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1. INTRODUCTION

The fixed point theorems in metric spaces are playing a major role to construct methods in mathematics
to solve problems in applied mathematics and sciences. So the attraction of metric spaces to a large
numbers of mathematicians is understandable. Some generalizations of the notion of a metric space have
been proposed by some authors.

In 1963, S. Gähler introduced the notion of 2-metric spaces but different authors proved that there is no
relation between these two functions and there is no easy relationship between results obtained in the two
settings. Because of that, Dhage [18] introduced a new concept of the measure of nearness between three
or more objects. But topological structure of so called D-metric spaces was incorrect. In 2006, Mustafa in
collaboration with Sims introduced a new notion of generalized metric space called G-metric space [25].

∗Corresponding author
Email address: drhknashine@gmail.com (Hemant Kumar Nashine)

Received 2011-3-5



H. Kumar Nashine, J. Nonlinear Sci. Appl. 1 (2012), 1–13 2

In fact, Mustafa et al. studied many fixed point results for a self-mapping in G-metric space under certain
conditions; see [24]–[30]. This is a generalization of metric spaces in which a non-negative real number is
assigned to every triplet of elements. Analysis of the structure of these spaces was done in details in [26].
Fixed point theory in these spacee was initiated in [27]. Particularly, Banach contraction mapping principle
was established in this work. After that several fixed point results were proved in these spaces. Some of
these works are noted in [1, 2, 28, 29, 30, 42, 43].

In present era, fixed point theory has developed rapidly in metric spaces endowed with a partial ordering.
Fixed point problems have also been considered in partially ordered probabilistic metric spaces [17], partially
ordered G-metric spaces [8, 39], partially ordered cone metric spaces [13, 23, 43], partially ordered fuzzy
metric spaces [40] and partially ordered non-Archimedean fuzzy metric spaces [4, 5].

Mixed monotone operators were introduce by Guo and Lakshmikantham in [19]. Their study has not
only important theoretical meaning but also wide applications in engineering, nuclear physics, biological
chemistry technology, etc. Particularly, a coupled fixed point result in partially ordered metric spaces was
established by Bhaskar and Lakshmikantham [10]. After the publication of this work, several coupled fixed
point and coincidence point results have appeared in the recent literature. Works noted in [3, 6, 7, 9, 11,
16, 17, 20, 21, 31, 32, 33, 34, 35, 36, 37, 41, 44] are some relevant examples.

In [10], Bhaskar and Lakshmikantham introduced the notions of a mixed monotone mapping and a
coupled fixed point. Lakshmikantham et al. [15] introduced the concept of a coupled coincidence point of
a mapping F from X × X into X and a mapping g from X into X and studied fixed point theorems in
partially ordered metric spaces. Recently, Choudhury and Maity [13] also established coupled fixed point
theorems in a partially ordered G-metric space.

The aim of this paper is to prove a coupled coincidence and common fixed point theorems for commuting
mappings with mixed g-monotone property in partially ordered G-metric spaces. In this paper, we extend
the results of Choudhury and Maity [13] for a pair of commutative maps. Examples are given to support
the usability of our results and to distinguish them from the existing ones.

2. PRELIMINARIES

Throughout this paper (X,�) denotes a partially ordered set with the partial order �. By ’x � y holds’,
we mean that ’y � x holds’ and by ’x ≺ y holds’ we mean that ’x � y holds and x 6= y’.

Definition 2.1. (G-Metric Space [26]). Let X be a nonempty set, and let G : X × X × X → R+ be a
function satisfying the following properties:

(G1) G(x, y, z) = 0, if x = y = z;

(G2) 0 < G(x, x, y), for all x, y ∈ X with x 6= y;

(G3) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X with z 6= y;

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry in all three variables);

(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z), for all x, y, z, a ∈ X (rectangle inequality).

Then the function G is called a G-metric on X and the pair (X,G) is called a G-metric space.

