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Abstract. The main aim of this paper is to give a complete proof to the open
inequality with power-exponential functions

aea + beb ≥ aeb + bea,

which holds for all positive real numbers a and b. Notice that this inequality

was proved in [1] for only a ≥ b ≥ 1
e

and
1
e
≥ a ≥ b. In addition, other two

open inequalities with power-exponential functions are proved, and three new
conjectures are presented.

1. Introduction

We conjectured in [1] and [3] that e is the greatest possible value of a positive
real number r such that the following inequality holds for all positive real numbers
a and b:

ara + brb ≥ arb + bra. (1.1)

In addition, we proved in [1] the following results related to this inequality.

Theorem A. If (1.1) holds for r = r0 > 0, then it holds for all 0 < r ≤ r0.

Theorem B. If max{a, b} ≥ 1, then (1.1) holds for any r > 0.

Theorem C. If r > e, then (1.1) does not hold for all positive real numbers a
and b.
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Theorem D. If a and b are positive real numbers such that either a ≥ b ≥ 1

r
or

1

r
≥ a ≥ b, then (1.1) holds for all 0 < r ≤ e.

2. Main result

In order to give a complete answer to our problem, we only need to prove the
following theorem.

Theorem 2.1. If a and b are positive real numbers such that 0 < b ≤ 1

e
≤ a ≤ 1,

then
aea + beb ≥ aeb + bea.

The proof of Theorem 2.1 relies on the following four lemmas.

Lemma 2.1. If x > 0, then

xx − 1 ≥ (x− 1)ex−1.

Lemma 2.2. If 0 < y ≤ 1, then

1− ln y ≥ e1−y.

Lemma 2.3. If x ≥ 1, then

ln x ≥ (x− 1)e1−x.

Lemma 2.4. If x ≥ 1 and 0 < y ≤ 1, then

xy−1 ≥ yx−1.

Notice that Lemma 2.1 is a particular case of Theorem 2.1, namely the case

where a =
x

e
and b =

1

e
.

On the other hand, from Theorem B and its proof in [1], it follows that a, b ∈
(0, 1] is the main case of the inequality (1.1). However, we conjecture that the
following sharper inequality still holds in the same conditions:

Conjecture 2.1. If a, b ∈ (0, 1] and r ∈ (0, e], then

2
√

arabrb ≥ arb + bra.

In the particular case r = 2, we get the elegant inequality

2aabb ≥ a2b + b2a, (2.1)

which is also an open problem. A similar inequality is

2aabb ≥ (ab)a + (ab)b, (2.2)

where a, b ∈ (0, 1]. Notice that a proof of (2.2) is given in [2]. It seems that this
inequality can be extended to three variables, as follows.

Conjecture 2.2. If a, b, c ∈ (0, 1], then

3aabbcc ≥ (abc)a + (abc)b + (abc)c.
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3. Proof of Lemmas

Proof of Lemma 2.1. Write the desired inequality as f(x) ≥ 0, where

f(x) = x ln x− ln[1 + (x− 1)ex−1]

has the derivatives

f ′(x) = 1 + ln x− xex−1

1 + (x− 1)ex−1

and

f ′′(x) =
x(x− 1)ex−1(ex−1 − 1) + (ex−1 − 1)2

x[1 + (x− 1)ex−1]2
.

Since (x − 1)(ex−1 − 1) ≥ 0, we have f ′′(x) ≥ 0, and hence f ′(x) is strictly
increasing for x > 0. Since f ′(1) = 0, it follows that f ′(x) < 0 for 0 < x < 1, and
f ′(x) > 0 for x > 1. Therefore, f(x) is strictly decreasing on (0, 1] and strictly
increasing on [1,∞), and then f(x) ≥ f(1) = 0. ¤
Proof of Lemma 2.2. We need to show that f(y) ≥ 0 for 0 < y ≤ 1, where

f(y) = 1− ln y − e1−y.

Write the derivative in the form

f ′(y) =
e1−yg(y)

y
,

where

g(y) = y − ey−1.

Since g′(y) = 1−ey−1 > 0 for 0 < y < 1, g(y) is strictly increasing, g(y) ≤ g(1) =
0, f ′(y) < 0 for 0 < y < 1, f(y) is strictly decreasing, and hence f(y) ≥ f(1) =
0. ¤
Proof of Lemma 2.3. Since

e1−x =
1

ex−1
≤ 1

1 + (x− 1)
=

1

x
,

it suffices to show that f(x) ≥ 0 for x ≥ 1, where

f(x) = ln x +
1

x
− 1.

This is true because f ′(x) =
x− 1

x2
≥ 0, f(x) is strictly increasing, and hence

f(x) ≥ f(1) = 0. ¤
Proof of Lemma 2.4. Consider the nontrivial case when 0 < y < 1. For fixed
y ∈ (0, 1), we write the desired inequality as f(x) ≥ 0 for x ≥ 1, where

f(x) = (y − 1) ln x− (x− 1) ln y.

