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Abstract. In this paper, we establish a sufficient condition for the controlla-
bility of impulsive quasi-linear fractional mixed Volterra-Fredholm-type inte-
grodifferential equations in Banach spaces. The results are obtained by using
Banach contraction fixed point theorem combined with the fractional calculus
theory.

1. Introduction

The purpose of this paper is to establish the sufficient conditions for the con-
trollability of impulsive quasi-linear fractional mixed Volterra-Fredholm-type in-
tegrodifferential equation of the form

cDqx(t) = A(t, x)x(t) + Bu(t) + f

(
t, x(t),

∫ t

0

g(t, s, x(s))ds,

∫ b

0

k(t, s, x(s))ds

)
,

t ∈ J = [0, b], t 6= tk, k = 1, 2, . . . , m, (1.1)

∆x|t=tk = Ik(x(t−k )), k = 1, 2, . . . , m, (1.2)

x(0) = x0, (1.3)
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where the state variable x(·) takes values in a Banach space X and control function
u(·) is given in L2(J, U), a Banach space of admissible control functions with U
as a Banach space. Here 0 < q < 1 and A(t, x) is a bounded linear operator on a
Banach space X. Further f : J × X× X× X→ X, g : Ω× X→ X, k : Ω× X→
X, Ik : X → X, ∆x|t=tk = x(t+k ) − x(t−k ), for all k = 1, 2, . . . , m; 0 = t0 < t1 <
t2 < · · · < tm < tm+1 = b; Ω = {(t, s), 0 ≤ s ≤ t ≤ b}.

Many processes studied in applied sciences are represented by differential equa-
tions. However, the situation is quite different in many physical phenomena that
have a sudden change in their states such as mechanical systems with impact,
biological systems such as heart beats, blood flows, population dynamics, theo-
retical physics, radiophysics, pharmacokinetics, mathematical economy, chemical
technology, electric technology, metallurgy, ecology, industrial robotics, biotech-
nology, medicine and so on. Adequate mathematical models of such processes are
systems of differential equations with impulses. The theory of impulsive differen-
tial and integrodifferential equations is a new and important branch of differential
equations, which has an extensive physical back ground; For instance, we refer
[22, 31, 39, 40, 50, 45, 61].

Fractional differential equations have recently proved to be valuable tools in
the modeling of many phenomena in various fields of science and engineering.
Indeed, we can find numerous applications in viscoelasticity, electrochemistry,
control, porous media, electromagnetic, etc., (see[25, 41, 2, 37, 52]). There has
been significant development in fractional differential equations in recent years;
see the monographs of Kilbas et al. [43], Miller and Ross [53], Podlubny [58],
Lakshmikantham et al. [47] and the papers [44, 38, 51, 3, 64, 4, 6, 7, 10, 23, 29,
46, 48, 49, 56, 65, 66, 19] and the references therein. Among previous research,
little is concerned with differential equations with fractional order with impulses.
Recently, Benchohra et al. [1, 20] establish sufficient conditions for the existence
of solutions for a class of initial value problem for impulsive fractional differen-
tial equations involving the Caputo fractional derivative of order 0 < α ≤ 1 and
1 < α ≤ 2. In [5], B. Ahmad et al. give some existence results for two-point
boundary value problems involving nonlinear impulsive hybrid differential equa-
tions of fractional order 1 < α ≤ 2 where as Mophou [57] discussed the existence
and uniqueness results for impulsive fractional differential equations. Very re-
cently, K. Balachandran et al. [18, 19] studied the existence results for impulsive
fractional differential and integrodifferential equations in Banach spaces by using
standard fixed point theorems.

