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Abstract. According to semigroup theories and Sadovskii fixed point the-
orem, this paper is mainly concerned with the existence of solutions for an
impulsive neutral differential and integrodifferential systems with nonlocal con-
ditions in Banach spaces. As an application of this main theorem, a practical
consequence is derived for the sub-linear growth case. In the end, an example
is also given to show the application of our result.

1. Introduction

Many evolution process are characterized by the fact that at certain moments
of time they experience a change of state abruptly. These processes are subject
to short-term perturbations whose duration is negligible in comparison with the
duration of the process. Consequently, it is natural to assume that these per-
turbations act instantaneously, that is, in the form of impulses. It is known, for
example, that many biological phenomena involving thresholds, bursting rhythm
models in medicine and biology, optimal control model in economics, pharma-
cokinetics and frequency modulated systems, do exhibit impulsive effects. Thus
differential equations involving impulsive effects appear as a natural description
of observed evolution phenomena of several real world problems. For more details
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on this theory and on its applications we refer to the monographs of Lakshmikan-
tham et al. [14], and Samoilenko and Perestyuk [20] for the case of ordinary
impulsive system and [5, 11, 12, 15, 17, 18, 21] for partial differential and partial
functional differential equations with impulses.

The starting point of this paper is the work in papers [9, 10]. Especially,
authors in [10] investigated the existence of solutions for the system

d

dt
[x(t) + F (t, x(t), x(b1(t)), . . . , x(bm(t)))] + Ax(t)

= G(t, x(t), x(a1(t)), . . . , x(an(t))), 0 ≤ t ≤ a,

x(0) + g(x) = x0,

by using fractional powers of operators and Sadovskii fixed point theorem. And
in [9], authors studied the following neutral partial differential equations of the
form

d

dt
[x(t)− F (t, x(h1(t)))] = −A[x(t)− F (t, x(h1(t)))] + G(t, x(h2(t))), t ∈ J

x(0) + g(x) = x0 ∈ X,

by using fractional powers of operators and Banach contraction fixed point theo-
rem. Motivated by above mentioned works [9, 10], the main purpose of this paper
is to prove the existence of mild solutions for the following impulsive neutral par-
tial differential equations in a Banach space X:

d

dt
[x(t)− F (t, x(t), x(b1(t)), . . . , x(bm(t)))] = A[x(t)− F (t, x(t), x(b1(t)), . . . , x(bm(t)))]

+G(t, x(t), x(a1(t)), . . . , x(an(t))), t ∈ J = [0, b], t 6= tk, k = 1, 2, . . . , m,
(1.1)

∆x|t=tk = Ik(x(t−k )), k = 1, 2, . . . , m, (1.2)

x(0) + g(x) = x0 ∈ X, (1.3)

where the linear operator A generates an analytic semigroup {T (t)}t≥0, ∆x|t=tk =
Ik(x(t−k )), where x(t+k ) and x(t−k ) represent the right and left limits of x(t) at
t = tk, respectively. F, G and g are given functions to be specified later.

Finally in section 3, we prove the existence results for the following impulsive
neutral integrodifferential equations of the form

d

dt
[x(t)− F (t, x(t), x(b1(t)), . . . , x(bm(t)))] = A[x(t)− F (t, x(t), x(b1(t)), . . . , x(bm(t)))]

+

∫ t

0

K(t, s)G(s, x(s), x(a1(s)), . . . , x(an(s)))ds, (1.4)

t ∈ J = [0, b], t 6= tk, k = 1, 2, . . . , m,

with the conditions (1.2)-(1.3), where A, F, G, Ik are as defined in (1.1)-(1.3)
and K : D → R, D = {(t, s) ∈ J × J : t ≥ s}.

