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1. Introduction and Preliminaries

Motived by the big numbers of applications of fractional differential equations in various fields of science
and engineering such as control, porous media, electrochemistry, viscoelasticity, electromagnetic, and other
fields, see [1,5,10,11], many fractional boundary value problems with the help of technics of nonlinear analysis,
have been investigated in the last few decades.

This paper deals with the existence and uniqueness of solutions for the boundary value problem (P1):

cDq
0+
u (t) = f(t, u(t),cDσ

0+u(t)), 0 < t < 1 (1.1)

u (0) = u(1) = u′′ (1) = u′′ (0) = 0, (1.2)
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where f : [0, 1] × R × R → R is a given function, 3 < q < 4, 1 < σ < 2 and cDq
0+

denotes the Caputo’s
fractional derivative. It is Shown that the Caputo’s fractional derivative, allows the utilization of physically
interpretation of boundary conditions. For more details on the geometric and physical interpretation for
Caputo fractional derivatives types, see [11]. Our results allow the function f to depend on the fractional
derivative cDσ

0+u(t) which leads to some difficulties. By using Banach contraction principle and Leray
Schauder nonlinear alternative, the existence and uniqueness of solution for the fractional boundary value
problem (P1) are investigated. No contributions exist, as far as we know, concerning the existence of
solutions of the fractional differential equation (1.1) jointly with the nonlocal condition (1.2).

Most of papers dealing with similar problems are devoted to the solvability of nonlinear fractional
differential equation or to the existence and multiplicity of positive solutions [2,6,8,9,12,13-16]. Moreover,
in [9], Sihua Liang and Jihui Zhang considered the following nonlinear fractional boundary value problem

Dq
0+
u (t) + f(t, u(t)) = 0, 0 < t < 1

u (0) = u′ (0) = u′′ (0) = u′′ (1) = 0

where 3 < q ≤ 4 and Dq
0+

is the Riemann-Liouville fractional derivative. Using lower and upper solution
method and fixed-point theorems, some results on the existence of positive solutions are obtained.

With the help of Leray–Schauder nonlinear alternative, a fixed-point theorem on cones and a mixed
monotone method, Xu, Jiang and Yuan [14] have established the positivity of multiple solutions to the
following fractional differential equation,

Dq
0+
u (t) + f(t, u(t)) = 0, 0 < t < 1

u (0) = u (1) = u′ (0) = u′ (1) = 0

where 3 < q ≤ 4 and Dq
0+

is the Riemann-Liouville fractional derivative.
In [2], Bai established the existence of triple positive solutions for the nonlinear fractional differential

equation boundary value problem:

Dq
0+
u (t) + a(t)f(t, u(t), u′(t)) = 0, 0 < t < 1

u (0) = u′ (0) = u′′ (0) = u′′ (1) = 0,

where 3 < q ≤ 4 and Dq
0+

is the Riemann-Liouville fractional derivative. This paper is organized as follows,
in the next section we cite some Definitions and Lemmas needed in our proofs. Section 3 treats the existence
and uniqueness of solution by using Banach contraction principle and Leray-Schauder nonlinear alternative.
Some examples are given illustrating the previous results.

2. Preliminaries and Lemmas

In this section, we introduce definitions and preliminary facts that are used throughout this paper.

Definition 2.1. If g ∈ C([a, b]) and α > 0, then the Riemann-Liouville fractional integral is defined by

Iαa+g (t) = 1
Γ(α)

∫ t
a

g(s)
(t−s)1−αds.

Definition 2.2. Let α = 0, n = [α] + 1. If f ∈ ACn[a, b] then the Caputo fractional derivative of order α

of f defined by cDα
a+g (t) = 1

Γ(n−α)

∫ t
a

g(n)(s)
(t−s)α−n+1ds, exist almost everywhere on [a, b] ( [α] is the entire part

of α).
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Lemma 2.3. [7] Let α, β > 0 and n = [α] + 1, then the following relations hold: cDα
0+t

β−1 = Γ(β)
Γ(β−α) t

β−α−1,

β > n and cDα
0+t

k = 0, k = 0, 1, 2, ..., n− 1.

