b) permits us to conclude that Γ is a function from BPC0
h(X) into

BPC0
h(X).

Let (xn)n∈N be a sequence in BPC0
h(X) and x ∈ BPC0

h(X) such that xn → x
in BPC0

h(X). Let ε > 0 and η = supn∈N ‖xn‖BPC0
h
. From condition (b), we can
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select L > 0 such that

2MNH

h(t)
+

M

h(t)

∫ t

0

m(s)W (2Kηh(s))ds +
2M

h(t)

∞∑
i=1

Ni ≤ ε

2
, t ≥ L (3.1)

From the properties of the functions f , g, we can choose Nε ∈ N such that

‖g(xn, ϕ)− g(x, ϕ)‖B ≤ ε

6(MH + 1)
, (3.2)

∫ L

0

‖f(s, xn
s , x

n(ρ(s)))− f(s, xs, x(ρ(s)))‖ds ≤ ε

6M
, (3.3)

and
∑

0≤ti≤L

‖Ii(x
n
ti
)− Ii(xti)‖ ≤

ε

6M
, n ≥ Nε (3.4)

for every n ≥ Nε. Under these conditions, we see that

sup
{‖Γxn(t)− Γx(t)‖

h(t)
: t ∈ [0, L], n ≥ Nε

}
≤ ε

2
. (3.5)

Moreover, for t ≥ L and n ≥ Nε, we find that

‖Γxn(t)− Γx(t)‖
h(t)

≤ M
‖g(xn, ϕ)(0)− g(x, ϕ)(0)‖

h(t)
+

2M

h(t)

∞∑
i=1

Ni

+
M

h(t)

∫ t

0

‖f(s, xn
s , x

n(ρ(s)))− f(s, xs, x(ρ(s)))‖ds,

≤ 2MNH

h(t)
+

M

h(t)

∫ t

0

m(s)W (2Kηh(s))ds +
2M

h(t)

∞∑
i=1

Ni,

and hence,

sup
{‖Γxn(t)− Γx(t)‖

h(t)
: t ≥ L, n ≥ Nε

}
≤ ε

2
. (3.6)

From the inequalities (3.2)-(3.6), it follows that ‖Γxn − Γx‖BPC0
h
≤ ε for every

n ≥ Nε, which proves that Γ is continuous.
To prove that Γ is completely continuous, we introduce the decomposition

Γ = Γ1 + Γ2 + Γ3, where (Γ1u)0 = g(u, ϕ), (Γ2u)0 = 0, (Γ3u)0 = 0 and

Γ1u(t) =T (t)g(u, ϕ)(0), t ≥ 0 (3.7)

Γ2u(t) =

∫ t

0

T (t− s)f(s, us, u(ρ(s)))ds, t ≥ 0 (3.8)

Γ3u(t) =
∑

0<ti<t

T (t− ti)Ii(uti), t ≥ 0 (3.9)

From Lemma 2.4 and the properties of the semigroup (T (t))t≥0, it is easy to see
that Γ1 is completely continuous. Next, we prove that Γ2 is also completely con-
tinuous. From [24, Lemma 3.1], we infer that, Γ2Br(0,BPC0

h)|[0,a] =
{
Γ2x|[0,a] :
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x ∈ Br(0,BPC0
h)

}
is relatively compact in PC([0, a]; X) for every a > 0. Consid-

ering this property, Lemma 2.4 and the fact that

‖Γ2x(t)‖
h(t)

≤ M

h(t)

∫ t

0

m(s)W (2Krh(s))ds → 0, as t →∞,

uniformly for x ∈ Br(0,BPC0
h), we can conclude that the set Γ2(Br(0,BPC0

h)) is
relatively compact in BPC0

h(X) for every r > 0. Next, by using Lemma 2.1, we
prove that Γ3 is also completely continuous. We observe that the continuity of
Γ3 is obvious. On the other hand, for r > 0, t ∈ [ti, ti+1], i ≥ 1, and u ∈ Br =
Br(0,PC([0, a]; X)), we have that there exists r̃ > 0 such that

[Γ̃3u]i(t) ∈





∑i
j=1 T (t− tj)Ij(Br̃(0;B)), t ∈ (ti, ti+1),∑i
j=1 T (ti+1 − tj)Ij(Br̃(0;B)), t = ti+1,∑i−1
j=1 T (ti − tj)Ij(Br̃(0;B)) + Ii(Br̃(0;B)), t = ti,

where Br̃(0;B) is an open ball of radius r̃. From condition H5 it follows that

[Γ̃3(Br)]i(t) is relatively compact in X, for all t ∈ [ti, ti+1], i ≥ 1. Moreover,
using the compactness of the operators {Ii}i and the continuity of (T (t))t≥0, we
conclude that for ε > 0, there exists δ > 0 such that

‖T (t)z − T (s)z‖ ≤ ε, z ∈
n⋃

i=1

Ii(Br̃(0,B)), (3.10)

for all ti, i = 1, · · · , n, t, s ∈ (ti, ti+1] with |t − s| < δ. Under these conditions,
for u ∈ Br, t ∈ [ti, ti+1], i ≥ 0, and 0 < |h| < δ with t+h ∈ [ti, ti+1], we have that

‖[Γ̃3u]i(t + h)− [Γ̃3u]i(t)‖ ≤ Mnε, t ∈ I, (3.11)

which proves that the set of functions ˜[Γ3(Br)]i, i ≥ 0, is uniformly equicontinu-
ous. Now, from Lemma 2.1, we conclude that Γ3 is completely continuous. Thus,
Γ is completely continuous.