Definition 2.2. ([26]). Let (X,G) be a G-metric space and let {xn} be a sequence of points of X. A point
x ∈ X is said to be the limit of the sequence {xn} if limn,m→∞G(x, xn, xm) = 0 and one says that the
sequence {xn} is G-convergent to x.

Thus, if xn → x in a G-metric space (X,G), then for any ε > 0, there exists a positive integer N such
that G(x, xn, xm) < ε, for all n,m ≥ N .

It was shown in [26] that the G-metric induces a Hausdorff topology and the convergence described in
the above definition is relative to this topology. The topology being Hausdorff, a sequence can converge at
most to one point.
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Definition 2.3. ([26]). Let (X,G) be a G-metric space. A sequence {xn} in X is called G-Cauchy if
for every ε > 0, there is a positive integer N such that G(xn, xm, xl) < ε, for all n,m, l ≥ N , that is, if
G(xn, xm, xl)→ 0, as n,m, l→∞.

Lemma 2.4. ([26]). If (X,G) is a G-metric space, then the following are equivalent:

(1) {xn} is G-convergent to x;

(2) G(xn, xn, x)→ 0, as n→∞;

(3) G(xn, x, x)→ 0, as n→∞;

(4) G(xm, xn, x)→ 0, as m,n→∞.

Lemma 2.5. ([25]). If (X,G) is a G-metric space, then the following are equivalent:

(1) The sequence {xn} is G-Cauchy.

(2) For every ε > 0, there exists a positive integer N such that G(xn, xm, xm) < ε, for all n,m ≥ N .

Lemma 2.6. ([13, 26]). If (X,G) is a G-metric space then G(x, y, y) ≤ 2G(y, x, x) for all x, y ∈ X.

Combining Lemmas 2.5 and 2.6 we have the following result.

Lemma 2.7. ([13]) If (X,G) is a G-metric space then {xn} is a G-Cauchy sequence if and only if for every
ε > 0, there exists a positive integer N such that G(xn, xm, xm) < ε, for all m > n ≥ N .

Definition 2.8. ([26]). Let (X,G), (X ′, G′) be two G-metric spaces. Then a function f : X → X ′ is
G-continuous at a point x ∈ X if and only if it is G-sequentially continuous at x, that is, whenever {xn} is
G-convergent to x, {f(xn)} is G′-convergent to f(x).

Definition 2.9. ([26]). A G-metric space (X,G) is called symmetric if G(x, y, y) = G(y, x, x) for all
x, y ∈ X.

Definition 2.10. ([26]). A G-metric space (X,G) is said to be G-complete (or complete G-metric space) if
every G-Cauchy sequence in (X,G) is convergent in X.

Definition 2.11. Let X be a nonempty set. Then (X,G,�) is called an ordered G-metric space if:

(i) (X,G) is a metric space,

(ii) (X,�) is a partially ordered set.

Definition 2.12. Let (X,�) be a partially ordered set. Then x, y ∈ X are called comparable if x � y or
y � x holds.

Definition 2.13. ([10]) . Let (X,�) be a partially ordered set and F : X×X → X. The mapping F is said
to has the mixed monotone property if F is monotone non-decreasing in its first argument and is monotone
nonincreasing in its second argument, that is, for any x, y ∈ X,

x1, x2 ∈ X, x1 � x2 ⇒ F (x1, y) � F (x2, y),

y1, y2 ∈ X, y1 � y2 ⇒ F (x, y1) � F (x, y2).

This definition coincides with the notion of a mixed monotone function on R2 when ≤ represents the usual
total order on R.

Definition 2.14. ([10]). An element (x, y) ∈ X×X is a coupled fixed point of the mapping F : X×X → X
if

F (x, y) = x and F (y, x) = y.

The concept of the mixed monotone property is generalized in [15].
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Definition 2.15. ([15]). Let (X,�) be a partially ordered set and let F : X × X → X and g : X → X.
The mapping F is said to has the mixed g-monotone property if F is monotone g-non-decreasing in its first
argument and is monotone g-non-increasing in its second argument, that is, for any x, y ∈ X

x1, x2 ∈ X, g(x1) � g(x2)⇒ F (x1, y) � F (x2, y) (2.1)

and
y1, y2 ∈ X, g(y1) � g(y2)⇒ F (x, y1) � F (x, y2). (2.2)

Clearly, if g is the identity mapping, then Definition 2.15 reduces to Definition 2.13.