Lemma 2.4. [7] For α > 0, g(t) ∈ C(0, 1), the homogenous fractional differential equation cDα
a+g (t) = 0

has a solution g(t) = c1 +c2t+c3t
2 + ...+cnt

n−1, where, ci ∈ R, i = 0, ..., n, and n = [α]+1, (α non-integer)

Denote by L1 ([0, 1] ,R) the Banach space of Lebesgue integrable functions from [0, 1] into R with the
norm ||y||L1 =

∫ 1
0 |y (t)| dt.

The following Lemmas gives some properties of Riemann-Liouville fractional integrals and Caputo frac-
tional derivative.

Lemma 2.5. [1] Let p, q ≥ 0, f ∈ L1[a, b]. Then Ip
0+
Iq

0+
f(t) = Ip+q

0+
f(t) = Iq

0+
Ip

0+
f(t) and cDq

0+
Iq

0+
f(t) =

f(t), for all t ∈ [a, b].

Lemma 2.6. [7] Let β > α > 0. Then the formula cDα
0+I

β
0+
f(t) = Iβ−α

0+
f(t), holds almost everywhere on

t ∈ [a, b], for f ∈ L1[a, b] and it is valid at any point x ∈ [a, b] if f ∈ C[a, b].

Now we start by solving an auxiliary problem.

Lemma 2.7. Let 3 < q < 4, 1 < σ < 2 and y ∈ C[0, 1]. The unique solution of the fractional boundary
value problem {

cDq
0+
u (t) = y(t), 0 < t < 1

u (0) = u(1) = u′′ (1) = u′′ (0) = 0,
(2.1)

is given by

u(t) =
1

Γ(q)

∫ 1

0
G(t, s)y(s)ds, (2.2)

where

G(t, s) =

{
(t− s)q−1 − t (1− s)q−1 + q(q−1)

6 t
(
1− t2

)
(1− s)q−3 , s ≤ t

−t (1− s)q−1 + q(q−1)
6 t

(
1− t2

)
(1− s)q−3 , t ≤ s.

(2.3)

Proof. In view of Lemmas 2.4 and 2.5 the equation (2.1) is equivalent to the integral equation

u(t) = Iq
0+
y(t) + c1 + c2t+ c3t

2 + c4t
3 (2.4)

for some ci ∈ R. The boundary condition u (0) = 0 gives c1 = 0 and from the boundary condition u (1) = 0
we conclude Iq

0+
y(1) + c2 + c3 + c4 = 0. Differentiating twice both sides of (2.4) and using Lemma 2.6 it

yields u′′(t) = Iq−2
0+

y(t) + 2c3 + 6c4t. The boundary condition u′′ (0) = 0 implies c3 = 0 and from u′′ (1) = 0

we deduce that c4 =
−Iq−2

0+
y(1)

6 , hence
Iq−2

0+
y(1)

6 − Iq
0+
y(1) = c2. Substituting ci, i = 1, ...4, by their values in

(2.4), we get

u(t) = Iq
0+
y(t) + t

(
Iq−2

0+
y(1)

6
− Iq

0+
y(1)

)
−
t3Iq−2

0+
y(1)

6
(2.5)

that can be written as

u(t) =
1

Γ(q)

∫ t

0

(
(t− s)q−1 − t (1− s)q−1 +

q (q − 1) t
(
1− t2

)
(1− s)q−3

6

)
y(s)ds

+
1

Γ(q)

∫ 1

t

[
−t (1− s)q−1 +

q (q − 1)

6
t
(
1− t2

)
(1− s)q−3

]
y(s)ds

that is equivalent to u(t) = 1
Γ(q)

∫ 1
0 G(t, s)y(s)ds where G is defined by (2.3). The proof is complete.
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3. Existence and Uniqueness results

In this section we prove the existence and uniqueness of solution in the Banach space E defined by
all functions u ∈ C2 ([0, 1] ,R) , equipped with the norm ||u|| = max

t∈[0,1]
|u (t)| + max

t∈[0,1]

∣∣cDσ
0+u (t)

∣∣. We know

that for 1 < σ < 2 we have cDσ
0+u ∈ C [0, 1] see [7]. Throughout this section, we suppose that f ∈

C ([0, 1]× R× R,R) . Define the integral operator T : E → E by
Tu(t) = 1

Γ(q)

∫ 1
0 G(t, s)f(s, u(s),cDσ

0+u(s))ds.