The nonlocal Cauchy problem was considered by Byszewski [3] and the impor-
tance of nonlocal conditions in different fields has been discussed in [3] and [8]
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and the references therein. For example, in [8] the author described the diffusion
phenomenon of a small amount of gas in a transparent tube by using the formula

g(x) =

p∑
i=0

Cix(ti),

where Ci, i = 0, 1, . . . , p are given constants and 0 < t1 < t2 < · · · < tp < b.
In this case the above equation allows the additional measurement at ti, i =
0, 1, . . . , p. In the past several years theorems about existence, uniqueness of dif-
ferential and impulsive functional differential abstract evolution Cauchy problem
with nonlocal conditions have been studied by Byszewski and Lakshmikantham
[4], by Akca et al. [1], by Anguraj et al. [2], by Fu et al. [9, 10] and by Chang et
al. [6] and the references therein.

This paper has four sections. In the next section we recall some basic definitions
and preliminary facts which will be used throughout this paper. In section 3 we
prove the existence results for the system (1.1)-(1.3) without assume the bound-
edness condition on Ik, k = 1, 2, . . . , m, and also we prove the existence results
for an impulsive neutral integrodifferential system (1.4) with the conditions (1.2)-
(1.3). As an immediate result of the obtained theorem, a practical consequence
is derived for the sub-linear growth of impulsive functions Ik, k = 1, 2, . . . , m
and the nonlocal initial function g. Finally, in section 4 an example is presented
to illustrate the application of the obtained results. This paper extends and
generalize the results of [9, 10].

2. Preliminaries

In this section, we introduce some results, notations and lemma which are
needed to establish our main results.

Let X be a Banach space provided with norm ‖ · ‖. Let A : D(A) → X is the
infinitesimal generator of a compact analytic semigroup of uniformly bounded
linear operator T (t) on X. It well known that there exist M ≥ 1 and w ∈ R
such that ‖T (t)‖ ≤ Mewt for every t ≥ 0. If {T (t)}t≥0 is uniformly bounded and
analytic semigroup such that 0 ∈ ρ(A), then it is possible to define the fractional
power (−A)α, for 0 < α ≤ 1, as closed linear operator on its domain D(−A)α.
Furthermore, the subspace D(−A)α is dense in X and the expression

‖x‖α = ‖(−A)αx‖, x ∈ D(−A)α,

defines a norm on D(−A)α. For more details of fractional power of operators and
semigroup theory, we refer Pazy [16].

From the above theory, we define the following lemma.

Lemma 2.1 ([10, 16]). The following properties hold:

(i) If 0 < β < α ≤ 1, then Xα ↪→ Xβ and the imbedding is compact whenever
the resolvent operator of A is compact.

(ii) For the every 0 < α ≤ 1, there exists Cα > 0 such that

‖(−A)αT (t)‖ ≤ Cα

tα
, 0 < t <≤ b.
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We need the following fixed point theorem due to Sadovskii [19].

Theorem 2.1. (Sadovskii) Let P be a condensing operator on a Banach space,
that is, P is continuous and takes bounded sets into bounded sets, and let α(P (B)) ≤
α(B) for every bounded set B of X with α(B) > 0 of P (H) ⊂ H for a convex,
closed, and bounded set H of X, then P has fixed point in H ( where α(·) denotes
Kuratowski’s measure of noncompactness).

3. Existence results

In order to define the solution of the problem (1.1)-(1.3), we consider the fol-
lowing space

Ω = {x : J → X, xk ∈ C(Jk, X), k = 0, 1, . . . , m, and there exist x(t−k ) and x(t+k ),

k = 0, 1, 2, . . . , m, with x(t−k ) = x(tk), x(0) + g(x) = x0},
which is a Banach space with the norm

‖x‖Ω = max{‖xk‖Jk
, k = 0, 1, . . . , m},

where xk is the restriction of x to Jk = (tk, tk+1], k = 0, 1, . . . , m.
Now, we define the mild solution for the system (1.1)-(1.3).

Definition 3.1. A function x ∈ Ω is said to be a mild solution of the system
(1.1)-(1.3) if

(i) x(0) + g(x) = x0;
(ii) ∆x|t=tk = Ik(x(t−k )), k = 1, 2, . . . , m; and

x(t) = T (t)[x0 − g(x)− F (0, x(0), x(b1(0)), . . . , x(bm(0)))]

+ F (t, x(t), x(b1(t)), . . . , x(bm(t))) +

∫ t

0

T (t− s)G(s, x(s), x(a1(s)), . . . , x(an(s)))ds

+
∑

0<tk<t

T (t− tk)Ik(x(t−k )), t ∈ J.

is satisfied.