Definition 2.16. An element (x, y) ∈ X × X is called a coupled coincidence point of the mappings F :
X ×X → X and g : X → X if

F (x, y) = g(x) and F (y, x) = g(y),

It is a common coupled fixed point of F and g if

F (x, y) = g(x) = x, and F (y, x) = g(y) = y.

Definition 2.17. Let (X, d) be a metric space and F : X ×X → X and g : X → X be mappings. We say
that F and g are commutative if

F (g(x), g(y)) = g(F (x, y))

for all x, y ∈ X.

Definition 2.18. Let (X,G) be a G-metric space. A mapping F : X ×X → X is said to be continuous if
for any two sequences {xn} and {yn} G-converging to x and y respectively, {F (xn, yn)} is G-convergent to
F (x, y).

3. MAIN RESULTS

Our first result is the following.

Theorem 3.1. Let (X,G,�) be a partially ordered G-metric space. Let F : X ×X → X and g : X → X be
mappings such that F has the mixed g-monotone property on X and there exist two elements x0, y0 ∈ X with
g(x0) � F (x0, y0) and g(y0) � F (y0, x0). Suppose that there exists a k ∈ [0, 12) such that for x, y, z, u, v, w ∈
X, the following holds:

G(F (x, y), F (u, v), F (z, w)) ≤ k[G(gx, gu, gz) +G(gy, gv, gw)] (3.1)

for all gx � gu � gz and gy � gv � gw where either gu 6= gz or gv 6= gw. We assume the following
hypotheses:

(i) F (X ×X) ⊆ g(X),

(ii) g(X) is G-complete,

(iii) g is G-continuous and commutes with F .

Then F and g have a coupled coincidence point. If gu = gz and gv = gw, then F and g have common fixed
point, that is, there exist x ∈ X such that

g(x) = F (x, x) = x.
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Proof. Let x0, y0 ∈ X be such that g(x0) � F (x0, y0) and g(y0) � F (y0, x0). Since F (X ×X) ⊆ g(X), we
can choose x1, y1 ∈ X such that g(x1) = F (x0, y0) and g(y1) = F (y0, x0).

Again since F (X × X) ⊆ g(X), we can choose x2, y2 ∈ X such that g(x2) = F (x1, y1) and g(y2) =
F (y1, x1). Continuing this process, we can construct two sequences {xn} and {yn} in X such that,

g(xn+1) = F (xn, yn) and g(yn+1) = F (yn, xn) ∀ n ≥ 0. (3.2)

Now we prove that for all n ≥ 0,
g(xn) � g(xn+1) (3.3)

and
g(yn) � g(yn+1). (3.4)

We shall use the mathematical induction. Let n = 0. Since g(x0) � F (x0, y0) and g(y0) � F (y0, x0), in view
of g(x1) = F (x0, y0) and g(y1) � F (y0, x0), we have g(x0) � g(x1) and g(y0) � g(y1), that is, (3.3) and (3.4)
hold for n = 0. We presume that (3.3) and (3.4) hold for some n > 0. As F has the mixed g-monotone
property and g(xn) � g(xn+1), g(yn) � g(yn+1), from (3.2), we get

g(xn+1) = F (xn, yn) � F (xn+1, yn) (3.5)

and
F (yn+1, xn) � F (yn, xn) = g(yn+1). (3.6)

Also for the same reason we have

g(xn+2) = F (xn+1, yn+1) � F (xn+1, yn) and F (yn+1, xn) � F (yn+1, xn+1) = g(yn+2).

Then from (3.2) and (3.3), we obtain

g(xn+1) � g(xn+2) and g(yn+1) � g(yn+2).