The existence of solutions of abstract quasi-linear evolution equations have been
studied by several authors; see for instance [8, 11, 35, 62]. Bahuguna [9], Oka
[59] and Oka and Tanaka [60] discussed the existence of solutions of quasilinear
integrodifferential equations in Banach spaces. Kato [42] studied the nonhomoge-
neous evolution equations and Chandrasekaran [28] proved the existence of mild
solutions of the nonlocal Cauchy problem for a nonlinear integrodifferential equa-
tion where as Dhakne and Pachpatte [34] established the existence of a unique
strong solution of a quasi-linear abstract functional integrodifferential equation
in Banach spaces. Recently Balachandran et al. [12, 13] studied the existence
of solutions of nonlocal quasi-linear integrodifferential equations with or without
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impulsive conditions in Banach spaces. Further, Balachandran extends the works
[12, 13] into controllability results [14] with impulsive conditions.

On the other hand, the most important qualitative behaviour of a dynamical
system is controllability. It is well known that the issue of controllability plays
an important role in control theory and engineering [15, 16, 24, 32] because they
have close connections to pole assignment, structural decomposition, quadratic
optimal control and observer design etc., In recent years, the problem of control-
lability for various kinds of fractional differential and integrodifferential equations
have been discussed in [17, 21, 33, 63, 30]. The literature related to controlla-
bility of impulsive fractional integrodifferential equations and controllability of
impulsive quasi-linear integrodifferential equations is limited, to our knowledge,
to the recent works [14, 64]. The study of controllability of impulsive quasi-linear
fractional mixed Volterra-Fredholm-type integrodifferential equations described
in the general abstract form (1.1)-(1.3) is an untreated topic in the literature,
and this fact, is the main motivation of our paper.

2. Preliminaries

In this section, we give some basic definitions and properties of fractional cal-
culus which are used throughout this paper.

Let X be a Banach space and R+ = [0,∞). Suppose f ∈ L1(R+). Let C(J,X)
be the Banach space of continuous functions x(t) with x(t) ∈ X for t ∈ J = [0, b]
and ‖x‖C(J,X) = max

t∈J
‖x(t)‖. Let B(X) denote the Banach space of bounded linear

operators from X into X with the norm ‖A‖B(X) = sup{‖A(y)‖ : |y‖ = 1}. Also
consider the Banach space

PC(J,X) = {x : J → X : x ∈ C((tk, tk+1],X), k = 0, 1, . . . , m and there exist x(t−k )

and x(t+k ), k = 1, 2, . . . , m with x(t−k ) = x(tk)},
with the norm ‖x‖PC = supt∈J ‖x(t)‖. Denote J ′ = [0, b]− {t1, t2, . . . , tm}.
Definition 2.1. The Riemann-Liouville fractional integral operator of order α >
0, of function f ∈ L1(R+) is defined as

Iα
0+f(t) =

1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds

where Γ(·) is the Euler Gamma function.

Definition 2.2. The Riemann-Liouville fractional derivative of order α > 0, n−
1 < α < n, n ∈ N is defined as

(R−L)Dα
0+f(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

0

(t− s)n−α−1f(s)ds,

where the function f(t) has absolutely continuous derivative up to order (n− 1).

Definition 2.3 ([19]). The Caputo fractional derivative of order α > 0, n− 1 <
α < n, is defined as

cDα
0+f(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1fn(s)ds,
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where the function f(t) has absolutely continuous derivatives up to order (n− 1).
If 0 < α < 1, then

cDα
0+f(t) =

1

Γ(1− α)

∫ t

0

f ′(s)
(t− s)α

ds,

where f ′(s) = Df(s) = df(s)
ds

and f is an abstract function with values in X.

For our convenience, let us take cDα
0+ as cDα. For more details on properties

of Iα
0+ and cDα

0+, we refer [19].

Definition 2.4. The impulsive integrodifferential system (1.1)-(1.3) is said to be
controllable on the interval J = [0, b] if for every x0, x1 ∈ X, there exists a control
u ∈ L2(J, U) such that the solution x(·) of (1.1)-(1.3) satisfies x(b) = x1.

