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EXACT CONTROLLABILITY OF SEMILINEAR THIRD ORDER
DISPERSION EQUATION

N.K. TOMAR1∗ AND N. SUKAVANAM2

Abstract. In this paper, a family of nonlinear functions is given for the exact
controllability of semilinear third order dispersion equation. The obtained
result has been illustrated by applying it on nonlinear Korteweg-de Vries (KdV)
equation.

1. Introduction

Let us consider the semilinear third-order dispersion equation of the form

∂ω

∂t
(x, t) +

∂3ω

∂x3
(x, t) = (Gu)(x, t) + f(t, ω(x, t)) (1.1)

in the domain 0 ≤ x ≤ 2π, t ≥ 0, such that the process is periodic with period
2π in the variable x with boundary conditions

∂kω

∂xk
(0, t) =

∂kω

∂xk
(2π, t); k = 0, 1, 2, (1.2)

and initial condition
ω(x, 0) = 0, (1.3)

where u is the control function and f : [0,∞)×R → R is a nonlinear continuous
function.
By taking G = 0 (i.e. without the control term) and nonlinear function f(t, ω) =
−ωx−ωωx, the equation (1.1) reduces into the partial differential equation model
for the famous Korteweg-de Vries (KdV) equation (for derivation and more details
see [1]), which describes the propagation of small amplitude long water waves in
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a uniform channel, and in this context, ω is the amplitude or velocity, x is often
proportional to distance in the direction of propagation and t is proportional
to elapsed time. There is a vast amount of literature on the controllability of
linear KdV equation with the controls either as distributed controls or through
the boundary, see [2, 3, 4, 5] and references therein. The study of controllability
of system (1.1)-(1.3) is important because this system is not only a good model
for water waves but also a very useful model in nonlinear studies in many areas
of engineering and science like laser theory, observations of the solitary waves,
study of solitons in hydrodynamics and plasma theory etc. (see [6, 7, 8] and
references therein). The controllability of an abstract semilinear control system
in infinite dimensional spaces is an important property and has been studied by
many authors in recent past via functional analysis approach, see [9, 10, 11, 12,
13].
For the sake of brevity, we shall write V and Z for the spaces L2(0, 2π) and
L2[0, τ ;L2(0, 2π)] respectively. In (1.1), the state ω(., t) takes values in the Banach
space V and the control function u ∈ Z.
From the practical point of view, we restrict the distributed control u(x, t) so

that the quantity [ω] =
∫ 2π

0
ω(x, t)dx is conserved, and in order to conserve this

quantity, we define the bounded linear operator G on Z as

(Gu)(x, t) = g(x){u(x, t)−
∫ 2π

0

g(s)u(s, t)ds}, (1.4)

where g(x) is a piece-wise continuous positive function on [0, 2π] such that (see
[14])

[g] =

∫ 2π

0

g(s)ds = 1. (1.5)

In [14], Russell and Zhang proved the controllability and stabilization of the third
order linear dispersion equation. They discussed the exponential decay rates
with distributed controls of restricted form and for the equation with boundary
dissipation. George et. al. [15] proved the exact controllability of (1.1)-(1.5), in
the case when f is a Lipschitz continuous function with sufficiently small Lipschitz
constant.

2. Preliminaries and Hypotheses

The purpose of this paper is to study the exact controllability of the semilinear
third order dispersion system (1.1)-(1.5).
Define an operator A on V with domain D(A) ⊆ H3(0, 2π) consisting of functions
satisfying boundary conditions of the form (1.2) such that

Aω = −∂3ω

∂x3
(2.1)

It follow from Pazy [16] that A generates a C0 group of isometries, {T (t)}t≥0, on
space V . By the variation of constant formula, we can write a mild solution of



310 N.K. TOMAR, N. SUKAVANAM

(1.1)-(1.3) as

ω(·, t) =
∫ t

0

T (t− s)(Gu)(·, s)ds+
∫ t

0

T (t− s)f(s, ω(·, s))ds (2.2)

Remark 2.1. Note that, some sufficient conditions are available in the literature
for the existence of the mild solutions of system of the form (1.1)-(1.3), see [15, 16].
In the present paper we will show the exact controllability of the system (1.1)-
(1.3) whose mild solution exists.

