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OSCILLATION OF SECOND-ORDER QUASI-LINEAR
NEUTRAL FUNCTIONAL DYNAMIC EQUATIONS WITH

DISTRIBUTED DEVIATING ARGUMENTS

TONGXING LI1,2 AND ETHIRAJU THANDAPANI3,∗

Abstract. In this paper, some sufficient conditions for the oscillation of
second-order nonlinear neutral functional dynamic equation(

r(t)
(
[x(t) + p(t)x[τ(t)]]∆

)γ)∆
+

∫ b

a

q(t, ξ)xγ [g(t, ξ)]∆ξ = 0, t ∈ T

are established. An example is given to illustrate an application of our results.

1. Introduction

The theory of time scales, which has recently received a lot of attention, was
introduced by Hilger in his Ph. D. Thesis in 1988 [12] in order to unify continuous
and discrete analysis. A time scale T is an arbitrary nonempty closed subset of
the reals, and the cases when this time scale is equal to the reals or to the integers
represent the classical theories of differential and difference equations.

The theory of “dynamic equations” unifies the theories of differential and dif-
ference equations and it also extends these classical cases to cases “in between”.
Several authors have expounded on various aspects of this new theory; see the
survey paper by Agarwal et al. [1] and the references cited therein. The books
on the subject of time scales, i.e., measure chain, by Bohner and Peterson [4, 5],
summarize and organize much of time scale calculus.

Recently, there has been much research activity concerning the oscillation and
non-oscillation of solutions of various dynamic equations on time scales, e.g.,
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see [2, 6–11, 13–29] and the references cited therein. Agarwal et al. [2], Saker
[18], Tripathy [26] established some oscillation criteria for second-order nonlinear
neutral delay dynamic equation(

r(t)
(
[x(t) + p(t)x(t− τ)]∆

)γ)∆
+ f

(
t, x(t− δ)

)
= 0, (1.1)

where r(t) > 0, p(t) ≥ 0, and f(t, u)sgnu ≥ q(t)|u|α such that r, p and q are real
valued rd-continuous functions defined on T. We note that the results established
in [2, 18] also require that

0 ≤ p(t) < 1. (1.2)

To the best of our knowledge, nothing is known regarding the oscillation of (1.1)
under the case when 0 ≤ p(t) ≤ a < ∞ other than the work in [26]. In [26],
the author obtained some new oscillation criteria for (1.1) under the cases γ ≥
1, δ ≥ τ , and r∆(t) ≥ 0. Chen [6], Şahiner [16], Saker et al. [19, 21], Saker and
O’Regan [22], Wu et al. [27], Zhang and Wang [28] considered the second-order
nonlinear neutral dynamic equation with variable delays(

r(t)
(
[x(t) + p(t)x[τ(t)]]∆

)γ)∆
+ f

(
t, x[δ(t)]

)
= 0, (1.3)

where the case (1.2) holds. Han et al. [10] and Saker et al. [24] examined the
oscillation of (1.3) when γ = 1. In particular, Han et al. [10] investigated the
case where γ = 1 and p ∈ Crd([t0,∞)T, [0, p0]), where p0 is a constant. Regard-
ing the oscillation of dynamic equations with distributed deviating arguments,
Thandapani and Piramanantham [25] studied the equation(

r(t)
(
[x(t) + p(t)x[τ(t)]]∆

)γ)∆
+

∫ b

a

q(t, ξ)f
(
x[g(t, ξ)]

)
∆ξ = 0. (1.4)

Chen and Liu [7] examined the oscillation behavior of the third-order equation(
B(t)

(
A(t)(x(t) + p(t)x[τ(t)])∆

)∆)∆

+

∫ b

a

q(t, ξ)f
(
t, ξ, x[g(t, ξ)]

)
∆ξ = 0. (1.5)

Following [10, 25, 26], we shall consider the oscillatory behavior of equation(
r(t)

(
[x(t) + p(t)x[τ(t)]]∆

)γ)∆
+

∫ b

a

q(t, ξ)xγ[g(t, ξ)]∆ξ = 0, t ∈ T. (1.6)

