INTERNAL NONLOCAL AND INTEGRAL CONDITION PROBLEMS OF THE DIFFERENTIAL EQUATION $x^{\prime}=f\left(t, x, x^{\prime}\right)$

A. M. A. EL-SAYED ${ }^{1}$, E. M. HAMDALLAH ${ }^{2}$ AND KH. W. ELKADEKY ${ }^{3}$

AbStract. In this work, we are concerned with the existence of at least one absolutely continuous solution of the Cauchy problem for the differential equation $x^{\prime}=f\left(t, x, x^{\prime}\right), t \in(0,1)$ with the internal nonlocal condition $\sum_{k=1}^{m} a_{k} x\left(\tau_{k}\right)=x_{o}, \tau_{k} \in(c, d) \subseteq(0,1)$. The problem of the integral condition $\int_{c}^{d} x(s) d g(s)=x_{o}$ will be considered.

1. Introduction

Problems with non-local conditions have been extensively studied by several
 and references therein.
Here we are consisted with the nonlocal problem

$$
\begin{align*}
\frac{d x(t)}{d t} & =f\left(t, x(t), \frac{d x(t)}{d t}\right), \text { a.e, } t \in(0,1) \tag{1.1}\\
\sum_{k=1}^{m} a_{k} x\left(\tau_{k}\right) & =x_{o}, \sum_{k=1}^{m} a_{k} \neq 0 \text { and } \tau_{k} \in(c, d) \subseteq(0,1) . \tag{1.2}
\end{align*}
$$

The existence of at least one solution $x \in A C[0,1]$ will be studied when the function f is measurable in $t \in[0,1]$,for any $\left(u_{1}, u_{2}\right) \in R^{2}$ and continuous in $\left(u_{1}, u_{2}\right) \in R^{2}$, for $t \in[0,1]$. As a consequence of our result, the problem of the

[^0]differential equation (ㄴ.[) with integral condition
\[

$$
\begin{equation*}
\int_{c}^{d} x(s) d g(s)=x_{o} \tag{1.3}
\end{equation*}
$$

\]

where g is a nondecreasing function, will be studied.
It must be noticed that the nonlocal condition (\mathbb{L}) and the integral condition ($[.3)$) are more general than the following ones

$$
\begin{gather*}
x(\tau)=x_{o}, \tau \in(c, d), \tag{1.4}\\
\sum_{k=1}^{m} a_{k} x\left(\tau_{k}\right)=0, \tau_{k} \in(a, c), \tag{1.5}
\end{gather*}
$$

and

$$
\begin{equation*}
\int_{a}^{c} x(s) d g(s)=0 \tag{1.6}
\end{equation*}
$$

The following theorems will be needed.
Theorem (Kolmogorov Compactness Criterion) see [$\mathbb{Z}]$
Let $\Omega \subseteq L^{P}(0,1), 1 \leq P<\infty$. If
(i) Ω is bounded $L^{p}(0,1)$,
(ii) $x_{h} \rightarrow x$ as $h \rightarrow 0$ uniformly with respect to $x \in \Omega$, then Ω is relatively compact in $L^{P}(0,1)$, where

$$
x_{h}(t)=\frac{1}{h} \int_{t}^{t+h} x(s) d s
$$

Theorem (Schauder) see [10]
Let U be a convex subset of a Banach space X, and $T: U \rightarrow U$ is compact, continuous map. Then T has at least one fixed point in U.

2. Existence of solution

The following Lemma gives the integral equation representation for the nonlocal problem (L.ل()-(L. 2).

Lemma 2.1 The solution of the nonlocal problem ([.区)-(L. \mathbf{L}) can be expressed by the integral equation

$$
\begin{equation*}
x(t)=a x_{0}-a \sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(s) d s+\int_{0}^{t} y(s) d s \tag{2.1}
\end{equation*}
$$

where y is the solution of the functional integral equation

$$
\begin{equation*}
y(t)=f\left(t, a x_{0}-a \sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(s) d s+\int_{0}^{t} y(s) d s, y(t)\right), t \in(0,1) \tag{2.2}
\end{equation*}
$$

Proof. Let $\frac{d x(t)}{d t}=y(t)$ in equation (1), then

$$
\begin{equation*}
y(t)=f\left(t, x(0)+\int_{0}^{t} y(s) d s, y(t)\right) \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
x(t)=x(0)+\int_{0}^{t} y(s) d s \tag{2.4}
\end{equation*}
$$