It is easy to prove that [19, 38] the equation (1.1)-(1.3) is equivalent to the
following integral equation

x(t) = x0 +
1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1A(s, x)x(s)ds +
1

Γ(q)

∫ t

tk

(t− s)q−1A(s, x)x(s)ds

+
1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1
[
Bu(s) + f

(
s, x(s),

∫ s

0

g(s, τ, x(τ))dτ,

∫ b

0

k(s, τ, x(τ))dτ

) ]
ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1
[
Bu(s) + f

(
s, x(s),

∫ s

0

g(s, τ, x(τ))dτ,

∫ b

0

k(s, τ, x(τ))dτ

) ]
ds

+
∑

0<tk<t

Ik(x(t−k )).

Let Br = {x ∈ X : ‖x‖ ≤ r} for some r > 0. We assume the following conditions
to prove the controllability of the system (1.1)-(1.3).

(H1) A : J × X → B(X) is a continuous bounded linear operator and there

exists a constant L1 > 0, L̃1 > 0 such that

‖A(t, x)− A(t, y)‖B(X) ≤ L1‖x− y‖, for all x, y ∈ Br

and L̃1 = maxt∈J ‖A(t, 0)‖.
(H2) The nonlinear function f : J × X × X × X → X is continuous and there

exist constants L2 > 0, L̃2 > 0, such that

‖f(t, x1, x2, x3)− f(t, y1, y2, y3)‖ ≤ L2

[
‖x1 − y1‖+ ‖x2 − y2‖+ ‖x3 − y3‖

]
, for xi, yi ∈ Br,

i = 1, 2, 3.

and L̃2 = maxt∈J ‖f(t, 0, 0, 0)‖.
(H3) The nonlinear function g : Ω × X → X is continuous and there exist

constants L3 > 0, L̃3 > 0, such that

‖g(t, s, x)− g(t, s, y)‖ ≤ L3||x− y‖, for x, y ∈ Br

and L̃3 = maxt∈J ‖g(t, s, 0)‖.
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(H4) The nonlinear function k : Ω × X → X is continuous and there exist

constants L4 > 0, L̃4 > 0, such that

‖k(t, s, x)− k(t, s, y)‖ ≤ L4||x− y‖, for x, y ∈ Br

and L̃4 = maxt∈J ‖k(t, s, 0)‖.
(H5) The functions Ik : X → X are continuous and there exist constants L5 >

0, L̃5 > 0, such that

‖Ik(x)− Ik(y)‖ ≤ L5‖x− y‖, for x, y ∈ Br and k = 1, 2, . . . , m,

and L̃5 = ‖Ik(0)‖.
(H6) The linear operator W : L2(J, U) → X defined by

Wu =
1

Γ(q)

∫ b

0

(b− s)q−1Bu(s)ds

has an inverse operator W−1, which takes values in L2(J, U)/KerW and
there exists a positive constant K > 0 such that ‖BW−1‖ ≤ K for every
x ∈ Br.

(H7) There exists a constant r > 0 such that

‖x0‖+ (m + 1)γ
[
r(L1r + L̃1 + L2[1 + L3b + L4b]) + (K̃ + L̃2) + L2[L̃3 + L̃4]b

]

+m(L5r + L̃5) ≤ r,

where

K̃ = K
[
‖x1‖+ ‖x0‖+ (m + 1)γ

[
r(L1r + L̃1 + L2[1 + L3b + L4b]) + L2[L̃3 + L̃4]b + L̃2

]

+m(L5r + L̃5)
]

with γ = bq

Γ(q+1)
.

3. Controllability result

In this section, we present and prove the controllability results for the system
(1.1)-(1.3).

Theorem 3.1. If the hypotheses (H1)-(H7) are satisfied, then the impulsive frac-
tional integrodifferential system (1.1)-(1.3) is controllable on J provided

Λ =
[
(m + 1)γ

[
K

[
(m + 1)γ

{
2L1r + L̃1 + L2[1 + L3b + L4b]

}
+ mL5

]
+ (2L1r + L̃1)

+L2[1 + L3b + L4b]
]

+ mL5

]
< 1.
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Proof. Using the hypothesis (H6) for an arbitrary function x(·) define the control

u(t) = W−1
[
x1 − x0 − 1

Γ(q)

∑

0<tk<b

∫ tk

tk−1

(tk − s)q−1A(s, x)x(s)ds− 1

Γ(q)