Thus by the mathematical induction, we conclude that (3.3) and (3.4) hold for all n ≥ 0.
Continuing this process, one can easily verify that

g(x0) � g(x1) � g(x2) � · · · � g(xn+1) � · · ·

and
g(y0) � g(y1) � g(y2) � · · · � g(yn+1) � · · · .

If (xn+1, yn+1) = (xn, yn), then F and g have a coupled coincidence point. So we assume (xn+1, yn+1) 6=
(xn, yn) for all n ≥ 0, that is, we assume that either g(xn+1) = F (xn, yn) 6= g(xn) or g(yn+1) = F (yn, xn) 6=
g(yn).

Next, we claim that, for all n ≥ 0,

G(gxn, gxn+1, gxn+1) ≤
1

2
(2k)n[G(gx0, gx1, gx1) +G(gy0, gy1, gy1)]. (3.7)

For n = 1, we have

G(gx1, gx2, gx2) = G(F (x0, y0), F (x1, y1), F (x1, y1))

≤ k[G(gx0, gx1, gx1) +G(gy0, gy1, gy1)]

=
1

2
(2k)1[G(gx0, gx1, gx1) +G(gy0, gy1, gy1)].

Thus (3.7) holds for n = 1. Therefore, we presume that (3.7) holds n > 0. Since g(xn+1) � g(xn) and
g(yn+1) � g(yn), from (3.1) and (3.2), we have

G(gxn, gxn+1, gxn+1) = G(F (xn−1, yn−1), F (xn, yn), F (xn, yn)) (3.8)

≤ k[G(gxn−1, gxn, gxn) +G(gyn−1, gyn, gyn)]. (3.9)
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From

G(gxn−1, gxn, gxn) = G(F (xn−2, yn−2), F (xn−1, yn−1), F (xn−1, yn−1))

≤ k[G(gxn−2, gxn−1, gxn−1) +G(gyn−2, gyn−1, gyn−1)], (3.10)

and

G(gyn−1, gyn, gyn) = G(F (yn−2, xn−2), F (yn−1, xn−1), F (yn−1, xn−1)]

≤ k[G(gyn−2, gyn−1, gyn−1) +G(gxn−2, gxn−1, gxn−1)]. (3.11)

By combining (3.10) and (3.11), we have

G(gxn−1, gxn, gxn) +G(gyn−1, gyn, gyn) ≤ 2k[G(gxn−2, gxn−1, gxn−1) +G(gyn−2, gyn−1, gyn−1)]

holds for all n ∈ N . Thus, from (3.8)

G(gxn, gxn+1, gxn+1) ≤ k[G(gxn−1, gxn, gxn) +G(gyn−1, gyn, gyn))

≤ 2k2[G(gxn−2, gxn−1, gxn−1) +G(gyn−2, gyn−1, gyn−1)]

...

≤ 1

2
(2k)n[G(gx0, gx1, gx1) +G(gy0, gy1, gy1)].

Thus for each n ∈ N , we have

G(gxn, gxn+1, gxn+1) ≤
1

2
(2k)n[G(gx0, gx1, gx1) +G(gy0, gy1, gy1)]. (3.12)

Let m,n ∈ N with m > n. By Axiom (G5) of definition of G-metric spaces, we have

G(gxn, gxm, gxm) ≤ G(gxn, gxn+1, gxn+1) +G(gxn+1, gxn+2, gxn+2) + · · ·+G(gxm−1, gxm, gxm).

Since 2k < 1, by (3.12) we get

G(gxn, gxm, gxm) ≤ 1

2

m−1∑
i=n

(2k)i[G(gx0, gx1, gx1) +G(gy0, gy1, gy1)]

≤ (2k)n

2(1− 2k)
[G(gx0, gx1, gx1) +G(gy0, gy1, gy1)].

Letting n,m→ +∞, we have
lim

n,m→+∞
G(g(xn), g(xm), g(xm)) = 0.