Since we are interested in oscillatory behavior of solutions, we will suppose that
the time scale T under consideration is not bounded above, i.e., it is a time scale
interval of the form [t0,∞)T := [t0,∞) ∩ T. Throughout the paper we assume
that: γ ≥ 1 is a ratio of odd positive integers,

(H1) r ∈ Crd

(
[t0,∞)T, (0,∞)

)
,
∫∞
t0

(
1

r(t)

) 1
γ
∆t = ∞, q(t, ξ) ∈ Crd

(
[t0,∞)T ×

[a, b]T,T
)
and q(t, ξ) > 0;

(H2) τ ∈ C1
rd

(
[t0,∞)T,T

)
, τ∆(t) ≥ τ0 > 0, here τ0 is a constant, τ

(
[t0,∞)T

)
=

[τ(t0),∞)T;
(H3) τ [g(t, ξ)] = g[τ(t), ξ] for (t, ξ) ∈ [t0,∞)T × [a, b]T;
(H4) p ∈ Crd

(
[t0,∞)T, [0, a0]

)
, where a0 is a constant;

(H5) a, b ∈ [t0,∞)T, g(t, ξ) ∈ Crd

(
[t0,∞)T × [a, b]T,T

)
, [a, b]T = {t ∈ T : a ≤

t ≤ b}, g(t, a) ≤ g(t, ξ) for (t, ξ) ∈ [t0,∞)T × [a, b]T, and limt→∞ g(t, a) = ∞.
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We set z(t) := x(t) + p(t)x[τ(t)]. By a solution of (1.6), we mean a non-
trivial real-valued function x which has the properties z ∈ C1

rd([tx,∞)T,R) and
r(z∆)γ ∈ C1

rd([tx,∞)T,R), tx ∈ [t0,∞)T and satisfying (1.6) for all t ∈ [tx,∞)T.
Our attention is restricted to those solutions of (1.6) which exist on some half-
line [tx,∞)T and satisfy sup{|x(t)| : t ∈ [t1,∞)T} > 0 for any t1 ∈ [tx,∞)T. A
solution x of (1.6) is said to be oscillatory if it is neither eventually positive nor
eventually negative. Otherwise it is called non-oscillatory. The equation itself is
called oscillatory if all its solutions are oscillatory.

Our purpose in this paper is to derive some new criteria for the oscillation of
(1.6). This paper is organized as follows: In the next section, we present some
conceptions on time scales. In Section 3, we give some lemmas. In Section 4, we
will use the Riccati transformation technique to establish some oscillation results
for the case where g(t, a) ≥ τ(t). In Section 5, we shall establish some oscillation
criteria under the case when g(t, a) ≤ τσ(t). In Section 6, we will give an example
and a remark to illustrate our main results.

2. Some preliminaries on time scales

A time scale T is an arbitrary nonempty closed subset of the real numbers
R. Since we are interested in oscillatory behavior, we suppose that the time
scale under consideration is not bounded above, i.e., it is a time scale interval of
the form [t0,∞)T. On any time scale we define the forward and backward jump
operators by

σ(t) := inf{s ∈ T|s > t}, and ρ(t) := sup{s ∈ T|s < t}.
A point t ∈ T is said to be left-dense if ρ(t) = t, right-dense if σ(t) = t, left-

scattered if ρ(t) < t, and right-scattered if σ(t) > t. The graininess µ of the time
scale is defined by µ(t) := σ(t)− t.

For a function f : T → R (the range R of f may actually be replaced by any
Banach space), the (delta) derivative is defined by

f∆(t) =
f(σ(t))− f(t)

σ(t)− t
,

if f is continuous at t and t is right-scattered. If t is not right-scattered then the
derivative is defined by

f∆(t) = lim
s→t+

f(σ(t))− f(s)

t− s
= lim

s→t+

f(t)− f(s)

t− s
,

provided this limit exists.
A function f : T → R is said to be rd-continuous if it is continuous at each

right-dense point and if there exists a finite left limit in all left-dense points. The
set of rd-continuous functions f : T → R is denoted by Crd(T,R).