Lemma 3.1. The function u ∈ E is solution of the fractional boundary value problem (P1) if and only if
Tu(t) = u(t), ∀t ∈ [0, 1] .

Proof. Suppose that u is solution of (P1) and let
v(t) = 1

Γ(q)

∫ 1
0 G(t, s)f(s, u(s),cDσ

0+u(s))ds. In view of (2.5) we have

v(t) = Iq
0+
f(t, u(t),cDσ

0+u(t))−

tIq
0+
f(1, u(1),cDσ

0+u(1)) +
t
(
1− t2

)
6

Iq−2
0+

f(1, u(1),cDσ
0+u(1)).

with the help of Lemmas 2.6 and 2.3, we obtain

cDq
0+
v(t) = cDq

0+
Iq

0+
f(t, u(t),cDσ

0+u(t))−
(
cDq

0+
t
)
Iq

0+
f(1, u(1),cDσ

0+u(1))

+

(
cDq

0+
t
(
1− t2

))
6

Iq−2
0+

f(1, u(1),cDσ
0+u(1))

= f(t, u(t),cDσ
0+u(t)).

It is clear that v satisfies conditions (1.2), then it is a solution for the problem (P1). The proof is complete.

Theorem 3.2. Assume that there exists nonnegative functions g, h ∈ L1 ([0, 1] ,R+) such that for all
x, y, x, y ∈ R and t ∈ [0, 1] , we have

|f(t, x, x)− f(t, y, y)| ≤ g(t) |x− y|+ h(t) |x− y| , (3.1)

and

Cg + Ch <
1

2
, Ag +Ah <

1

2
, (3.2)

where

Cg =
(∥∥∥Iq−1

0+
g
∥∥∥
L1

+ Iq
0+
g(1) + Iq−2

0+
g(1)

)
,

Ag =
∥∥∥Iq−σ−1

0+
g
∥∥∥
L1

+
Iq−2

0+
g (1)

Γ(4− σ)
,

Ch =
(∥∥∥Iq−1

0+
h
∥∥∥
L1

+ Iq
0+
h(1) + Iq−2

0+
h(1)

)
,

Ah =
∥∥∥Iq−σ−1

0+
h
∥∥∥
L1

+
Iq−2

0+
h (1)

Γ(4− σ)
.

Then the fractional boundary value problem(P1) has a unique solution u in E.

To prove Theorem 3.2, we use the following properties of Riemann-Liouville fractional integrals.

Lemma 3.3. Let q > 0, f ∈ L1 ([a, b],R+). Then, for all t ∈ [a, b] we have Iq+1
0+

f(t) ≤
∥∥Iq

0+
f
∥∥
L1 .
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Proof. Let f ∈ L1 ([a, b],R+) , then∥∥Iq
0+
f
∥∥
L1 =

∫ 1

0
Iq

0+
f(r)dr ≥ 1

Γ(q)

∫ t

0

∫ r

0

f(s)

(r − s)1−q dsdr

=
1

Γ(q)

∫ t

0

(∫ t

s

f(s)

(r − s)1−q dr

)
ds = Iq+1

0+
f(t).

Now we prove Theorem 3.2.

Proof. We shall prove that T is a contraction. In fact, for any u, v ∈ E, we have

Tu(t)− Tv(t)

=
1

Γ(q)

∫ 1

0
G(t, s) (f (s, u (s) ,cDσ

0+u(s))− f (s, v (s) ,cDσ
0+v(s))) ds

= Iq
0+

(f (t, u (t) ,cDσ
0+u(t))− f (s, v (t) ,cDσ

0+v(t)))

−t
[
Iq

0+
(f (1, u (1) ,cDσ

0+u(1))− f (1, v (1) ,cDσ
0+v(1)))

+
t
(
1− t2

)
6

Iq−2
0+

(f (1, u (1) ,cDσ
0+u(1))− f (1, v (1) ,cDσ

0+v(1)))

]
.