For the system (1.1)-(1.3) we assume that the following hypotheses are satisfied:

(H1) There exist constant β ∈ (0, 1) such that F : J ×Xm+1 → X is a continu-
ous function, and AβF : J ×Xm+1 → X satisfies the Lipschitz condition,
that is, there exists a constant L > 0 such that

‖AβF (s1, x0, x1, . . . , xm)− AβF (s2, x̄0, x̄1, . . . , x̄m)‖ ≤ L(|s1 − s2|+ max
i=0,1,...,m

‖xi − x̄i‖)
for any 0 ≤ s1, s2 ≤ b, xi, x̄i ∈ X, i = 0, 1, . . . , m. Moreover, there exists
a constant L1 > 0 such that the inequality

‖AβF (t, x0, x1, . . . , , xm)‖ ≤ L1(max{‖xi‖ : i = 0, 1, . . . , m}+ 1),

holds for any (t, x0, x1, . . . , xm) ∈ J ×Xm+1.
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(H2) The function G : J ×Xn+1 → X satisfies the following conditions:
(i) For each t ∈ J , the function G(t, ·) : Xn+1 → X is continuous and for

each (x0, x1, . . . , xn)×Xn+1 the function G(·, x0, x1, . . . , xn) : J → X
is strongly measurable;

(ii) For each positive number r ∈ N , there is a positive function gr ∈
L1(J) such that

sup
‖x0‖,...,‖xn‖≤r

‖G(t, x0, x1, . . . , xn)‖ ≤ gr(t)

and

lim
r→∞

inf

∫ b

0
gr(s)ds

r
= µ < +∞.

(H3) ai, bj ∈ C(J, J), i = 1, 2, . . . , n, j = 1, 2, . . . , m.
(H4) There exist positive constants L2 and L′2 such that

‖g(x)‖ ≤ L2‖x‖Ω + L′2 for all x ∈ Ω,

and g : Ω → X is completely continuous.
(H5) Ik : X → X is completely continuous and there exist continuous nonde-

creasing functions Lk : R+ → R+ such that for each x ∈ X

‖Ik(x)‖ ≤ Lk(‖x‖), lim
r→∞

inf
Lk(r)

r
= λk < +∞.

(H6) For each t ∈ J, K(t, s) is measurable on [0, t] and

K(t) = ess sup{|K(t, s)| : 0 ≤ s ≤ t},
is bounded on J . The map t → Kt is continuous from J to L∞(J,R), here
Kt(s) = K(t, s).

Our main result may be presented as the following theorem.

Theorem 3.1. Assume the conditions (H1)-(H5) hold. Then the problem (1.1)-
(1.3) admits at least one mild solution on J provided that

L0 = L[(M + 1)M0] < 1 (3.1)

and

M
[
L2 + M0L1 + µ +

m∑

k=1

λk

]
+ M0L1 < 1, (3.2)

where M0 = ‖A−β‖.
Proof. For the sake of brevity, we rewrite that

(t, x(t), x(b1(t)), . . . , x(bm(t))) = (t, v(t))

and

(t, x(t), x(a1(t)), . . . , x(an(t))) = (t, u(t))
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Consider the operator N : Ω → Ω defined by

N(x) = {ϕ ∈ Ω : ϕ(t) = T (t)[x0 − g(x)− F (0, v(0))] + F (t, v(t)) +

∫ t

0

T (t− s)G(s, u(s))ds

+
∑

0<tk<t

T (t− tk)Ik(x(t−k ))}, t ∈ J.

Clearly the fixed points of N are mild solutions to (1.1)-(1.3). We shall show that
N satisfies the hypotheses of Theorem 2.1. For better readability we break the
proof into sequence of steps.
Step 1. There exists a positive integer r ∈ N such that N(Br) ⊂ Br, where
Br = {x ∈ Ω : ‖x‖ ≤ r, 0 ≤ t ≤ b}.