f is said to be differentiable if its derivative exists. The set of functions f :
T → R that are differentiable and whose derivative is rd-continuous function is
denoted by C1

rd(T,R).
The derivative and the shift operator σ are related by the formula

fσ(t) = f(σ(t)) = f(t) + µ(t)f∆(t).
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Let f be a real-valued function defined on an interval [a, b]. We say that f is
increasing, decreasing, nondecreasing, and non-increasing on [a, b] if t1, t2 ∈ [a, b]
and t2 > t1 imply f(t2) > f(t1), f(t2) < f(t1), f(t2) ≥ f(t1) and f(t2) ≤ f(t1),
respectively. Let f be a differentiable function on [a, b]. Then f is increasing,
decreasing, nondecreasing, and non-increasing on [a, b] if f∆(t) > 0, f∆(t) < 0,
f∆(t) ≥ 0, and f∆(t) ≤ 0 for all t ∈ [a, b), respectively.

We will make use of the following product and quotient rules for the deriv-
ative of the product fg and the quotient f/g (where g(t)g(σ(t)) ̸= 0) of two
differentiable functions f and g

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t)),(
f

g

)∆

(t) =
f∆(t)g(t)− f(t)g∆(t)

g(t)g(σ(t))
.

For a, b ∈ T and a differentiable function f, the Cauchy integral of f∆ is
defined by ∫ b

a

f∆(t)∆t = f(b)− f(a).

The integration by parts formula reads∫ b

a

f∆(t)g(t)∆t = f(b)g(b)− f(a)g(a)−
∫ b

a

fσ(t)g∆(t)∆t,

and infinite integrals are defined as∫ ∞

a

f(s)∆s = lim
t→∞

∫ t

a

f(s)∆s.

3. Some lemmas

Below, we give the following lemmas, which we will use in the proofs of our
main results.

Lemma 3.1. [4, Theorem 1.93] Assume that υ : T → R is strictly increasing and

T̃ := υ(T) is a time scale. Let y : T̃ → R. If y∆̃[υ(t)] and υ∆(t) exist for t ∈ Tk,
then

(y[υ(t)])∆ = y∆̃[υ(t)]υ∆(t).

Remark 3.2. In condition (H2), we assume condition τ
(
[t0,∞)T

)
= [τ(t0),∞)T

which indicates that τ(T) ⊆ T is a time scale, and the derivative in T is the same
as that in τ(T).

Lemma 3.3. [4, Theorem 1.90] Assume that y ∈ C1
rd

(
[t0,∞)T,R

)
. Then

(yγ(t))∆ = γy∆(t)

∫ 1

0

[
hyσ(t) + (1− h)y(t)

]γ−1
dh. (3.1)
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4. Oscillation results for the case when g(t, a) ≥ τ(t)

In this section, we will establish some oscillation criteria for (1.6) under the
case where g(t, a) ≥ τ(t) for t ∈ [t0,∞)T.

Theorem 4.1. Assume that (H1)–(H5) hold, τ(t) ≤ σ(t), and g(t, a) ≥ τ(t) for
t ∈ [t0,∞)T. Suppose further that there exists a positive function η ∈ C1

rd

(
[t0,∞)T,R

)
such that

lim sup
t→∞

∫ t

t0

η(s)

{∫ b

a
Q(s, ξ)∆ξ

2γ−1

−
1 + a0γ

τ0

(γ + 1)γ+1

r[τ(s)]((η∆(s))+)
γ+1

τ γ0 η
γ+1(s)

}
∆s = ∞, (4.1)

where Q(t, ξ) := min{q(t, ξ), q(τ(t), ξ)}, (η∆(t))+ := max{0, η∆(t)}. Then (1.6)
is oscillatory.

Proof. Let x be a non-oscillatory solution of (1.6). Without loss of generality,
we assume that there exists t1 ∈ [t0,∞)T such that x(t) > 0, x[τ(t)] > 0, and
x[g(t, ξ)] > 0 for all t ∈ [t1,∞)T and ξ ∈ [a, b]T. From (1.6) and (H1), we see that
there exists t2 ∈ [t1,∞)T such that(

r(t)(z∆(t))γ
)∆

< 0, z∆(t) > 0, t ∈ [t2,∞)T. (4.2)

Using (1.6) and Lemma 3.1, for all sufficiently large t, we obtain∫ b

a

q(τ(t), ξ)xγ[g(τ(t), ξ)]∆ξ +

(
r[τ(t)](z∆[τ(t)])γ

)∆
τ∆(t)

= 0,

and so(
r(t)(z∆(t))γ

)∆
+

∫ b

a

q(t, ξ)xγ[g(t, ξ)]∆ξ + a0
γ

∫ b

a

q(τ(t), ξ)xγ[g(τ(t), ξ)]∆ξ

+
a0

γ

τ0

(
r[τ(t)](z∆[τ(t)])γ

)∆ ≤ 0.