We have

f ′(x) =
y − 1

x
− ln y ≥ y − 1− ln y.
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Let us denote g(y) = y − 1 − ln y. Since g′(y) = 1 − 1

y
< 0, g(y) is strictly

decreasing on (0, 1), and then g(y) > g(1) = 0. Therefore, f ′(x) > 0, f(x) is
strictly increasing for x ≥ 1, and hence f(x) ≥ f(1) = 0. ¤

4. Proof of Theorem 2.1

Making the substitutions x = ea and y = eb, we have to show that

(xx − yx)e−x + (yy − xy)e−y ≥ 0 (4.1)

for 0 < y ≤ 1 ≤ x ≤ e. By Lemma 2.1, we have

xx ≥ 1 + (x− 1)ex−1

and
yy ≥ 1 + (y − 1)ey−1.

Therefore, it suffices to show that

(1 + (x− 1)ex−1 − yx)e−x + (1 + (y − 1)ey−1 − xy)e−y ≥ 0,

which is equivalent to

x + y − 2 + (1− yx)e1−x + (1− xy)e1−y ≥ 0.

For fixed y ∈ (0, 1], write this inequality as f(x) ≥ 0, where

f(x) = x + y − 2 + (1− yx)e1−x + (1− xy)e1−y, 1 ≤ x ≤ e.

If f ′(x) ≥ 0, then f(x) ≥ f(1) = 0, and the conclusion follows. We have

f ′(x) = 1− e1−x − yxy−1e1−y + yx(1− ln y)e1−x

and, by Lemma 2.2, it follows that

f ′(x) ≥ 1− e1−x − yxy−1e1−y + yxe2−x−y.

For fixed x ∈ [1, e], let us denote

g(y) = 1− e1−x − yxy−1e1−y + yxe2−x−y, 0 < y ≤ 1.

We need to show that g(y) ≥ 0. Since g(1) = 0, it suffices to prove that g′(y) ≤ 0
for 0 < y ≤ 1. We have

ey−1g′(y) = (y − 1)xy−1 − yxy−1 ln x + (xyx−1 − yx)e1−x

and, by Lemma 2.3, we get

ey−1g′(y) ≤ (y − 1)xy−1 + (yxy−1 − yxy + xyx−1 − yx)e1−x.

If yxy−1 − yxy + xyx−1 − yx ≤ 0, then clearly g′(y) ≤ 0. Consider now that

yxy−1 − yxy + xyx−1 − yx > 0. Since e1−x ≤ 1

x
, we have

ey−1g′(y) ≤ (y − 1)xy−1 +
yxy−1 − yxy + xyx−1 − yx

x

=
(x− y)(yx−1 − xy−1)

x
,

and, by Lemma 2.4, it follows that g′(y) ≤ 0. Thus, the proof is completed. ¤
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5. Other related inequalities

We posted in [1] the following two open inequalities.

Proposition 5.1. If a, b are nonnegative real numbers satisfying a + b = 2, then

a3b + b3a ≤ 2,

with equality for a = b = 1.

Proposition 5.2. If a, b are nonnegative real numbers satisfying a + b = 1, then

a2b + b2a ≤ 1,

with equality for a = b =
1

2
, for a = 0 and b = 1, and for a = 1 and b = 0.

A complicated solution of Proposition 5.1 was given by L. Matejicka in [4]. We
will give further a much simpler proof of Proposition 5.1, and a proof of Propo-
sition 5.2. However, it seems that the following generalization of Proposition 5.2
holds.

Conjecture 5.1. Let a, b be nonnegative real numbers satisfying a + b = 1. If
k ≥ 1, then

a(2b)k

+ b(2a)k ≤ 1.

6. Proof of Proposition 5.1

Without loss of generality, assume that a ≥ b. For a = 2 and b = 0, the desired
inequality is obvious. Otherwise, using the substitutions a = 1+x and b = 1−x,
0 ≤ x < 1, we can write the inequality as

e3(1−x) ln(1+x) + e3(1+x) ln(1−x) ≤ 2.

Applying Lemma 6.1 below, it suffices to show that f(x) ≤ 2, where

f(x) = e3(1−x)(x−x2

2
+x3

3
) + e−3(1+x)(x+x2

2
+x3

3
).

If f ′(x) ≤ 0 for x ∈ [0, 1), then f(x) is decreasing, and hence f(x) ≤ f(0) = 2.
Since

f ′(x) =(3− 9x +
15

2
x2 − 4x3)e3x− 9x2

2
+ 5x3

2
−x4

−(3 + 9x +
15

2
x2 + 4x3)e−3x− 9x2

2
− 5x3

2
−x4

,

f ′(x) ≤ 0 is equivalent to

e−6x−5x3 ≥ 6− 18x + 15x2 − 8x3

6 + 18x + 15x2 + 8x3
.