Let $t=\tau_{k}$ in ([.4), we obtain

$$
x\left(\tau_{k}\right)=x(0)+\int_{0}^{\tau_{k}} y(s) d s
$$

and

$$
\begin{equation*}
\sum_{k=1}^{m} a_{k} x\left(\tau_{k}\right)=\sum_{k=1}^{m} a_{k} x(0)+\sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(s) d s \tag{2.5}
\end{equation*}
$$

Substitute from (2) into ($\mathrm{L} . \mathrm{B}$), we get

$$
x_{0}=\sum_{k=1}^{m} a_{k} x(0)+\sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(s) d s
$$

and

$$
\begin{equation*}
x(0)=a\left(x_{0}-\sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(s) d s\right) \tag{2.6}
\end{equation*}
$$

where $a=\left(\sum_{k=1}^{m} a_{k}\right)^{-1}$.

Consider the functional integral equation ($\overline{2 / 2}$) with the following assumptions
(i) $f:[0,1] \times R^{2} \rightarrow R^{+}$is measurable in $t \in[0,1]$ for any $\left(u_{1}, u_{2}\right) \in R^{2}$ and continuous in $\left(u_{1}, u_{2}\right) \in R^{2}$ for almost all $t \in[0,1]$.
(ii) There exists a function $a \in L_{1}[0,1]$ and two constants $b_{i}>0, i=1,2$ such that

$$
\left|f\left(t, u_{1}, u_{2}\right)\right| \leq|a(t)|+\sum_{i=1}^{2} b_{i}\left|u_{i}\right|, \quad \forall\left(t, u_{1}, u_{2}\right) \in[0,1] \times R^{2}
$$

(iii)

$$
\left(2 b_{1}+b_{2}\right)<1 .
$$

Now we have the following theorem.
Theorem 2.1 Assume that the assumptions (i) - (iii) are satisfied. Then the functional integral equation ((L.2) has at least one solution $y \in L_{1}(0,1)$.
Proof. Let $y \in B_{r} \subset L^{1}, B_{r}=\left\{y:\|y\|_{L_{1}} \leq r, r>0\right\}, r=\frac{\|a\|+a b_{1} x_{0}}{1-\left(2 b_{1}+b_{2}\right)}$. Clearly B_{r} is nonempty, convex and closed .
Define the operator H by

$$
\begin{equation*}
H y(t)=f\left(t, a x_{0}-a \sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(s) d s+\int_{0}^{t} y(s) d s, y(t)\right), t \in(0,1) \tag{2.7}
\end{equation*}
$$

From assumptions (i) and (iii), we obtain

$$
\begin{aligned}
\|H y\|_{L_{1}} & =\int_{0}^{1}|(H y)(t)| d t \\
& =\int_{0}^{1}\left|f\left(t, a x_{0}-a \sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(s) d s+\int_{0}^{t} y(s) d s, y(t)\right)\right| d t \\
& \leq \int_{0}^{1}\left(|a(t)|+b_{1}\left|a x_{o}-a \sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(s) d s+\int_{0}^{t} y(s) d s\right|+b_{2}|y(t)|\right) d t \\
& \leq \int_{0}^{1}\left(|a(t)| d t+\int_{0}^{1} b_{1} a x_{o} d t+a b_{1} \sum_{k=1}^{m} a_{k} \int_{0}^{1} \int_{0}^{\tau_{k}}|y(s)| d s d t\right. \\
& \left.+b_{1} \int_{0}^{1} \int_{0}^{t}|y(s)| d s d t+b_{2} \int_{o}^{1}|y(t)|\right) d t \\
& \leq\|a\|+a b_{1} x_{o}+b_{1}\|y\|+b_{1}\|y\|+b_{2}\|y\| \\
& \leq\|a\|+b_{1} a x_{0}+\left(2 b_{1}+b_{2}\right)\|y\| \leq r .
\end{aligned}
$$

Then $\|H y\|_{L_{1}} \leq r$, which implies that the operator H maps B_{r} into itself. Assumption (i) implies that H is continuous.