By applying inequality

cγ + dγ ≥ 1

2γ−1
(c+ d)γ for c ≥ 0, d ≥ 0, γ ≥ 1,

(H3)–(H5) and the definitions of Q and z, we conclude that(
r(t)(z∆(t))γ

)∆
+
a0

γ

τ0

(
r[τ(t)](z∆[τ(t)])γ

)∆
+
zγ[g(t, a)]

2γ−1

∫ b

a

Q(t, ξ)∆ξ ≤ 0. (4.3)

Next, we define a Riccati substitution

ω(t) := η(t)
r(t)(z∆(t))γ

(z[τ(t)])γ
, t ∈ [t2,∞)T. (4.4)

Then ω(t) > 0. From (4.2) and condition τ(t) ≤ σ(t), we have

z∆[τ(t)] ≥ (rσ(t)/r[τ(t)])1/γ z∆σ(t). (4.5)
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From (4.4), we obtain

ω∆(t) =
(
r(t)(z∆(t))γ

)σ [ η(t)

(z[τ(t)])γ

]∆
+

η(t)

(z[τ(t)])γ
(
r(t)(z∆(t))γ

)∆
.

Thus

ω∆(t) =
η(t)

(z[τ(t)])γ
(
r(t)(z∆(t))γ

)∆
+
(
r(t)(z∆(t))γ

)σ η∆(t)(z[τ(t)])γ − η(t)[(z[τ(t)])γ]∆

(z[τ(t)])γ(z[τσ(t)])γ
. (4.6)

Using (3.1), (H2), Lemma 3.1 and Lemma 3.3, we get[
(z[τ(t)])γ

]∆ ≥ γ[z[τ(t)]]γ−1z∆[τ(t)]τ∆(t). (4.7)

Then, we have by (4.4), (4.5), (4.6) and (4.7) that

ω∆(t) ≤ η(t)

(z[τ(t)])γ
(
r(t)(z∆(t))γ

)∆
+

η∆(t)

ησ(t)
ωσ(t)

−γ
η(t)τ∆(t)

r1/γ [τ(t)](ησ(t))(γ+1)/γ
(ωσ(t))(γ+1)/γ . (4.8)

On the other hand, we define another function u by

u(t) := η(t)
r[τ(t)](z∆[τ(t)])γ

(z[τ(t)])γ
, t ∈ [t2,∞)T. (4.9)

Then u(t) > 0. From (4.2), we have

z∆[τ(t)] ≥ (r[τσ(t)]/r[τ(t)])1/γ z∆[τσ(t)]. (4.10)

By virtue of (4.9), we obtain

u∆(t) =
(
r[τ(t)](z∆[τ(t)])γ

)σ [ η(t)

(z[τ(t)])γ

]∆
+

η(t)

(z[τ(t)])γ
(
r[τ(t)](z∆[τ(t)])γ

)∆
.

Thus

u∆(t) =
η(t)

(z[τ(t)])γ
(
r[τ(t)](z∆[τ(t)])γ

)∆
+
(
r[τ(t)](z∆[τ(t)])γ

)σ η∆(t)(z[τ(t)])γ − η(t)[(z[τ(t)])γ]∆

(z[τ(t)])γ(z[τσ(t)])γ
. (4.11)

Using (3.1) and Lemma 3.1, we get (4.7). Hence by (4.7), (4.9), (4.10) and (4.11),
we find that

u∆(t) ≤ η(t)

(z[τ(t)])γ
(
r[τ(t)](z∆[τ(t)])γ

)∆
+
η∆(t)

ησ(t)
uσ(t)− γ

η(t)τ∆(t)

r1/γ [τ(t)](ησ(t))(γ+1)/γ
(uσ(t))(γ+1)/γ. (4.12)
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Thus, we have by (4.8) and (4.12) that

ω∆(t) +
a0

γ

τ0
u∆(t)