Let V1 be a subspace of V defined as

V1 = {x ∈ V : [xT ] =

∫ 2π

0

x(s)ds = 0}. (2.3)

It is proved in [15] that V1 is a Hilbert space with respect to L2-norm.
Let us analyze the exact controllability property:

Definition 2.2. The system (1.1)-(1.5) is said to be exactly controllable over a
time interval [0, τ ], if for any given ωτ ∈ V1 there exists a control u ∈ Z such that
the corresponding solution ω of (1.1)-(1.5) satisfies ω(·, τ) = ωτ .

In this paper we investigated a family of nonlinear functions f(t, ω(x, t)) =
f1(t, ω(x, t))+ f2(t, ω(x, t))+ f3(t, ω(x, t)) for that the system (1.1)-(1.5) is exact
controllable, when

(H1) R(F1) ⊆ N(L),

(H2)
∫ 2π

0
f2(t, ω(x, t))dx = 0,

(H3) f3 is Lipschitz continuous with sufficiently small Lipschitz constant, i.e.,
it satisfies the following inequality,

|f3(t, x)− f3(t, y)| ≤ l|x− y|; ∀x, y ∈ R and t ∈ [0, τ ] (2.4)

with small constant l.

where operators L : Z → V1 and F1 : Z → Z are defined as

Lω =

∫ τ

0

T (τ − s)ω(·, s))ds (2.5)

(F1ω)(t) = f1(t, ω(·, t)). (2.6)

3. Main Result

Before proving the main theorem, we shall prove the following lemma

Lemma 3.1. If f2 satisfies the condition (H2), then for each ω ∈ Z there exists
u ∈ Z such that, for any fixed t

(Gu)(x, t) = f2(t, ω(x, t)). (3.1)

Proof. Eq. (3.1) is equivalent to the following integral equation

g(x){u(x, t)−
∫ 2π

0

g(s)u(s, t)ds} = f2(t, ω(x, t)) (3.2)
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or

u(x, t)−
∫ 2π

0

g(s)u(s, t)ds =
f2(t, ω(x, t))

g(x)
(3.3)

Now, we define operator H : L2(0, 2π) → L2(0, 2π) as

(Hu)(x) = u(x)−
∫ 2π

0

g(s)u(s)ds (3.4)

It is easy to see that the null space of operator H, i.e. N(H), is one dimensional
subspace of L2(0, 2π) and is spanned by the set {1}. Now we shall find the
operator H∗ as follows:
Let v ∈ L2(0, 2π), then

⟨Hu, v⟩L2(0,2π) =

∫ 2π

0

(Hu)(y)v(y)dy

=

∫ 2π

0

u(y)v(y)dy −
∫ 2π

0

(

∫ 2π

0

g(s)u(s)ds)v(y)dy

= ⟨u, v⟩L2(0,2π) −
∫ 2π

0

dsu(s)(

∫ 2π

0

g(s)v(y)dy)

= ⟨u,H∗v⟩L2(0,2π) (3.5)

Thus,

(H∗v)(s) = v(s)−
∫ 2π

0

g(s)v(y)dy

= v(s)− αg(s) (3.6)

where α =
∫ 2π

0
v(y)dy. Hence, the null space of operator H∗, i.e. N(H∗), is the

space spanned by the set {g(·)}.
It is clear that H is a fredholm operator, it follows that (see [17])

R(H) = N(H∗)⊥

Hence (3.3) has a solution u(·, t) ∈ L2(0, 2π) if

⟨f2(t, ω(·, t))
g(·)

, αg(·)⟩L2(0,2π) = 0, (3.7)

that is, if ∫ 2π

0

f2(t, ω(x, t))dx = 0 (3.8)