Thus {gxn} is G-Cauchy in g(X). Similarly, we may show that {gyn} is G-Cauchy in g(X).
Since g(X) is G-complete, we get {gxn} and {gyn} are G-convergent to some x ∈ X and y ∈ X

respectively. Since g is G-continuous, we have {g(gxn)} is G-convergent to gx and {g(gyn)} is G-convergent
to gy, i.e,

lim
n→+∞

g(g(xn)) = g(x) and lim
n→+∞

g(g(yn)) = g(y). (3.13)

Also, from commutativity of F and g, we have

F (g(xn), g(yn)) = g(F (xn, yn)) = g(g(xn+1)) (3.14)

and
F (g(yn), g(xn)) = g(F (yn, xn)) = g(g(yn+1)). (3.15)

Next, we claim that (x, y) is a coupled coincidence point of F and g.
Now, from the condition (3.1), we have:

G(ggxn+1, F (x, y), F (x, y)) = G(F (gxn, gyn), F (x, y), F (x, y)) ≤ k[G(ggxn, gx, gx) +G(ggyn, gy, gy)].
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Letting n→ +∞, and using the fact that G is continuous on its variables, we get that

G(gx, F (x, y), F (x, y)) ≤ k[G(gx, gx, gx) +G(gy, gy, gy)] = 0.

Hence gx = F (x, y). Similarly, we may show that gy = F (y, x).
Finally, we claim that x is a common fixed point of F and g.
Since (x, y) is a coupled coincidence point of the mappings F and g, we have gx = F (x, y) and gy =

F (y, x). Assume gx 6= gy. Then by (3.1), we get

G(gx, gy, gy) = G(F (x, y), F (y, x), F (y, x)) ≤ k[G(gx, gy, gy) +G(gy, gx, gx)].

Also by (3.1), we have

G(gy, gx, gx) = G(F (y, x), F (x, y), F (x, y)) ≤ k[G(gy, gx, gx) +G(gx, gy, gy)].

Therefore

G(gx, gy, gy) +G(gy, gx, gx) ≤ 2k[G(gx, gy, gy) +G(gy, gx, gx)].

Since 2k < 1, we get

G(gx, gy, gy) +G(gy, gx, gx) < G(gx, gy, gy) +G(gy, gx, gx),

which is a contradiction. So gx = gy, and hence

F (x, y) = gx = gy = F (y, x).

Since {gxn+1} is subsequence of {gxn} we have {gxn+1} is G-convergent to x. Thus

G(gxn+1, gx, gx) = G(gxn+1, F (x, y), F (x, y))

= G(F (xn, yn), F (x, y), F (x, y))

≤ k[G(gxn, gx, gx) +G(gyn, gy, gy)].

Letting n→ +∞, and use the fact that G is continuous on its variables, we get

G(x, gx, gx) ≤ k[G(x, gx, gx) +G(y, gy, gy)].

Similarly, we may show that

G(y, gy, gy) ≤ k[G(x, gx, gx) +G(y, gy, gy)).

Thus
G(x, gx, gx) +G(y, gy, gy) ≤ 2k[G(x, gx, gx) +G(y, gy, gy)].

Since 2k < 1, the last inequality happenes only if G(x, gx, gx) = 0 and G(y, gy, gy) = 0. Hence x = gx and
y = gy. Thus we get gx = F (x, x) = x. Thus F and g have a common fixed point. This completes the proof
of the theorem.

Now, our second result is the following.

Theorem 3.2. If in the above theorem, in the place of condition (ii), we assume the following conditions
in the complete G-metric space X, namely,

if {xn} ⊂ X is a nondecreasing sequence with xn → x in X, then xn � x for all n (3.16)

and
if {yn} ⊂ X is a nondecreasing sequence with yn → y in X, then yn � y for all n. (3.17)

Then, we have the conclusions of Theorem 3.1, provided g is nondecreasing.
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Proof. Proceeding exactly as in Theorem 3.1, we have {gxn} and {gyn} are G-Cauchy in X. Since (X,G)
is a complete metric space, there exists (x, y) ∈ X ×X such that

lim
n→+∞

F (xn, yn) = lim
n→+∞

g(xn) = x and lim
n→+∞

F (yn, xn) = lim
n→+∞

g(yn) = y. (3.18)