≤ η(t)

(
r(t)(z∆(t))γ

)∆
+ a0γ

τ0

(
r[τ(t)](z∆[τ(t)])γ

)∆
(z[τ(t)])γ

+
(η∆(t))+
ησ(t)

ωσ(t)

−γ
η(t)τ∆(t)

r1/γ[τ(t)](ησ(t))(γ+1)/γ
(ωσ(t))(γ+1)/γ

+
a0

γ

τ0

{
(η∆(t))+
ησ(t)

uσ(t)− γ
η(t)τ∆(t)

r1/γ [τ(t)](ησ(t))(γ+1)/γ
(uσ(t))(γ+1)/γ

}
.

Therefore, by (4.3), conditions g(t, a) ≥ τ(t) and τ∆(t) ≥ τ0 > 0, we have

ω∆(t) +
a0

γ

τ0
u∆(t)

≤ −
∫ b

a
Q(t, ξ)∆ξ

2γ−1
η(t) +

(η∆(t))+
ησ(t)

ωσ(t)

− γ
τ0η(t)

r1/γ [τ(t)](ησ(t))(γ+1)/γ
(ωσ(t))(γ+1)/γ

+
a0

γ

τ0

{
(η∆(t))+
ησ(t)

uσ(t)− γ
τ0η(t)(u

σ(t))(γ+1)/γ

r1/γ [τ(t)](ησ(t))(γ+1)/γ

}
. (4.13)

In view of (4.13) and inequality

Bu− Au(γ+1)/γ ≤ γγ

(γ + 1)γ+1

Bγ+1

Aγ
, A > 0, (4.14)

we get

ω∆(t) +
a0

γ

τ0
u∆(t)

≤ η(t)

{
−
∫ b

a
Q(t, ξ)∆ξ

2γ−1
+

1

(γ + 1)γ+1

(
1 +

a0
γ

τ0

)
r[τ(t)]((η∆(t))+)

γ+1

τ γ0 η
γ+1(t)

}
.

Integrating the above inequality from t2 to t, we obtain∫ t

t2

η(s)

{∫ b

a
Q(s, ξ)∆ξ

2γ−1
− 1

(γ + 1)γ+1

(
1 +

a0
γ

τ0

)
r[τ(s)]((η∆(s))+)

γ+1

τ γ0 η
γ+1(s)

}
∆s

≤ ω(t2) +
a0

γ

τ0
u(t2),

which contradicts (4.1). This completes the proof. �

In view of Theorem 4.1, we can obtain different conditions for oscillation of all
solutions of (1.6) with different choices of η. For example, if η(t) = 1 and η(t) = t
for t ∈ [t0,∞)T, we have the following results, respectively.
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Corollary 4.2. Assume that (H1)–(H5) hold, τ(t) ≤ σ(t), and g(t, a) ≥ τ(t) for
t ∈ [t0,∞)T. If ∫ ∞

t0

∫ b

a

Q(s, ξ)∆ξ∆s = ∞, (4.15)

where Q is defined as in Theorem 4.1, then (1.6) is oscillatory.

Corollary 4.3. Assume that (H1)–(H5) hold, τ(t) ≤ σ(t), and g(t, a) ≥ τ(t) for
t ∈ [t0,∞)T. If

lim sup
t→∞

∫ t

t0

s

{∫ b

a
Q(s, ξ)∆ξ

2γ−1
−

1 + a0γ

τ0

(γ + 1)γ+1

r[τ(s)]

τ γ0 s
γ+1

}
∆s = ∞, (4.16)

where Q is defined as in Theorem 4.1, then (1.6) is oscillatory.

Now, we establish the following Philos-type oscillation criterion for the oscilla-
tion of (1.6).