For each positive number r, Br is clearly a bounded closed convex set in Ω.
We claim that there exists a positive r such that N(Br) ⊂ Br, where N(Br) =
∪x∈BrN(x). If it is not true, then for each positive integer r, there exist the
functions xr(·) ∈ Br and ϕr(·) ∈ N(xr), but ϕr(·) /∈ Br, that is ‖ϕr(t)‖ > r for
some t(r) ∈ J , where t(r) denotes t is independent of r. However, on the other
hand, we have

r < ‖ϕr(t)‖

= ‖T (t)[x0 − g(xr)− F (0, vr(0))] + F (t, vr(t)) +

∫ t

0

T (t− s)G(s, ur(s))ds

+
∑

0<tk<t

T (t− tk)Ik(xr(t
−
k ))‖

≤ ‖T (t)[x0 − g(xr)− A−βAβF (0, vr(0))]‖+ ‖A−βAβF (t, vr(t))‖

+

∫ t

0

‖T (t− s)G(s, ur(s))‖ds +
∑

0<tk<t

‖T (t− tk)Ik(xr(t
−
k ))‖

≤ M [‖x0‖+ L2r + L′2 + M0L1(r + 1)] + M0L1(r + 1) + M

∫ t

0

gr(s)ds + M

m∑

k=1

Lk(r)

≤ M [‖x0‖+ L2r + L′2] + (M + 1)M0L1(r + 1) + M

∫ b

0

gr(s)ds + M

m∑

k=1

Lk(r).

Dividing on both sides by r and taking the lower limit limit as t → +∞, we get

M
[
L2 + M0L1 + µ +

m∑

k=1

λk

]
+ M0L1 ≥ 1.

This is a contradiction to (3.2). Hence for some positive integer r,N(Br) ⊆ Br.
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Step 2. Next we show that the operator N = N1 + N2 ( is condensing), N1 is
contraction and N2 is compact.

The operators N1, N2 are defined on Br respectively by

(N1x)(t) = F (t, v(t))− T (t)F (0, v(0)),

N2x = {ϕ ∈ Ω : ϕ(t) = T (t)[x0 − g(x)] +

∫ t

0

T (t− s)G(s, u(s))ds

+
∑

0<tk<t

T (t− tk)Ik(x(t−k ))}, t ∈ J.

We will verify that N1 is a contraction while N2 is a completely continuous oper-
ator.

To prove that N1 is a contraction, we take x1, x2 ∈ Br arbitrarily. Then for
each t ∈ J and by condition (H1) and (3.1), we have

‖(N1x1)(t)− (N1x2)(t)‖ ≤ ‖F (t, v1(t))− F (t, v2(t))‖+ ‖T (t)[F (0, v1(0))− F (0, v2(0))]‖
= ‖A−β[AβF (t, v1(t))− AβF (t, v2(t))]‖

+ ‖T (t)A−β[AβF (0, v1(0))− AβF (0, v2(0))]‖
≤ M0L sup

0≤s≤b
‖x1(s)− x2(s)‖+ MM0L sup

0≤s≤b
‖x1(s)− x2(s)‖

≤ (M + 1)M0L sup
0≤s≤b

‖x1(s)− x2(s)‖

≤ L0 sup
0≤s≤b

‖x1(s)− x2(s)‖

Thus

‖N1x1 −N1x2‖ ≤ L0‖x1 − x2‖.

Therefore, by assumption 0 < L0 < 1, we see that N1 is a contraction.
To prove that N2 is compact, firstly we prove that N2 is continuous on Br. Let

{xn}∞n=0 ⊆ Br with xn → x in Br, then by (H2)(i) and (H5)

(i) Ik, k = 1, 2, . . . , m is continuous.
(ii) G(s, un(s)) → G(s, u(s)), n →∞.

Since

‖G(s, un(s))−G(s, u(s))‖ ≤ 2gr(s).