Therefore, from (iii) we arrive at (3.13), (3.14) and (3.15). Since {g(xn)} is a non-decreasing sequence and
g(xn)→ x, and as {g(yn)} is a non-increasing sequence and g(yn)→ y, by assumption (3.16) and (3.17) we
have, g(gxn) � g(x) and g(gyn) � g(y) for all n ≥ 0. If g(gxn) = g(x) and g(gyn) = g(y) for some n, then,
by construction, g(gxn+1) = g(x) and g(gyn+1) = g(y) and (x, y) is a coupled fixed point. So we assume
either g(gxn) 6= g(x) or g(gyn) 6= g(y). Applying the contractive condition (3.1), we have

G(F (x, y), gx, gx)

≤ G(F (x, y), F (g(xn), g(yn)), F (g(xn), g(yn))) +G(F (g(xn), g(yn)), gx, gx)

= G(F (g(xn), g(yn)), F (g(xn), g(yn)), F (x, y)) +G(gF (xn, yn), gx, gx)

≤ k

2
[G(g(gxn), g(gxn), gx) +G(g(gyn), g(gyn), gy)] +G(g(gxn+1), gx, gx).

Taking n→ +∞ in the above inequality we obtain G(F (x, y), gx, gx) = 0, that is, F (x, y) = g(x). Similarly,
we have that F (y, x) = g(y). Remaining part of the proof follows from Theorem 3.1. Hence, we have
g(x) = F (x, x) = x. This completes the proof of the theorem.

Corollary 3.3. Let (X,G,�) be a partially ordered G-metric space. Let F : X×X → X and g : X → X be
mappings such that F has the mixed g-monotone property on X and there exist two elements x0, y0 ∈ X with
g(x0) � F (x0, y0) and g(y0) � F (y0, x0). Suppose that there exists a k ∈ [0, 12) such that for x, y, u, v ∈ X,
the following holds:

G(F (x, y), F (u, v), F (u, v)) ≤ k[G(gx, gu, gu) +G(gy, gv, gv)] (3.19)

for all gx � gu and gy � gv. We assume the following hypotheses:

(a) F (X ×X) ⊆ g(X),

(b) g is G-continuous and commutes with F .

Then there exists a x ∈ X such that gx = F (x, x) = x, provided either of the following conditions is satisfied:

(c) g(X) is G-complete,

(d) g is nondecreasing with

if {xn} ⊂ X is a nondecreasing sequence with xn → x in X, then xn � x for all n

and

if {yn} ⊂ X is a nondecreasing sequence with yn → y in X, then yn � y for all n.

Proof. Follows from Theorem 3.1 by taking z = u and v = w.

Corollary 3.4. Let (X,G,�) be a partially ordered G-metric space. Let F : X × X → X be a mapping
having mixed monotone property on X such that there exist two elements x0, y0 ∈ X with x0 � F (x0, y0)
and y0 � F (y0, x0). Assume that there exists a k ∈ [0, 12) such that for x, y, u, v ∈ X, the following holds:

G(F (x, y), F (u, v), F (u, v)) ≤ k[G(x, u, u) +G(y, v, v)] (3.20)



H. Kumar Nashine, J. Nonlinear Sci. Appl. 1 (2012), 1–13 9

for all x � u and y � v. Then there exists an x ∈ X such that F (x, x) = x, provided

if {xn} ⊂ X is a nondecreasing sequence with xn → x in X, then xn � x for all n

and

if {yn} ⊂ X is a nondecreasing sequence with yn → y in X, then yn � y for all n.

Proof. Define g : X → X by gx = x. Then F and g satisfy all the hypotheses of Corollary 3.3. Hence the
result follows.

Now, our third result is the following.

Theorem 3.5. Let (X,G,�) be a partially ordered G-metric space. Let F : X ×X → X and g : X → X
be mappings such that F has the mixed g-monotone property on X and F (x, y) � F (y, x) whenever x � y.
Suppose

(I) F (X ×X) ⊆ g(X),

(II) g is G-continuous and commutes with F .