Theorem 4.4. Assume that (H1)–(H5) hold, τ(t) ≤ σ(t), and g(t, a) ≥ τ(t) for
t ∈ [t0,∞)T. Suppose also that there exist functions H, h ∈ Crd(D,R), where
D ≡ {(t, s) : t ≥ s ≥ t0} such that

H(t, t) = 0, t ≥ t0, H(t, s) > 0, t > s ≥ t0, (4.17)

and H has a non-positive continuous ∆-partial derivative H∆s(t, s) with respect
to the second variable and satisfies

H∆s(t, s) +H(t, s)
η(s)

ησ(s)
= −h(t, s)

ησ(s)
(H(t, s))γ/(γ+1), (4.18)

and

lim sup
t→∞

1

H(t, t0)

∫ t

t0

[
H(t, s)

η(s)
∫ b

a
Q(s, ξ)∆ξ

2γ−1

−
1 + a0γ

τ0

(γ + 1)γ+1

r[τ(s)](h−(t, s))
γ+1

(τ0η(s))γ

]
∆s = ∞, (4.19)

where η is a positive ∆-differential function, Q is as in Theorem 4.1, h−(t, s) :=
max{0,−h(t, s)}. Then (1.6) is oscillatory.

Proof. By (4.13), the proof is similar to the proof of Philos-type oscillation the-
orems by [3, 20, 21], so we omit the details. �

5. Oscillation results for the case when g(t, a) ≤ τσ(t)

In this section, we will establish some oscillation criteria for (1.6) under the
case when g(t, a) ≤ τσ(t) for t ∈ [t0,∞)T.

Theorem 5.1. Assume that (H1)–(H5) hold, g(t, a) ≤ τσ(t), g(t, a) ≤ σ(t)
for t ∈ [t0,∞)T, g(t, a) ∈ C1

rd

(
[t0,∞)T,T

)
, g∆(t, a) > 0 for t ∈ [t0,∞)T, and
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g
(
[t0,∞)T, a)

)
= [g(t0, a),∞)T. Suppose further that there exists a positive func-

tion η ∈ C1
rd

(
[t0,∞)T,R

)
such that

lim sup
t→∞

∫ t

t0

η(s)

{∫ b

a
Q(s, ξ)∆ξ

2γ−1

−
1 + a0γ

τ0

(γ + 1)γ+1

r[g(s, a)]((η∆(s))+)
γ+1

(g∆(s, a))γηγ+1(s)

}
∆s = ∞, (5.1)

where Q and (η∆)+ are defined as in Theorem 4.1. Then (1.6) is oscillatory.

Proof. Let x be a non-oscillatory solution of (1.6). Without loss of generality,
we assume that there exists t1 ∈ [t0,∞)T such that x(t) > 0, x[τ(t)] > 0, and
x[g(t, ξ)] > 0 for all t ∈ [t1,∞)T and ξ ∈ [a, b]T. Proceeding as in the proof of
Theorem 4.1, we have (4.2) and (4.3). We define a Riccati substitution

ω(t) := η(t)
r(t)(z∆(t))γ

(z[g(t, a)])γ
, t ∈ [t2,∞)T. (5.2)

Then ω(t) > 0. From (4.2) and condition g(t, a) ≤ σ(t), we have

z∆[g(t, a)] ≥ (rσ(t)/r[g(t, a)])1/γ z∆σ(t). (5.3)

By virtue of (5.2), we obtain

ω∆(t) =
(
r(t)(z∆(t))γ

)σ [ η(t)

(z[g(t, a)])γ

]∆
+

η(t)

(z[g(t, a)])γ
(
r(t)(z∆(t))γ

)∆
.

Thus

ω∆(t) =
η(t)

(z[g(t, a)])γ
(
r(t)(z∆(t))γ

)∆
+
(
r(t)(z∆(t))γ

)σ η∆(t)(z[g(t, a)])γ − η(t)[(z[g(t, a)])γ]∆

(z[g(t, a)])γ(z[g(σ(t), a)])γ
. (5.4)

Using (3.1), Lemma 3.1 and Lemma 3.3, we get[
(z[g(t, a)])γ

]∆ ≥ γ[z[g(t, a)]]γ−1z∆[g(t, a)]g∆(t, a). (5.5)

Thus, by (5.2), (5.3), (5.4) and (5.5), we see that

ω∆(t) ≤ η(t)

(z[g(t, a)])γ
(
r(t)(z∆(t))γ

)∆
+

η∆(t)

ησ(t)
ωσ(t)

−γ
η(t)g∆(t, a)

r1/γ [g(t, a)](ησ(t))(γ+1)/γ
(ωσ(t))(γ+1)/γ. (5.6)