∫ b

tk

(b− s)q−1A(s, x)x(s)ds

− 1

Γ(q)

∑

0<tk<b

∫ tk

tk−1

(tk − s)q−1f

(
s, x(s),

∫ s

0

g(s, τ, x(τ))dτ,

∫ b

0

k(s, τ, x(τ))dτ

)
ds

− 1

Γ(q)

∫ b

tk

(b− s)q−1f

(
s, x(s),

∫ s

0

g(s, τ, x(τ))dτ,

∫ b

0

k(s, τ, x(τ))dτ

)
ds

−
∑

0<tk<b

Ik(x(t−k ))
]
(t).
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We have to show that when using this control, the operator Φ : PC(J,Br) →
PC(J,Br) defined by

(Φx)(t) = x0 +
1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1A(s, x)x(s)ds +
1

Γ(q)

∫ t

tk

(t− s)q−1A(s, x)x(s)ds

+
1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − η)q−1BW−1
[
x1 − x0 − 1

Γ(q)

∑

0<tk<b

∫ tk

tk−1

(tk − s)q−1A(s, x)x(s)ds

− 1

Γ(q)

∫ b

tk

(b− s)q−1A(s, x)x(s)ds

− 1

Γ(q)

∑

0<tk<b

∫ tk

tk−1

(tk − s)q−1f

(
s, x(s),

∫ s

0

g(s, τ, x(τ))dτ,

∫ b

0

k(s, τ, x(τ))dτ

)
ds

− 1

Γ(q)

∫ b

tk

(b− s)q−1f

(
s, x(s),

∫ s

0

g(s, τ, x(τ))dτ,

∫ b

0

k(s, τ, x(τ))dτ

)
ds

−
∑

0<tk<b

Ik(x(t−k ))
]
(η)dη +

1

Γ(q)

∫ t

tk

(t− η)q−1BW−1
[
x1 − x0

− 1

Γ(q)

∑

0<tk<b

∫ tk

tk−1

(tk − s)q−1A(s, x)x(s)ds− 1

Γ(q)

∫ b

tk

(b− s)q−1A(s, x)x(s)ds

− 1

Γ(q)

∑

0<tk<b

∫ tk

tk−1

(tk − s)q−1f

(
s, x(s),

∫ s

0

g(s, τ, x(τ))dτ,

∫ b

0

k(s, τ, x(τ))dτ

)
ds

− 1

Γ(q)

∫ b

tk

(b− s)q−1f

(
s, x(s),

∫ s

0

g(s, τ, x(τ))dτ,

∫ b

0

k(s, τ, x(τ))dτ

)
ds

−
∑

0<tk<b

Ik(x(t−k ))
]
(η)dη

+
1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1f

(
s, x(s),

∫ s

0

g(s, τ, x(τ))dτ,

∫ b

0

k(s, τ, x(τ))dτ

)
ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1f

(
s, x(s),

∫ s

0

g(s, τ, x(τ))dτ,

∫ b

0

k(s, τ, x(τ))dτ

)
ds

+
∑

0<tk<t

Ik(x(t−k ))
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has a fixed point. Since all the functions involved in the operator are continuous,
therefore Φ is continuous. For our convenience, let us take

G(η, x) = BW−1
[
x1 − x0 − 1

Γ(q)

∑

0<tk<b

∫ tk

tk−1

(tk − s)q−1A(s, x)x(s)ds

− 1

Γ(q)

∫ b

tk

(b− s)q−1A(s, x)x(s)ds

− 1

Γ(q)

∑

0<tk<b

∫ tk

tk−1

(tk − s)q−1f

(
s, x(s),

∫ s

0

g(s, τ, x(τ))dτ,

∫ b

0

k(s, τ, x(τ))dτ

)
ds

− 1

Γ(q)

∫ b

tk

(b− s)q−1f

(
s, x(s),

∫ s

0

g(s, τ, x(τ))dτ,

∫ b

0

k(s, τ, x(τ))dτ

)
ds

−
∑

0<tk<b

Ik(x(t−k ))
]

and

G(η, y) = BW−1
[
x1 − x0 − 1

Γ(q)