Assume that there exists a k ∈ [0, 12) such that for x, y, z, u, v, w ∈ X, the inequality (3.1) holds, whenever
gx � gu � gz and gy � gv � gw where either gu 6= gz or gv 6= gw. If there exist two elements x0, y0 ∈ X
such that

g(x0) � g(y0), g(x0) � F (x0, y0) and g(y0) � F (y0, x0)

then, we have the conclusions of Theorem 3.1, provided either of the following conditions holds:

(III) g(X) is G-complete,

(IV) g is nondecreasing in the complete G-metric space (X,G) with

if {xn} ⊂ X is a nondecreasing sequence with xn → x in X, then xn � x for all n

and

if {yn} ⊂ X is a nondecreasing sequence with yn → y in X, then yn � y for all n.

Proof. By the condition of the theorem there exist x0, y0 ∈ X such that g(x0) � F (x0, y0) and g(y0) �
F (y0, x0). We define x1, y1 ∈ X as g(x0) � F (x0, y0) = g(x1) and g(y0) � F (y0, x0) = g(y1).

Since g(x0) � g(y0), we have, by a condition of the theorem, F (x0, y0) � F (y0, x0).
Hence g(x0) � g(x1) = F (x0, y0) � F (y0, x0) = g(y1) � g(y0).
Continuing the above procedure we have two sequences {g(xn)} and {g(yn)} recursively as follows:

for all n ≥ 1, g(xn) = F (xn−1, yn−1) and g(yn) = F (yn−1, xn−1), (3.21)

such that

g(x0) � F (x0, y0) = g(x1) � · · · � F (xn−1, yn−1) = g(xn) � · · · (3.22)

� g(yn) = F (xn−1, yn−1) � · · · � g(y1) = F (y0, x0) � g(y0).

In particular, we have for all n ≥ 0,

g(xn) � F (xn, yn) = g(xn+1) � g(yn+1) = F (yn, xn) � g(yn).
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If xn = yn = c (say) for some n, then g(c) � F (c, c) � F (c, c) � g(c). This shows that g(c) = F (c, c). Thus
(c, c) is a coupled fixed point. Hence we assume that

g(xn) ≺ g(yn), for all n ≥ 0. (3.23)

Further, for the same reason as stated in Theorem 3.1, we assume that (xn, yn) 6= (xn+1, yn+1). Then, in
view of (3.23), for all n ≥ 0, the inequality (3.1) will hold with

x = xn+2, u = xn+1, w = xn, y = yn, v = yn+1 and z = yn+2.

The rest of the proof is completed by repeating the same steps as in Theorem 3.1 and Theorem 3.2 .

Now, we present examples to illustrate our obtained results given by Theorems 3.1 and Theorem 3.2 and
to show that they are proper extension of some known results.

Example 3.6. Let X = R be ordered by the following relation

x � y ⇐⇒ x = y or (x, y ∈ [0, 1] and x ≤ y).

Let a G-metric on X be defined by

G(x, y, x) = |x− y|+ |y − z|+ |z − x|.

Then, (X,G,�) is a complete regular ordered G-metric space.
Let g : X → X and F : X ×X → X be defined by

gx =


1
20x, x < 0
x
2 , x ∈ [0, 1]
1
20x+ 9

20 , x > 1;

and F (x, y) =
x+ y

20
.

Take k = 1
10 . We will check that condition (3.1) of Theorem 3.2 is fulfilled for all x, y, u, v, z, w ∈ X satisfying

(gz � gu � gx and gw � gv � gy) or (gx � gu � gz and gy � gv � gw). The only nontrivial case is when
x, y, u, v, z, w ∈ [0, 1] and (z ≤ u ≤ x and w ≥ v ≥ y) or (x ≤ u ≤ z and y ≥ v ≥ w). Then,

G(F (x, y),F (u, v), F (z, w)) (3.24)