On the other hand, we define another function u by

u(t) := η(t)
r[τ(t)](z∆[τ(t)])γ

(z[g(t, a)])γ
, t ∈ [t2,∞)T. (5.7)

Then u(t) > 0. From (4.2) and condition g(t, a) ≤ τσ(t), we have

z∆[g(t, a)] ≥ (r[τσ(t)]/r[g(t, a)])1/γ z∆[τσ(t)]. (5.8)
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From (5.7), we obtain

u∆(t) =
(
r[τ(t)](z∆[τ(t)])γ

)σ [ η(t)

(z[g(t, a)])γ

]∆
+

η(t)

(z[g(t, a)])γ
(
r[τ(t)](z∆[τ(t)])γ

)∆
.

Thus

u∆(t) =
η(t)

(z[g(t, a)])γ
(
r[τ(t)](z∆[τ(t)])γ

)∆
+
(
r[τ(t)](z∆[τ(t)])γ

)σ η∆(t)(z[g(t, a)])γ − η(t)[(z[g(t, a)])γ]∆

(z[g(σ(t), a)])γ(z[g(t, a)])γ
.(5.9)

Applying (3.1) and Lemma 3.1, we get (5.5). Hence by (5.5), (5.7), (5.8), and
(5.9), we find that

u∆(t) ≤ η(t)

(z[g(t, a)])γ
(
r[τ(t)](z∆[τ(t)])γ

)∆
+
η∆(t)

ησ(t)
uσ(t)− γ

η(t)g∆(t, a)

r1/γ [g(t, a)](ησ(t))(γ+1)/γ
(uσ(t))(γ+1)/γ. (5.10)

Hence from (5.6) and (5.10), we obtain

ω∆(t) +
a0

γ

τ0
u∆(t)

≤ η(t)

(
r(t)(z∆(t))γ

)∆
+ a0γ

τ0

(
r[τ(t)](z∆[τ(t)])γ

)∆
(z[g(t, a)])γ

+
(η∆(t))+
ησ(t)

ωσ(t)

−γ
η(t)g∆(t, a)

r1/γ[g(t, a)](ησ(t))(γ+1)/γ
(ωσ(t))(γ+1)/γ

+
a0

γ

τ0

{
(η∆(t))+
ησ(t)

uσ(t)− γ
η(t)g∆(t, a)

r1/γ[g(t, a)](ησ(t))(γ+1)/γ
(uσ(t))(γ+1)/γ

}
.

Therefore, (4.3) yields

ω∆(t) +
a0

γ

τ0
u∆(t)

≤ −
∫ b

a
Q(t, ξ)∆ξ

2γ−1
η(t) +

(η∆(t))+
ησ(t)

ωσ(t)

− γ
η(t)g∆(t, a)

r1/γ[g(t, a)](ησ(t))(γ+1)/γ
(ωσ(t))(γ+1)/γ

+
a0

γ

τ0

{
(η∆(t))+
ησ(t)

uσ(t)− γ
η(t)g∆(t, a)(uσ(t))(γ+1)/γ

r1/γ[g(t, a)](ησ(t))(γ+1)/γ

}
. (5.11)

In view of (4.14) and (5.11), we get

ω∆(t) +
a0

γ

τ0
u∆(t)

≤ η(t)

{
−
∫ b

a
Q(t, ξ)∆ξ

2γ−1
+

1

(γ + 1)γ+1

(
1 +

a0
γ

τ0

)
r[g(t, a)]((η∆(t))+)

γ+1

(g∆(t, a))γηγ+1(t)

}
.
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Integrating the above inequality from t2 to t, we obtain∫ t

t2

η(s)

{∫ b

a
Q(s, ξ)∆ξ

2γ−1
− 1

(γ + 1)γ+1

(
1 +

a0
γ

τ0

)
r[g(s, a)]((η∆(s))+)

γ+1

(g∆(s, a))γηγ+1(s)

}
∆s

≤ ω(t2) +
a0

γ

τ0
u(t2),

which contradicts (5.1). This completes the proof. �

From Theorem 5.1, we can obtain different conditions for oscillation of all
solutions of (1.6) with different choices of η. For example, if η(t) = 1 and η(t) = t
for t ∈ [t0,∞)T, we have the following results, respectively.