Now, let Ω be a bounded subset of B_{r}, therefore $H(\Omega)$ is bounded in $L_{1}(0,1)$, i.e condition (i) of Kolmogorav compactness criterion is satisfied, it remains to show $(H y)_{h} \rightarrow(H y)$, in $L_{1}(0,1]$.
Let $y \in \Omega \subset L_{1}(0,1)$, then we have the following

$$
\begin{aligned}
\left\|(H y)_{h}-(H y)\right\|_{L_{1}} & =\int_{0}^{1}\left|(H y)_{h}(t)-(H y)(t)\right| d t \\
& =\int_{0}^{1}\left|\frac{1}{h} \int_{t}^{t+h}(H y)(s) d s-(H y)(t)\right| d t \\
& \leq \int_{0}^{1}\left(\frac{1}{h} \int_{t}^{t+h}|(H y)(s)-(H y)(t)| d s\right) d t \\
& \left.\leq \int_{0}^{1} \frac{1}{h} \int_{t}^{t+h} \right\rvert\, f\left(s, a x_{0}-a \sum_{k=1}^{m} a_{k} \int_{0}^{s_{k}} y(\tau) d \tau+\int_{0}^{s} y(\tau) d \tau, y(s)\right) \\
& -f\left(t, a x_{0}-a \sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(s) d s+\int_{0}^{t} y(s) d s, y(t)\right) \mid d s d t
\end{aligned}
$$

Since $y \in \Omega \subset L_{1}$, and (assumption (ii) implies that) $f \in L_{1}[0,1]$, it follows that

$$
\left.\frac{1}{h} \int_{t}^{t+h} \right\rvert\, f\left(s, a x_{0}-a \sum_{k=1}^{m} a_{k} \int_{0}^{s_{k}} y(\tau) d \tau+\int_{0}^{s} y(\tau) d \tau, y(s)\right)
$$

$-f\left(t, a x_{0}-a \sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(s) d s+\int_{0}^{t} y(s) d s, y(t)\right) \mid d s \rightarrow 0$ as $h \rightarrow 0, t \in(0,1)$.
Hence $(H y)_{h} \rightarrow(H y)$, uniformly as $h \rightarrow 0$.
Then by Kolmogorav compactness criterion, $H(\Omega)$ is relatively compact.
That is H has a fixed point in B_{r}, then there exist at least one solution $y \in L_{1}(0,1)$ of the functional equation ($(2,3)$).

Now, consider the nonlocal problem ((LD)-(L.
Theorem 2.2 Let the assumptions of Theorem 2.1 are satisfied. Then the nonlocal problem ([.])-([.2) has at least one solution $x \in A C[0,1]$.
 exist at least one solution $x \in A C[0,1]$ of equation ($\mathrm{L} \boldsymbol{\pi}$) where

$$
\begin{equation*}
x(0)=\lim _{t \rightarrow 0} x(t)=a x_{0}-a \sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(s) d s \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
x(1)=\lim _{t \rightarrow 1} x(t)=a x_{0}-a \sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(s) d s+\int_{0}^{1} y(s) d s \tag{2.9}
\end{equation*}
$$

To complete the proof, we prove that equation (\mathbb{L} (1)) satisfies nonlocal problem (때) -(
Differentiating ([2.7), we get

$$
\frac{d x}{d t}=y(t)=f\left(t, x(t), \frac{d x}{d t}\right)
$$

Let $t=\tau_{k}$ in (ㄹ..]), we get

$$
\begin{aligned}
x\left(\tau_{k}\right)= & a x_{0}-a \sum_{k=1}^{m} a_{k} \int_{0}^{\tau_{k}} y(s) d s+\int_{0}^{\tau_{k}} y(s) d s \\
& =a x_{0}+\left(1-a \sum_{k=1}^{m} a_{k}\right) \int_{0}^{\tau_{k}} y(s) d s
\end{aligned}
$$

Then

$$
\sum_{k=1}^{m} a_{k} x\left(t_{k}\right)=\sum_{k=1}^{m} a_{k} a x_{0}+\sum_{k=1}^{m} a_{k}\left(1-a \sum_{k=1}^{m} a_{k}\right) \int_{0}^{\tau_{k}} y(s) d s=x_{o}
$$

This complete the proof of the equivalent between the nonlocal problem (■-[)-

This implies that there exist at least one solution $x \in A C[0,1]$ of the nonlocal problem ([.])-([.