= |F (x, y)− F (u, v)|+ |F (u, v)− F (z, w)|+ |F (z, w)− F (x, y)|
=
∣∣x+y

20 −
u+v
20

∣∣+
∣∣u+v

20 −
z+w
20

∣∣+
∣∣ z+w

20 −
x+y
20

∣∣
=
∣∣x−u

20 + y−v
20

∣∣+
∣∣u−z

20 + v−w
20

∣∣+
∣∣ z−x

20 + w−y
20

∣∣
≤ 1

20
{[|x− u|+ |u− z|+ |z − x|] + [|y − v|+ |v − w|+ |w − y|]}

=
1

10
[G(gx, gu, gz) +G(gy, gv, gw)]

= k[G(gx, gu, gz) +G(gy, gv, gw)],

and the condition holds. We conclude that all the conditions of Theorems 3.1 and 3.2 are satisfied. Obviously,
the mappings g and F have a unique common coupled fixed point (0, 0).

Note however that these theorems cannot be used in non-ordered case to reach this conclusion. Indeed,
take x = 2 and y = u = v = z = w = 0. Then condition (3.1) does not hold since

G(F (2, 0), F (0, 0), F (0, 0)) = G( 1
10 , 0, 0) =

1

5
,

while

k[G(g2, g0, g0) +G(g0, g0, g0)] =
1

10
[G(1120 , 0, 0) +

1

10
· 0] =

1

10
· 2 · 11

20
=

11

100
<

1

5
,

and obviously contractive condition (3.1) is not fulfilled.
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Example 3.7. Let X = [0,+∞) be equipped with the G-metric G(x, y, z) = |x− y|+ |y − z|+ |z − x| and
the order � defined by

x � y ⇐⇒ x = y ∨ (x, y ∈ [0, 1] ∧ x ≤ y).

Then (X,G,�) is a complete partially ordered G-metric space. Consider the (continuous) mapping F :
X2 → X given by

F (x, y) =

{
1
6x, x ∈ [0, 1], y ∈ X,
x− 5

6 , x > 1, y ∈ X,

and take g : X → X given by gx = x. Obviously, F has the g-mixed monotone property. Let x, y, u, v, z, w ∈
X be such that x � u � z and y � v � w. Then the following cases are possible.

1) All of these variables belong to [0, 1] and, hence x ≥ u ≥ z and y ≤ v ≤ w. If we denote by L and R,
respectively, the left-hand and right-hand side (with, say, k = 1

4) of inequality (3.1), then

L = G(16x,
1
6u,

1
6z)

=
1

6
(|x− u|+ |u− z|+ |z − x|)

≤ 1

4
(|x− u|+ |u− z|+ |z − x|+ |y − v|+ |v − w|+ |w − y|) = R.

2) x, u, z ∈ [0, 1] (and x ≥ u ≥ z) and y, v, w > 1 (and y = v = w). Then we have

L = G(16x,
1
6u,

1
6z) =

1

6
(|x− u|+ |u− s|+ |s− x|)

≤ 1

4
(|x− u|+ |u− z|+ |z − x|) = R.

The case when x, u, z > 1 and y, v, w ∈ [0, 1] is treated similarly.
3) x, u, z, y, v, w > 1. Then x = u = z, y = v = w and L = R = 0.
Thus, all the conditions of Theorem 3.1 are fulfilled and F and g have a common coupled fixed point

(which is (0, 0)).
However, consider the same G-metric space (X,G) without order. Take (x, y) = (2, 2), (u, v) = (2, 3)

and (z, w) = (3, 3). Then we have

L = G(F (2, 2), F (2, 3), F (3, 3)) = G(76 ,
7
6 ,

13
6 ) = 2,

and

R = k[G(2, 2, 3) +G(2, 3, 3)] = k[2 + 2] < 2,

i.e., L > R whatever k ∈ [0, 12) is chosen, and the contractive condition cannot be satisfied.

Remark 3.8. Our results generalize the results of Shatanawi [43] and Aydi et al. [8, Corollary 3.1 and 3.2] in
G-metric spaces. Our results generalize the results of Choudhury and Maity [13] for a pair of commutative
maps.
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