Corollary 5.2. Assume that (H1)–(H5) hold, g(t, a) ≤ τσ(t), g(t, a) ≤ σ(t)
for t ∈ [t0,∞)T, g(t, a) ∈ C1

rd

(
[t0,∞)T,T

)
, g∆(t, a) > 0 for t ∈ [t0,∞)T, and

g
(
[t0,∞)T, a)

)
= [g(t0, a),∞)T. If (4.15) holds, where Q is defined as in Theorem

4.1, then (1.6) is oscillatory.

Corollary 5.3. Assume that (H1)–(H5) hold, g(t, a) ≤ τσ(t), g(t, a) ≤ σ(t)
for t ∈ [t0,∞)T, g(t, a) ∈ C1

rd

(
[t0,∞)T,T

)
, g∆(t, a) > 0 for t ∈ [t0,∞)T, and

g
(
[t0,∞)T, a)

)
= [g(t0, a),∞)T. If

lim sup
t→∞

∫ t

t0

s

{∫ b

a
Q(s, ξ)∆ξ

2γ−1
−

1 + a0γ

τ0

(γ + 1)γ+1

r[g(s, a)]

(g∆(s, a))γsγ+1

}
∆s = ∞, (5.12)

where Q is defined as in Theorem 4.1, then (1.6) is oscillatory.

Now, we derive the following Philos-type oscillation criterion for the oscillation
of (1.6).

Theorem 5.4. Assume that (H1)–(H5) hold, g(t, a) ≤ τσ(t), g(t, a) ≤ σ(t)
for t ∈ [t0,∞)T, g(t, a) ∈ C1

rd

(
[t0,∞)T,T

)
, g∆(t, a) > 0 for t ∈ [t0,∞)T, and

g
(
[t0,∞)T, a)

)
= [g(t0, a),∞)T. Suppose also that there exist functions H, h ∈

Crd(D,R), where D ≡ {(t, s) : t ≥ s ≥ t0} such that (4.17) holds, and H has a
non-positive continuous ∆-partial derivative H∆s(t, s) with respect to the second
variable and satisfies (4.18), and

lim sup
t→∞

1

H(t, t0)

∫ t

t0

K(t, s)∆s = ∞, (5.13)

where

K(t, s) =
H(t, s)η(s)

∫ b

a
Q(s, ξ)∆ξ

2γ−1
−

1 + a0γ

τ0

(γ + 1)γ+1

r[g(s, a)](h−(t, s))
γ+1

(g∆(s, a)η(s))γ
,

η is a positive ∆-differential function, Q is defined as in Theorem 4.1, h−(t, s) :=
max{0,−h(t, s)}. Then (1.6) is oscillatory.

Proof. By (5.11), the proof is similar to the proof of Philos-type oscillation the-
orems by [3, 20, 21], so we omit the details. �
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6. Application

Firstly, we consider the following example.

Example 6.1. Consider the second-order neutral functional differential equation

[x(t) + x(t− 2π)]′′ +

∫ 0

−3π

x[t+ ξ]dξ = 0, t ≥ 1. (6.1)

Let α = 1, a = −3π, b = 0, r(t) = 1, p(t) = 1, τ(t) = t − 2π, q(t, ξ) = 1,
g(t, ξ) = t + ξ. Then Q(t, ξ) = min{q(t, ξ), q(τ(t), ξ)} = 1, g′(t, a) = 1, g(t, a) =
t − 3π ≤ t + ξ for ξ ∈ [−3π, 0] and g(t, a) ≤ τ(t) ≤ t. Moreover, letting τ0 = 1,
we see that equation (6.1) is oscillatory due to Corollary 5.2.

Secondly, we give a remark to summarize our main results.

Remark 6.2. In this paper, we have introduced some new theorems for investi-
gation of the oscillation of delayed and advanced equation (1.6). We can use
similar method to examine equation (1.6) when g(t, b) ≤ g(t, ξ) for (t, ξ) ∈
[t0,∞)T × [a, b]T. To the best of our knowledge, there are no known results can
be applied to the enclosed example. It would be interesting to study (1.6) when
τ [g(t, ξ)] ̸≡ g[τ(t), ξ], limt→∞ p(t) = ∞, or p(t) < 0.
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