We have by the dominated convergence theorem,

‖N2xn −N2x‖ = sup
0≤t≤b

‖T (t)[g(x)− g(xn)] +

∫ t

0

T (t− s)G(s, un(s))−G(s, u(s))]ds

+
∑

0<tk<t

T (t− tk)[Ik(xn(t−k ))− Ik(x(t−k ))]‖
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≤ M‖g(xn)− g(x)‖+ M

∫ b

0

‖G(s, un(s))−G(s, u(s))‖ds

+ M
∑

0<tk<t

‖Ik(xn(t−k ))− Ik(x(t−k ))‖

→ 0 as n →∞.

Thus, N2 is continuous.
Next, we prove that {N2x : x ∈ Br} is a family of equicontinuous functions.

Let x ∈ Br and τ1, τ2 ∈ J . Then if 0 < τ1 ≤ τ2 ≤ b and ϕ ∈ N2(x), then for each
t ∈ J , we have

ϕ(t) = T (t)[x0 − g(x)] +

∫ t

0

T (t− s)G(s, u(s))ds +
∑

0<tk<t

T (t− tk)Ik(x(t−k ))

Then

‖ϕ(τ2)− ϕ(τ1)‖ ≤ ‖T (τ2)− T (τ1)‖‖x0 − g(s)‖

+

∫ τ1−ε

0

‖T (τ2 − s)− T (τ1 − s)‖‖G(s, u(s))‖ds

+

∫ τ1

τ1−ε

‖T (τ2 − s)− T (τ1 − s)‖‖G(s, u(s))‖ds

+

∫ τ2

τ1

‖T (τ2 − s)‖‖G(s, u(s))‖ds

+
∑

0<tk<τ1

‖T (τ2 − tk)− T (τ1 − tk)‖‖Ik(x(t−k ))‖

+
∑

τ1≤tk<τ2

‖T (τ2 − tk)‖‖Ik(x(t−k ))‖.

The right-hand side is independent of x ∈ Br and tends to zero as τ2 − τ1 → 0,
since the compactness of {T (t)}t≥0 implies the continuity in the uniform operator
topology. Similarly, using the ompactness of the set g(Br) we can prove that the
functions N2x, x ∈ Br are equicontinuous at t = 0. Hence N2 maps Br into a
family of equicontinuous functions.

It remains to prove that (N2Br)(t) is relatively compact for each t ∈ J , where
(N2Br)(t) = {ϕ(t) : ϕ ∈ N2(Br)}, t ∈ J .

Obviously, by condition (H4), (N2Br)(t) is relatively compact in Ω for t = 0.
Let 0 < t ≤ b be fixed and 0 < ε < t. For x ∈ Br and ϕ ∈ N2(x), we have

ϕ(t) = T (t)[x0 − g(x)] +

∫ t

0

T (t− s)G(s, u(s))ds +
∑

0<tk<t

T (t− tk)Ik(x(t−k )), t ∈ J.
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Define

ϕε(t) = T (t)[x0 − g(x)] +

∫ t−ε

0

T (t− s)G(s, u(s))ds +
∑

0<tk<t−ε

T (t− tk)Ik(x(t−k )), t ∈ J

= T (t)[x0 − g(x)] + T (ε)

∫ t−ε

0

T (t− s− ε)G(s, u(s))ds

+ T (ε)
∑

0<tk<t−ε

T (t− tk − ε)Ik(x(t−k )).

Since {T (t)}t≥0 is compact, the set Vε(t) = {ϕε(t) : ϕ ∈ N2(Br)} is relatively
compact in Ω for every ε, 0 < ε < t. Moreover, for every ϕ ∈ N2(Br),

‖ϕ(t)− ϕε(t)‖ ≤
∫ t

t−ε

‖T (t− s)G(s, u(s))‖ds +
∑

t−ε<tk<

‖T (t− tk)Ik(x(t−k ))‖

≤ M

∫ t

t−ε

gr(s)ds + M
∑

t−ε<tk<t

Lk(r).