3. Nonlocal integral condition

Let $x \in A C[0,1]$ be the solution of the nonlocal problem (■-D)-(\mathbb{L}). Let $a_{k}=g\left(t_{k}\right)-g\left(t_{k-1}\right), g$ is a nondecreasing function, $\tau_{k} \in\left(t_{k-1}, t_{k}\right), c=t_{0}<$ $t_{1}<t_{2}, \ldots<t_{n}=d$, then the nonlocal condition ($\mathbb{L 2}$) will be

$$
\sum_{k=1}^{m}\left(g\left(t_{k}\right)-g\left(t_{k-1}\right)\right) x\left(\tau_{k}\right)=x_{o} .
$$

From the continuity of the solution x of the nonlocal problem ((L.D)-([.]) we can obtain

$$
\lim _{m \rightarrow \infty} \sum_{k=1}^{m}\left(g\left(t_{k}\right)-g\left(t_{k-1}\right)\right) x\left(\tau_{k}\right)=\int_{c}^{d} x(s) d g(s) .
$$

and the nonlocal condition (2) transformed to the integral one

$$
\int_{c}^{d} x(s) d g(s)=x_{o}
$$

Now, we have the following Theorem
Theorem 3.1 Let the assumptions of Theorem 2.1 are satisfied. Then there exists at least one solution $x \in A C[0,1]$ of the nonlocal problem with integral condition,

$$
\begin{aligned}
\frac{d x(t)}{d t}= & f\left(t, x(t), \frac{d x(t)}{d t}\right), \text { a.e, } t \in(0,1] \\
& \int_{c}^{d} x(s) d g(s)=x_{o} .
\end{aligned}
$$

References

[1] M. Benchohra, E.P. Gatsori and S.K. Ntouyas, Existence results for seme-linear integrodifferential inclusions with nonlocal conditions. Rocky Mountain J. Mat. Vol. 34, No. 3, Fall 2004
[2] M. Benchohra, S. Hamani, S. Ntouyas, Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Analysis Vol. 71 (2009) 23912396
[3] Boucherif, A. First-order differential inclusions with nonlocal initial conditions, Applied Mathematics Letters Vol. 15 (2002) 409-414.
[4] A. Boucherif, Nonlocal Cauchy problems for first-order multivalued differential equations, Electronic Journal of Differential Equations Vol. 2002 (2002), No. 47, pp. 1-9.
[5] Boucherif, A and Precup, R. On The nonlocal Initial Value Problem for First Order Differential Equations, Fixed Point Theory,Volume 4,No 2,(2003)205-212.
[6] Boucherif, A. Semilinear evolution inclusions with nonlocal conditions, Applied Mathematics Letters Vol. 22 (2009) 1145-1149.
[7] Curtain, R. F. and Pritchard, A. J. Functional Analysis in modern, Applied Mathematics Academic Press (1977).
[8] Dugundji, J. and Grans, A. Fixed Point Theory, Monografie Mathematyczne, PWN, Warsaw (1963).
[9] El-Sayed, A. M. A. and Abd El-Salam, Sh. A. On the stability of a fractional order differential equation with nonlocal initial condtion, EJQTDE, 29(2008)1-8.
[10] El-Sayed, A.M.A and Elkadeky, Kh. W. Caratheodory theorem for a nonlocal problem of the differential equation $x^{\prime}=f\left(t, x^{\prime}\right)$, Alexandria j. of Math. Vol. 1 No. 2 (2010) In press.
[11] Gatsori. E, Ntouyas. S. K, and Sficas. Y.G. On a nonlocal cauchy problem for differential inclusions, Abstract and Applied Analysis (2004) 425-434.
[12] Goebel. K and Kirk W. A. Topics in Metric Fixed point theory, Cambridge University press, Cambridge (1990).
[13] Guerekata, G. M. A Cauchy problem for some fractional abstract differential equation with non local conditions, Nonlinear Analysis 70 (2009) 1873-1876.
[14] Liu. H. and Jiang. D. Two-point boundary value problem for first order implicit differential equations, Hiroshima Math.J.30(2000) 21-27.
[15] Ma. R. Existence and Uniqueness of Solutions to First - Order Three - Point Boundary Value Problems,Applied Mathematics Letters, 15(2002) 211-216.
${ }^{1}$ Department of Mathematics, Alexandria University, Alexandria, Egypt
E-mail address: amasayed@hotmail.com
${ }^{2}$ Department of Mathematics, Alexandria University, Alexandria, Egypt
E-mail address: emanhamdalla@hotmail.com
${ }^{3}$ Department of Mathematics, Faculty of Science, Garyounis University, Benghazi, Libya

E-mail address: k-welkadeky@yahoo.com

[^0]: Date: Received: 1 Jan, 2011; Revised: 20 April, 2011.

 * Corresponding author
 (C) 2011 N.A.G.

 2000 Mathematics Subject Classification. Primary 26A33; Secondary 34A12, 34A40.
 Key words and phrases. Nonlocal conditions, integral condition, existence of solution, fixedpoint theorem.