∑

0<tk<b

∫ tk

tk−1

(tk − s)q−1A(s, y)y(s)ds

− 1

Γ(q)

∫ b

tk

(b− s)q−1A(s, y)y(s)ds

− 1

Γ(q)

∑

0<tk<b

∫ tk

tk−1

(tk − s)q−1f

(
s, y(s),

∫ s

0

g(s, τ, y(τ))dτ,

∫ b

0

k(s, τ, y(τ))dτ

)
ds

− 1

Γ(q)

∫ b

tk

(b− s)q−1f

(
s, y(s),

∫ s

0

g(s, τ, y(τ))dτ,

∫ b

0

k(s, τ, y(τ))dτ

)
ds

−
∑

0<tk<b

Ik(y(t−k ))
]
.
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From our assumptions, we get

‖G(η, x)‖ ≤ K
[
‖x1‖+ ‖x0‖+

1

Γ(q)

∑

0<tk<b

∫ tk

tk−1

(tk − s)q−1
[‖A(s, x)− A(s, 0)‖+ ‖A(s, 0)‖]

(×)‖x(s)‖ds +
1

Γ(q)

∫ b

tk

(b− s)q−1
[‖A(s, x)− A(s, 0)‖+ ‖A(s, 0)‖]‖x(s)‖ds

+
1

Γ(q)

∑

0<tk<b

∫ tk

tk−1

(tk − s)q−1
[
‖f

(
s, x(s),

∫ s

0

g(s, τ, x(τ))dτ,

∫ b

0

k(s, τ, x(τ))dτ

)

− f(s, 0, 0, 0)‖+ ‖f(s, 0, 0, 0)‖
]
ds

+
1

Γ(q)

∫ b

tk

(b− s)q−1
[
‖f

(
s, x(s),

∫ s

0

g(s, τ, x(τ))dτ,

∫ b

0

k(s, τ, x(τ))dτ

)

− f(s, 0, 0, 0)‖+ ‖f(s, 0, 0, 0)‖
]
ds +

∑

0<tk<b

[‖Ik(x(t−k ))− Ik(0)‖+ ‖Ik(0)‖]
]

≤ K
[
‖x1‖+ ‖x0‖+ (m + 1)γ(L1r + L̃1)r + (m + 1)γ

[
L2r + L2(L3r + L̃3)b

+ L2(L4r + L̃4)b + L̃2

]
+ m[L5r + L̃5]

]

≤ K
[
‖x1‖+ ‖x0‖+ (m + 1)γ

{
r(L1r + L̃1 + L2[1 + L3b + L4b]) + L2(L̃3 + L̃4)b + L̃2

}

+ m[L5r + L̃5]
]

= K̃

and

‖G(η, x)−G(η, y)‖

≤ K
[ 1

Γ(q)

∑

0<tk<b

∫ tk

tk−1

(tk − s)q−1
[‖A(s, x)x(s)− A(s, y)y(s)‖]ds

+
1

Γ(q)

∫ b

tk

(b− s)q−1
[‖A(s, x)x(s)− A(s, y)y(s)‖]ds

+
1

Γ(q)

∑

0<tk<b

∫ tk

tk−1

(tk − s)q−1
[
‖f

(
s, x(s),

∫ s

0

g(s, τ, x(τ))dτ,

∫ b

0

k(s, τ, x(τ))dτ

)

− f

(
s, y(s),

∫ s

0

g(s, τ, y(τ))dτ,

∫ b

0

k(s, τ, y(τ))dτ

)
‖
]
ds

+
1

Γ(q)

∫ b

tk

(b− s)q−1
[
‖f

(
s, x(s),

∫ s

0

g(s, τ, x(τ))dτ,

∫ b

0

k(s, τ, x(τ))dτ

)

− f

(
s, y(s),

∫ s

0

g(s, τ, y(τ))dτ,

∫ b

0

k(s, τ, y(τ))dτ

)
‖
]
ds +

∑

0<tk<b

‖Ik(x(t−k ))− Ik(y(t−k ))‖
]