Therefore, letting ε → 0, we see that, there are relatively compact sets arbitrarily
close to the set {ϕ(t) : ϕ ∈ N2(Br)} is relatively compact in Ω.

As a consequence of the above steps and the Arzela-Ascoli theorem, we can
conlude that N2 is a compact operator. These arguments enable us to conclude
that N = N1 + N2 is a condensing map on Br, and by the fixed point theorem
of Sadovskii there exists a fixed point x(·) for N on Br. Therefore, the nonlocal
system (1.1)-(1.3) has a mild solution. The proof is now completed. ¤

As an immediate result of Theorem 3.1, we can obtain the following corollary
when g and Ik have sub-linear growth.

Corollary 3.1. Suppose conditions of (H4)-(H5) in Theorem 3.1 are replaced by
the following:

(H4′) There exist positive constants L2, L
′
2 and θ ∈ [0, 1) such that

‖g(x)‖ ≤ L2‖x‖θ
Ω + L′2, for x ∈ Ω

and g : Ω → X is completely continuous;
(H5′) Ik ∈ C(X,X) and there exist nondecreasing functions Lk : R+ → R+ and

positive constants ck, dk and σ ∈ [0, 1) such that

‖Ik(x)‖ ≤ ck‖x‖σ + dk.

Then the problem (1.1)-(1.3) has at least one mild solution in J provided that
[
(M + 1)M0L1 + Mµ

]
< 1

and
[
(M + 1)M0L

]
< 1.
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Proof. In this case, we have Lk(‖x‖) = ckr
σ +dk and ‖g(x)‖ ≤ L2r

θ +L′2, x ∈ Br

in the proof of Theorem 3.1. Thus (3.1) and (3.2) are reduced to
[
(M +1)M0L1+

Mµ
]

< 1 and
[
(M + 1)M0L

]
< 1, this completes the proof. ¤

Now, we define the mild solution for the system (1.4) with the conditions (1.2)-
(1.3).

Definition 3.2. A function x ∈ Ω is said to be a mild solution of the system
(1.4) with the conditions (1.2)-(1.3) if

(i) x(0) + g(x) = x0;
(ii) ∆x|t=tk = Ik(x(t−k )), k = 1, 2, . . . , m; and

x(t) = T (t)[x0 − g(x)− F (0, x(0), x(b1(0)), . . . , x(bm(0)))]

+ F (t, x(t), x(b1(t)), . . . , x(bm(t)))

+

∫ t

0

T (t− s)

∫ s

0

K(s, τ)G(τ, x(τ), x(a1(τ)), . . . , x(an(τ)))dτds

+
∑

0<tk<t

T (t− tk)Ik(x(t−k )), t ∈ J.

is satisfied.

Now we state the existence theorem for the system (1.4) with the conditions
(1.2)-(1.3). The proof of the following theorem is similar to Theorem 3.1, so we
omit it.

Theorem 3.2. Assume the conditions (H1)-(H6) hold. Then the problem (1.4)
with the conditions (1.2)-(1.3) admits at least one mild solution on J provided
that

L0 = L[(M + 1)M0] < 1

and

M
[
L2 + M0L1 + b sup

t∈J
K(t)µ +

m∑

k=1

λk

]
+ M0L1 < 1,

where M0 = ‖A−β‖.
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4. An Example

As an application of Theorem 3.1, we consider the following system

∂

∂t

[
z(t, x)−

∫ π

0

b(y, x)z(t sin t, y)dy
]

=
∂2

∂x2

[
z(t, x)−

∫ π

0

b(y, x)z(t sin t, y)dy
]

+ h(t, z(t sin t, x)), 0 ≤ t ≤ b, 0 ≤ x ≤ π, t 6= tk, k = 1, 2, . . . , m,
(4.1)

z(t, 0) = z(t, π) = 0, (4.2)

z(t+k )− z(t−k ) = Ik(z(t−k )), k = 1, 2, . . . , m, (4.3)

z(0, x) +

p∑
i=0

∫ π

0

k(x, y)z(ti, y)dy = z0(x), 0 ≤ x ≤ π, (4.4)

where p is a positive integer, 0 < t0 < · · · < tp < 1, and 0 < t1 < t2 < · · · < tm <
b. The function z0(x) ∈ X = L2([0, π]) and A is defined by