For the nontrivial case 6−18x+15x2−8x3 > 0, we rewrite the required inequality
as g(x) ≥ 0, where

g(x) = −6x− 5x3 − ln(6− 18x + 15x2 − 8x3) + ln(6 + 18x + 15x2 + 8x3).
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If g′(x) ≥ 0 for x ∈ [0, 1), then g(x) is increasing, and hence g(x) ≥ g(0) = 0.
From

1

3
g′(x) = −2− 5x2 +

(6 + 8x2)− 10x

6 + 15x2 − (18x + 8x3)
+

(6 + 8x2) + 10x

6 + 15x2 + (18x + 8x3)
,

it follows that g′(x) ≥ 0 is equivalent to

2(6 + 8x2)(6 + 15x2)− 20x(18x + 8x3) ≥ (2 + 5x2)[(6 + 15x2)2 − (18x + 8x3)2].

Since

(6 + 15x2)2 − (18x + 8x3)2 ≤ (6 + 15x2)2 − 324x2 − 288x4 ≤ 4(9− 36x2),

it suffices to show that

(3 + 4x2)(6 + 15x2)− 5x(18x + 8x3) ≥ (2 + 5x2)(9− 36x2).

This reduces to 6x2 + 200x4 ≥ 0, which is clearly true. ¤
Lemma 6.1. If t > −1, then

ln(1 + t) ≤ t− t2

2
+

t3

3
.

Proof. We need to prove that f(t) ≥ 0, where

f(t) = t− t2

2
+

t3

3
− ln(1 + t).

Since

f ′(t) =
t3

t + 1
,

f(t) is decreasing on (−1, 0] and increasing on [0,∞). Therefore, f(t) ≥ f(0) =
0. ¤

7. Proof of Proposition 5.2

Without loss of generality, assume that

0 ≤ b ≤ 1

2
≤ a ≤ 1.

Applying Lemma 7.1 below for c = 2b, 0 ≤ c ≤ 1, we get

a2b ≤ (1− 2b)2 + 4ab(1− b)− 2ab(1− 2b) ln a,

which is equivalent to

a2b ≤ 1− 4ab2 − 2ab(a− b) ln a. (7.1)

Similarly, applying Lemma 7.2 for d = 2a− 1, d ≥ 0, we get

b2a−1 ≤ 4a(1− a) + 2a(2a− 1) ln(2a + b− 1),

which is equivalent to

b2a ≤ 4ab2 + 2ab(a− b) ln a. (7.2)

Adding up (7.1) and (7.2), the desired inequality follows. ¤
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Lemma 7.1. If 0 < a ≤ 1 and c ≥ 0, then

ac ≤ (1− c)2 + ac(2− c)− ac(1− c) ln a,

with equality for a = 1, for c = 0, and for c = 1.

Proof. Using the substitution a = e−x, x ≥ 0, we need to prove that f(x) ≥ 0,
where

f(x) = (1− c)2ex + c(2− c) + c(1− c)x− e(1−c)x,

f ′(x) = (1− c)[(1− c)ex + c− e(1−c)x].

If f ′(x) ≥ 0 for x ≥ 0, then f(x) is increasing, and f(x) ≥ f(0) = 0. In order
to prove this, we consider two cases. For 0 ≤ c ≤ 1, by the weighted AM-GM
inequality, we have

(1− c)ex + c ≥ e(1−c)x,

and hence f ′(x) ≥ 0. For c ≥ 1, by the weighted AM-GM inequality, we have

(c− 1)ex + e(1−c)x ≥ c,

and hence f ′(x) ≥ 0, too. ¤

Lemma 7.2. If 0 ≤ b ≤ 1 and d ≥ 0, then

bd ≤ 1− d2 + d(1 + d) ln(b + d),

with equality for d = 0, and for b = 0, d = 1.

Proof. Excepting the equality cases, from

1− d + d ln(b + d) ≥ 1− d + d ln d ≥ 0,

we get 1− d + d ln(b + d) > 0. So, we may write the required inequality as

ln(1 + d) + ln[1− d + d ln(b + d)] ≥ d ln b.

Using the substitution b = e−x − d, − ln(1 + d) ≤ x ≤ − ln d, we need to prove
that f(x) ≥ 0, where

f(x) = ln(1 + d) + ln(1− d− dx) + dx− d ln(1− dex).

Since

f ′(x) =
d2(ex − 1− x)

(1− d− dx)(1− dex)
≥ 0,

f(x) is increasing, and hence

f(x) ≥ f(− ln(1 + d)) = ln[1− d2 + d(1 + d) ln(1 + d)].

To complete the proof, we only need to show that −d2 + d(1 + d) ln(1 + d) ≥ 0;
that is,

(1 + d) ln(1 + d) ≥ d.

This inequality follows from ex ≥ 1 + x for x =
−d

1 + d
. ¤
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