≤ K
[
(m + 1)γ

{
2L1r + L̃1 + L2[1 + L3b + L4b]

}
+ mL5

]
‖x− y‖.
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First, we show that Φ maps PC(J,Br) into PC(J,Br). Now

‖(Φx)(t)‖ ≤ ‖x0‖+
1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1
[‖A(s, x)− A(s, 0)‖+ ‖A(s, 0)‖]‖x(s)‖ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1
[‖A(s, x)− A(s, 0)‖+ ‖A(s, 0)‖]‖x(s)‖ds

+
1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − η)q−1‖G(η, x)‖dη +
1

Γ(q)

∫ t

tk

(t− η)q−1‖G(η, x)‖dη

+
1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1
[
‖f

(
s, x(s),

∫ s

0

g(s, τ, x(τ))dτ,

∫ b

0

k(s, τ, x(τ))dτ

)

− f(s, 0, 0, 0)‖+ ‖f(s, 0, 0, 0)‖
]
ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1
[
‖f

(
s, x(s),

∫ s

0

g(s, τ, x(τ))dτ,

∫ b

0

k(s, τ, x(τ))dτ

)

− f(s, 0, 0, 0)‖+ ‖f(s, 0, 0, 0)‖
]
ds +

∑
0<tk<t

[‖Ik(x(t−k ))− Ik(0)‖+ ‖Ik(0)‖]

≤ ‖x0‖+ (m + 1)γ
[
r(L1r + L̃1 + L2[1 + L3b + L4b]) + (K̃ + L̃2) + L2[L̃3 + L̃4]b

]

+ m(L5r + L̃5)

≤ r.
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From assumption (H7), one gets ‖(Φx)(t)‖ ≤ r. Therefore Φ maps PC(J,Br)
into PC(J,Br). Moreover, if x, y ∈ PC(J,Br), then

‖(Φx)(t)− (Φy)(t)‖

≤ 1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1
[‖A(s, x)x(s)− A(s, y)y(s)‖]ds +

1

Γ(q)

∫ t

tk

(t− s)q−1
[‖A(s, x)x(s)

− A(s, y)y(s)‖]ds +
1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − η)q−1
[‖G(η, x)−G(η, y)‖]dη

+
1

Γ(q)

∫ t

tk

(t− η)q−1
[‖G(η, x)−G(η, y)‖]dη

+
1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1
[
‖f

(
s, x(s),

∫ s

0

g(s, τ, x(τ))dτ,

∫ b

0

k(s, τ, x(τ))dτ

)

− f

(
s, y(s),

∫ s

0

g(s, τ, y(τ))dτ,

∫ b

0

k(s, τ, y(τ))dτ

)
‖
]
ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1
[
‖f

(
s, x(s),

∫ s

0

g(s, τ, x(τ))dτ,

∫ b

0

k(s, τ, x(τ))dτ

)

− f

(
s, y(s),

∫ s

0

g(s, τ, y(τ))dτ,

∫ b

0

k(s, τ, y(τ))dτ

)
‖
]
ds +

∑
0<tk<t

‖Ik(x(t−k ))− Ik(y(t−k ))‖

≤ 1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1
[
(‖A(s, x)− A(s, 0)‖+ ‖A(s, 0)‖)‖x(s)− y(s)‖+ ‖A(s, x)

− A(s, y)‖‖y(s)‖
]
ds +

1

Γ(q)

∫ t

tk

(t− s)q−1
[
(‖A(s, x)− A(s, 0)‖+ ‖A(s, 0)‖)‖x(s)− y(s)‖

+ ‖A(s, x)− A(s, y)‖‖y(s)‖
]
ds +

1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − η)q−1‖G(η, x)−G(η, y)‖dη

+
1

Γ(q)