To finish the proof, we obtain a priori estimates for the solutions of the integral
equation {u = λΓu, λ ∈ (0, 1)}. Let λ ∈ (0, 1) and uλ ∈ BPC0

h(X) be a solution
of λΓz = z. By using the notation αλ(t) = K(sups∈[0,t] ‖uλ(s)‖+‖uλ

0‖B), for t ∈ I
we see that

‖uλ(t)‖ ≤ MNH + M

∫ t

0

m(s)W (‖uλ
s‖B + ‖uλ(ρ(s))‖)ds + M

∞∑
i=1

Ni,

≤ MNH + M

∫ t

0

m(s)W ((1 + H)αλ(s))ds + M

∞∑
i=1

Ni,
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and hence,

αλ(t)

≤ K‖g(u, ϕ)‖B +KMNH +KM

∫ t

0

m(s)(W (1 + H)αλ(s))ds +KM

∞∑
i=1

Ni,

≤ KN(1 + MH) +KM

∫ t

0

m(s)W ((1 + H)αλ(s))ds +KM

∞∑
i=1

Ni.

Denoting by βλ the right hand side of last inequality, we see that

β′λ(t) ≤ KMm(t)W ((1 + H)βλ(t)),

which implies that

∫ (1+H)βλ(t)

(1+H)βλ(0)=c

ds

W (s)
≤ MK(1 + H)

∫ ∞

0

m(s)ds <

∫ ∞

c

ds

W (s)
.

This inequality permits us to conclude that the set of functions {βλ : λ ∈ (0, 1)}
is bounded in C(R) and as consequence that the set {uλ; λ ∈ (0, 1)} is bounded
in BPC0

h(X).
Now the assertion is a consequence of Theorem 2.5. The proof is complete. ¤

Theorem 3.3. Assume assumptions H1, H2, H3, H5 and H6 be hold. If the
conditions (a) and (b) of Theorem 3.2 are valid and

Lg(1 + MH) + M lim
r→∞

inf

∫ +∞

0

m(s)W ((1 + 2K)rh(s))

rh(s)
ds + M

∞∑
i=1

Li < 1,

(3.10)

then there exists a mild solution of (1.1)-(1.3).

Proof. Let Γ, Γ1, Γ2, Γ3 be the operators introduced in the proof of Theorem
3.2, we claim that there exists r > 0 such that Γ(Br) ⊂ Br, where Br =
Br(0,BPC0

h(X)). In fact, if this property is false, then for every r > 0, there
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exist xr ∈ Br and tr ≥ 0 such that r < ‖(Γxr)0‖B + ‖Γxr(tr)
h(tr)

‖. Consequently

r ≤ ‖g(xr, ϕ)‖B + M
‖g(xr, ϕ)(0)‖

h(tr)

+
M

h(tr)

∫ tr

0

m(s)W (K‖xr
0‖B +K sup

θ∈[0,s]

‖xr(θ)‖+ ‖xr(ρ(s))‖)ds

+
M

h(tr)

∞∑
i=1

‖Ii(0)‖+ M

∞∑
i=1

Li‖xti‖
h(tr)

≤ Lg‖xr‖BPCo
h

+ ‖g(0, ϕ)‖B +
MH

h(tr)
Lg‖xr‖BPC0

h
+

M

h(tr)
‖g(0, ϕ)‖B

+
M

h(tr)

∫ tr

0

m(s)W (Kr +Krh(s) + rh(s))ds

+ Mr

∞∑
i=1

Li +
M

h(tr)

∞∑
i=1

‖Ii(0)‖

≤ Lg(1 + MH)r + (1 + M)‖g(0, ϕ)‖B + M

∫ tr

0

m(s)((2K + 1)rh(s))

h(s)
ds

and then,

1 ≤ Lg(1 + MH) + M lim
r→∞

inf

∫ +∞

0

m(s)((2K + 1)rh(s))

rh(s)
ds + M

∞∑
i=1

Li,

which is contrary to (3.10).
Let r > 0 such that Γ(Br) ⊂ Br. From the proof of the Theorem 3.2, we know

that Γ2 is a completely continuous on Br. Moreover, from the estimate,

‖Γ1u− Γ1v‖BPC0
h
≤ Lg‖u− v‖BPC0

h
+ H‖g(u, ϕ)− g(v, ϕ)‖B

≤ Lg(1 + H)‖u− v‖BPC0
h
,

we infer that Γ1 is a contraction on Br. It is easy to see that

‖Γ3u− Γ3v‖BPC0
h
≤ M

∞∑
i=1

Li‖u− v‖BPC0
h
, u, v ∈ BPC0

h,

which implies that Γ3 is a contraction in BPC0
h(X) from which we conclude that

Γ is a condensing operator on Br.
The assertion is now a consequence of Theorem 2.6. ¤