Eq. (3.8) concludes that if condition (H2) holds true, eq. (3.3) has a solution
u(·, t) ∈ L2(0, 2π) for any fixed t ∈ [0, τ ]. �

Theorem 3.2. [Main Theorem] Suppose that the nonlinear function f in Eq.
(1.1) is expressed as f(t, ω(x, t)) = f1(t, ω(x, t)) + f2(t, ω(x, t)) + f3(t, ω(x, t)),
where f1, f2 and f3 satisfy assumptions (H1), (H2) and (H3) respectively, then
the system (1.1)-(1.5) is exact controllable on V1.
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Proof. Let v ∈ V1. Consider the following semilinear system (with the same
conditions as given in (1.2)-(1.3))

∂ω

∂t
(x, t) +

∂3ω

∂x3
(x, t) = (Gu)(x, t) + f3(t, ω(x, t)) (3.9)

From Theorem 4.1 in [15], it follows that above system is controllable, i.e., there
exists a u ∈ Z such that

v =

∫ τ

0

T (τ − s)(Gu)(·, s)ds+
∫ τ

0

T (τ − s)f3(s, ω(·, s))ds. (3.10)

By condition (H1) ∫ τ

0

T (τ − s)f1(s, ω(·, s))ds = 0. (3.11)

By adding equations (3.10) and (3.11) we get

v =

∫ τ

0

T (τ − s)(Gu)(·, s)ds +

∫ τ

0

T (τ − s)f1(s, ω(·, s))ds

+

∫ τ

0

T (τ − s)f3(s, ω(·, s))ds (3.12)

By Lemma 3.1, we can find a u1 ∈ Z such that for all t ∈ [0, τ ]

(Gu1)(·, t) = f2(t, ω(·, t)). (3.13)

Using equations (3.12) and (3.13) we conclude that

v =

∫ τ

0

T (τ − s)(Gu− u1)(·, s)ds+
∫ τ

0

T (τ − s)f1(s, ω(·, s))ds

+

∫ τ

0

T (τ − s)f2(s, ω(·, s))ds+
∫ τ

0

T (τ − s)f3(s, ω(·, s))ds. (3.14)

Eq. (3.14) implies that v is a solution of the system (1.1)-(1.5) with respect to
control u − u1. This proves the exact controllability of (1.1)-(1.5). Hence, the
proof is complete. �
Remark 3.3. Since f1 ≡ 0 and f2 ≡ 0 satisfies the conditions (H1) and (H2)
respectively, the Theorem 4.1 of [15] follows as a particular case of above theorem.

Remark 3.4. If f1 ≡ 0 and f3 ≡ 0, conditions (H1) and (H3) are satisfied auto-
matically. Now, take f2(t, ω(x, t)) = −ω(x, t)ωx(x, t), then problem (1.1)-(1.5) is
converted into the exact controllability of nonlinear KdV equation. In this case,
the condition (H2),

∫ 2π

0
f2(t, ω(x, t))dx = 0, is also satisfied. Thus, Theorem

3.2 gives the exact controllability of nonlinear KdV equation, which support the
result of Theorem 1.1 of Russell and Zhang [2].

Conclusion

In this work, a family of nonlinear functions f = f1 + f2 + f3 has been given,
where f1, f2, f3 satisfy the conditions (H1), (H2), (H3) respectively, for the
exact controllability of system (1.1)-(1.5). Thus, Theorem 3.2 gives more choices
of nonlinear functions than the paper [15], in which authors proved the exact
controllability of system (1.1)-(1.5) by taking f = f3, under the assumption
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(H3). In [15], the imposed condition (H3) force us to consider the semilinear
system (1.1)-(1.5) as a nonlinear perturbation of corresponding linear system.
The exact controllability of nonlinear general KdV equation has also been given,
as a consequence of Theorem 3.2, in Remark 3.4.
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