Af = f ′′,

with the domain

D(A) = {f(·) ∈ X : f ′, f ′′ ∈ X, f(0) = f(π) = 0}.
Then A generates a strongly continuous semigroup T (·) which is compact, an-
alytic and self adjoint. Furthermore, A has a discrete spectrum, the eigenval-
ues are −n2, n ∈ N , with the corresponding normalized eigenvectors zn(x) =√

2
π

sin(nx). Then the following properties hold:

(a) If f ∈ D(A), then

Af =
∞∑

n=1

n2 < f, zn > zn.

(b) The operator A
1
2 is given by

A
1
2 f =

∞∑
n=1

n < f, zn > zn,

on the space D(A
1
2 ) = {f(·) ∈ X,

∑∞
n=1 n < f, zn > zn ∈ X}.

We assume that the following conditions hold:

(i) The function b is measurable and∫ π

0

∫ π

0

b2(y, x)dydx < ∞.

(ii) The function ∂
∂x

b(y, x) is measurable, b(y, 0) = b(y, π) = 0, and let

N1 =
[ ∫ π

0

∫ π

0

(
∂

∂x
b(y, x)

)2

dydx
] 1

2
< ∞.

(iii) For the function h : J×R → R the following three conditions are satisfied:
(1) For each t ∈ J, h(t, ·) is continuous.
(2) For each z ∈ X, h(·, z) is measurable.
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(3) There are positive functions h1, h2 ∈ L1(J) such that

|h(t, z)| ≤ h1(t)|z|+ h2(t), ∀ (t, z) ∈ J ×X.

(iv) The function Ik(X, X), k = 1, 2, . . . ,m and there exist nondecreasing
functions Lk ∈ (J,R+), k = 1, 2, . . . , m such that for each x ∈ X

‖Ik(x)‖ ≤ Lk(‖x‖).
We define F, G : X ×X → X and g : Ω → X by

F (t, z) = Z1(z),

G(t, z)(x) = h(t, z(x)),

g(w(t)) =

p∑
i=0

Kw(ti), w ∈ Ω, (Ω is defined in section 3),

respectively, where

Z1(z)(x) =

∫ π

0

b(y, x)z(y)dy

and

K(z)(x) =

∫ π

0

k(x, y)z(y)dy.

Then G satisfies condition (H2) while g verifies (H4) ( noting that K : X → X is
completely continuous). From (i) it is clear that Z1 is a bounded linear operators

on X. Furthermore, Z1(z) ∈ D[A
1
2 ], and ‖A 1

2 Z1‖ ≤ N1. In fact, from the
definition of Z1 and (ii) it follows that

< Z1(z), zn > =

∫ π

0

zn(x)
[ ∫ π

0

b(y, x)z(y)dy
]
dx

=
1

n

√
2

π
< Z(z), cos(nx) >,

where Z is defined by

Z(z)(x) =

∫ π

0

∂

∂x
b(y, x)z(y)dy.

From (ii) we know that Z : X → X is a bounded linear operator with ‖Z‖ ≤
N1. Hence ‖A 1

2 Z1(z)‖ = ‖Z(z)‖, which implies the assertion. Therefore, the
conditions (H1)-(H5) are all satisfied. Hence from Theorem 3.1, system (4.1)-(4.4)
admits a mild solution on J under the above assumptions additionally provided
that (3.1) and (3.2) hold.

Remark 4.1. Differential inclusions plays an important role in characterizing
many social, physical, biological and engineering problems. In particular, the
problems in physics, especially in solid mechanics, where non-monotone and mul-
tivalued constitutive laws lead to differential inclusions. The above results can
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be extended to study the existence results for an impulsive neutral differential in-
clusions with nonlocal conditions in Banach spaces by suitably introducing the
multivalued map defined in [6, 7, 13].
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