4. An application

To complete this work, we study the existence of global solutions for a concrete
partial differential equation with nonlocal conditions. In the sequel, X = L2[0, π]
and A : D(A) ⊂ X → X is the operator Ax = x′′ with domain D(A) = {x ∈
X : x′′ ∈ X, x(0) = x(π) = 0}. It is well known that A is the infinitesimal
generator of an analytic semigroup (T (t))t≥0 on X. Furthermore, A has discrete
spectrum with eigenvalues of the form −n2, n ∈ N, and corresponding normalized



IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS 111

eigenfunctions given by zn(x) = ( 2
π
)

1
2 sin(nx); the set of functions {zn : n ∈ N}

is an orthonormal basis for X and T (t)x =
∑∞

n=1 e−n2t〈x, zn〉zn for every x ∈ X
and all t ≥ 0. It follows from this last expression that (T (t))t≥0 is a compact
semigroup on X and that ‖T (t)‖ ≤ e−t for every t ≥ 0.

As phase space, we choose the space B = PC0 × L2(ρ,X), see Example 2.3,
and we assume that the conditions (g5) and (g7) in [27] are verified. Under these
conditions, B is a fading memory space, and as consequence, there exists K > 0
such that supt≥0{M(t), K(t)} ≤ K.

Consider the delayed impulsive partial differential equation with nonlocal con-
ditions

∂

∂t
w(t, ξ) =

∂2

∂ξ2
w(t, ξ) +

∫ t

−∞
a(t, s− t)w(s, ξ)ds + b(t, w(ρ(t), ξ)), (4.1)

w(t, 0) =w(t, π) = 0, t ≥ 0, (4.2)

w(s, ξ) =
∞∑
i=1

Liw(ti + s, ξ) + ϕ(s, ξ), s ≤ 0, ξ ∈ [0, π] (4.3)

∆w(ti, ·) =w(t+i , ·)− w(·, t−i ) =

∫ π

0

pi(ξ, w(ti, s))ds, (4.4)

for t ≥ 0 and ξ ∈ [0, π], and where (Li)i∈N, (ti)i∈N are sequences of real numbers
and ϕ ∈ B.

To treat this system in the abstract form (1.1)–(1.3), we assume the following
conditions:

(a) Assume
∑∞

i=1 |Li|h(ti) < ∞, the functions ρ : [0,∞) → [0,∞), a : R2 → R

are continuous and ρ(t) ≤ t and L1(t) =
( ∫ 0

−∞
a2(t,s)
ρ(s)

ds
) 1

2
< ∞, for every

t ≥ 0.
(b) Assume b : [0,∞)×R→ R is continuous and that there exists a continuous

function L2 : [0,∞) → [0,∞) such that |b(t, x)| ≤ L2(t)|x| for every t ≥ 0
and x ∈ R.

(c) The functions g : BPC0
h(X) → B, f : [0,∞) × B × X → X by g(u, ϕ) =

ϕ +
∑∞

i=1 Liuti and

f(t, ψ, x)(ξ) =

∫ 0

−∞
a(t, s)ψ(s, ξ)ds + b(t, x(ρ(t), ξ)).

(d) The functions pi : [0, π] × R → R, i ∈ N, are continuous and there are
positive constants Li such that

|pi(ξ, s)− pi(ξ, s)| ≤ Li|s− s|, ξ ∈ [0, π], s, s ∈ R.

By defining the operator Ii : X → X by Ii(x)(ξ) =
∫ π

0
pi(ξ, x(0, s))ds, i ∈ N,

ξ ∈ [0, π], we can transform system (4.1)-(4.4) into the abstract system (1.1)-(1.3).
Moreover, it is easy to see that f, g are continuous,

‖f(t, ψ, x)‖ ≤ L1(t)‖ψ‖B + L2(t)‖x‖, for all (t, ψ, x) ∈ [0,∞)

and g verifies conditions H3 with Lg : K∑∞
i=1 Lih(ti).

The next result is a direct consequence from Theorem 3.3. We omit the proof.
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Proposition 4.1. If K∑∞
i=1 Lih(ti) + (1 + 2K)

∫∞
0

(L1(s) + L2(s))ds
+K∑∞

i=1 Li < 1, then there exists a mild solution of (4.1)-(4.4).
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