∫ t

tk

(t− η)q−1‖G(η, x)−G(η, y)‖dη

+
1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1L2

[
‖x(s)− y(s)‖+

∫ s

0

‖g(s, τ, x(τ))− g(s, τ, y(τ))‖dτ

+

∫ b

0

‖k(s, τ, x(τ))− k(s, τ, y(τ))‖dτ
]
ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1L2

[
‖x(s)− y(s)‖+

∫ s

0

‖g(s, τ, x(τ))− g(s, τ, y(τ))‖dτ

+

∫ b

0

‖k(s, τ, x(τ))− k(s, τ, y(τ))‖dτ
]
ds +

∑
0<tk<t

‖Ik(x(t−k ))− Ik(y(t−k ))‖

≤
[
(m + 1)γ

[
K

[
(m + 1)γ

{
2L1r + L̃1 + L2[1 + L3b + L4b]

}
+ mL5

]
+ (2L1r + L̃1)

+ L2[1 + L3b + L4b]
]

+ mL5

]
‖x− y‖

= Λ‖x− y‖
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Since 0 ≤ Λ < 1, then Φ is a contraction and so by Banach fixed point theo-
rem there exists a unique fixed point x ∈ PC(J,Br) such that (Φx)(t) = x(t).
This fixed point is then a solution of the system (1.1)-(1.3) and clearly, x(b) =
(Φx)(b) = x1, which implies that the system is controllable on J . ¤

4. Nonlocal controllability result

In this section, we discuss the controllability system (1.1)-(1.2) with a nonlocal
condition of the form

x(0) + h(x) = x0. (4.1)

where h : PC(J,X) → X is a given function.
The nonlocal condition can be applied in physics with better effect than the

classical initial condition x(0) = x0. For example, h(x) may be given by

h(x) =
m∑

i=1

cix(ti),

where ci(i = 1, 2, . . . , m) are given constants and 0 < t1 < t2 < · · · < tm < b.
Nonlocal conditions were initiated by Byszewski [26] when he proved the existence
and uniqueness of mild and classical solutions of nonlocal Cauchy problems. As
remarked by Byszewski and Lakshmikantham [27], the nonlocal condition can
be more useful than the standard initial condition to describe some physical
phenomena. For more details on fractional order with nonlocal condition, we
refer [17, 18, 19, 36, 54, 55].

For the study of the controllability system (1.1)-(1.2) with (4.1), we need the
following hypotheses:

(H8) h : PC(J,X) → X is continuous and there exist constants L6 > 0, L̃6 > 0,
such that

‖h(x)− h(y)‖ ≤ L6‖x− y‖PC , for x, y ∈ PC(J,X),

and L̃6 = ‖h(0)‖.
(H8) There exists a constant r > 0 such that

‖x0‖+ (mL5 + L6)r + (mL̃5 + L̃6) + (m + 1)γ
[
r(L1r + L̃1 + L2[1 + L3b + L4b])

+(K̃ + L̃2) + L2[L̃3 + L̃4]b
]
≤ r,

where

K̃ = K
[
‖x1‖+ ‖x0‖+ (mL5 + L6)r + (mL̃5 + L̃6) + (m + 1)γ

[
r(L1r + L̃1

+L2[1 + L3b + L4b]) + L2[L̃3 + L̃4]b + L̃2

]]

with γ = bq

Γ(q+1)
.

Definition 4.1. The impulsive integrodifferential system (1.1)-(1.2) with the con-
dition (4.1) is said to be controllable on the interval J if for every x0, x1 ∈ X,
there exists a control u ∈ L2(J, U) such that the solution x(·) of (1.1)-(1.2) with
(4.1) satisfies x(0) + h(x) = x0 and x(b) = x1.
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Theorem 4.1. If the hypotheses (H1)-(H6) and (H8)-(H9) are satisfied, then
the impulsive fractional integrodifferential system (1.1)-(1.2) with the conditions
(4.1) is controllable on J provided

Λ′ =
[
(mL5 + L6) + (m + 1)γ

[
K

[
(m + 1)γ

{
2L1r + L̃1 + L2[1 + L3b + L4b]

}
+ (mL5 + L6)

]

+(2L1r + L̃1) + L2[1 + L3b + L4b]
]]

< 1.

Proof. Using the hypothesis (H6) for an arbitrary function x(·) define the control

u(t) = W−1
[
x1 − (x0 − h(x))− 1

Γ(q)

∑

0<tk<b

∫ tk

tk−1

(tk − s)q−1A(s, x)x(s)ds

− 1

Γ(q)

∫ b

tk

(b− s)q−1A(s, x)x(s)ds

− 1

Γ(q)

∑

0<tk<b

∫ tk

tk−1

(tk − s)q−1f

(
s, x(s),

∫ s

0

g(s, τ, x(τ))dτ,

∫ b

0

k(s, τ, x(τ))dτ

)
ds

− 1

Γ(q)

∫ b

tk

(b− s)q−1f

(
s, x(s),

∫ s

0

g(s, τ, x(τ))dτ,

∫ b

0

k(s, τ, x(τ))dτ

)
ds

−
∑

0<tk<b

Ik(x(t−k ))
]
(t).
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We have to show that when using this control, the operator Ψ : PC(J,Br) →
PC(J,Br) defined by

(Ψx)(t) = x0 − h(x) +
1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1A(s, x)x(s)ds +
1

Γ(q)

∫ t

tk

(t− s)q−1A(s, x)x(s)ds

+
1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − η)q−1BW−1
[
x1 − (x0 − h(x))

− 1

Γ(q)

∑

0<tk<b

∫ tk

tk−1

(tk − s)q−1A(s, x)x(s)ds− 1

Γ(q)

∫ b

tk

(b− s)q−1A(s, x)x(s)ds

− 1

Γ(q)

∑

0<tk<b

∫ tk

tk−1

(tk − s)q−1f

(
s, x(s),

∫ s

0

g(s, τ, x(τ))dτ,

∫ b

0

k(s, τ, x(τ))dτ

)
ds

− 1

Γ(q)

∫ b

tk

(b− s)q−1f

(
s, x(s),

∫ s

0

g(s, τ, x(τ))dτ,

∫ b

0

k(s, τ, x(τ))dτ

)
ds

−
∑

0<tk<b

Ik(x(t−k ))
]
(η)dη +

1

Γ(q)

∫ t

tk

(t− η)q−1BW−1
[
x1 − (x0 − h(x))

− 1

Γ(q)

∑

0<tk<b

∫ tk

tk−1

(tk − s)q−1A(s, x)x(s)ds− 1

Γ(q)

∫ b

tk

(b− s)q−1A(s, x)x(s)ds

− 1

Γ(q)

∑

0<tk<b

∫ tk

tk−1

(tk − s)q−1f

(
s, x(s),

∫ s

0

g(s, τ, x(τ))dτ,

∫ b

0

k(s, τ, x(τ))dτ

)
ds

− 1

Γ(q)

∫ b

tk

(b− s)q−1f

(
s, x(s),

∫ s

0

g(s, τ, x(τ))dτ,

∫ b

0

k(s, τ, x(τ))dτ

)
ds

−
∑

0<tk<b

Ik(x(t−k ))
]
(η)dη

+
1

Γ(q)

∑
0<tk<t

∫ tk

tk−1

(tk − s)q−1f

(
s, x(s),

∫ s

0

g(s, τ, x(τ))dτ,

∫ b

0

k(s, τ, x(τ))dτ

)
ds

+
1

Γ(q)

∫ t

tk

(t− s)q−1f

(
s, x(s),

∫ s

0

g(s, τ, x(τ))dτ,

∫ b

0

k(s, τ, x(τ))dτ

)
ds

+
∑

0<tk<t

Ik(x(t−k ))

has a fixed point. This fixed point is then a solution of the control problem (1.1)-
(1.2) with (4.1). Clearly, (Ψx)(b) = x1, which means that the control u steers
the system (1.1)-(1.2) with (4.1) from the initial state x0 to x1 in time b provided
we can obtain a fixed point of the operator Ψ. The rest of the proof is similar to
Theorem 3.1, hence omitted. ¤
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