Inequality (3.1) implies that

|Tu(t)− Tv(t)| ≤ max |u(t)− v(t)|

(
Iq

0+
g(t) + tIq

0+
g(1) +

t
(
1− t2

)
6

Iq−2
0+

g(1)

)

+ max |cDσ
0+u(t)−c Dσ

0+v(t)|

(
Iq

0+
h(t) + tIq

0+
h(1) +

t
(
1− t2

)
6

Iq−2
0+

h(1)

)
.

From Lemma 3.3 we deduce

|Tu(t)− Tv(t)| ≤ ‖u− v‖

[∥∥∥Iq−1
0+

g
∥∥∥
L1

+ Iq
0+
g(1) +

√
3

27
Iq−2

0+
g(1)

+
∥∥∥Iq−1

0+
h
∥∥∥
L1

+ Iq
0+
h(1) +

√
3

27
Iq−2

0+
h(1)

]
≤ ‖u− v‖ (Cg + Ch) ,

in view of (3.2) it yields

|Tu− Tv| < ‖u− v‖
2

. (3.3)

On the other hand we have

cDσ
0+Tu−

c Dσ
0+Tv = Iq−σ

0+
(f (t, u (t) ,cDσ

0+u(t))− f (s, v (t) ,cDσ
0+v(t))) (3.4)

− t3−σ

Γ(4− σ)
Iq−2

0+
(f (1, u (1) ,cDσ

0+u(1))− f (1, v (1) ,cDσ
0+v(1)))

]
.

Consequently (3.4) becomes

|cDσ
0+Tu−

c Dσ
0+Tv|

≤ ‖u− v‖

[∥∥∥Iq−σ−1
0+

g
∥∥∥
L1

+
Iq−2

0+
g (1)

Γ(4− σ)
+
∥∥∥Iq−σ−1

0+
h
∥∥∥
L1

+
Iq−2

0+
h(1)

Γ(4− σ)

]
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Then
|cDσ

0+Tu−
c Dσ

0+Tv| ≤ ‖u− v‖ (Ag +Ah) . (3.5)

With the help of hypothesis (3.2) it yields

|cDσ
0+Tu−

c Dσ
0+Tv| <

‖u− v‖
2

. (3.6)

Summing (3.3) and (3.6) we deduce ‖Tu− Tv‖ < ‖u− v‖ , from here, the Banach contraction mapping
principle ensures the uniqueness of solution for the fractional boundary value problem (P1). This finishes
the proof.

Now we give an existence result for the fractional boundary value problem (P1).

Theorem 3.4. Assume that f (t, 0, 0) 6= 0 and there exists nonnegative functions k, h, g ∈ L1 ([0, 1] ,R+) ,
φ, ψ ∈ C

(
R+,R∗+

)
nondecreasing on R+ and r > 0, such that

|f (t, x, x)| ≤ k (t)ψ (|x|) + h(t)φ (|x|) + g (t) , (3.7)

(ψ (r) + φ (r) + 1)

(
C1

Γ(q)
+ C2

)
< r, (3.8)

where C1 = max {Ck, Ch, Cg}, C2 = max {Ak, Ah, Ag} , Ch and Cg are defined as in Theorem 3.2 and

Ck =
∥∥∥Iq−1

0+
k
∥∥∥
L1

+ Iq
0+
k(1) + Iq−2

0+
k(1),

Ak =
∥∥∥Iq−σ−1

0+
k
∥∥∥
L1

+
Iq−2

0+
k (1)

Γ(4− σ)
.

Then the fractional boundary value problem (P1) has at least one nontrivial solution u∗ ∈ E.

To prove this Theorem, we apply Leray-Schauder nonlinear alternative:

Lemma 3.5. [4]. Let F be a Banach space and Ω a bounded open subset of F , 0 ∈ Ω. T : Ω → F be a
completely continuous operator. Then, either there exists x ∈ ∂Ω, λ > 1 such that T (x) = λx, or there
exists a fixed point x∗ ∈ Ω.

Proof. First let us prove that T is completely continuous. It is clear that T is continuous since f and G are
continuous. Let Br = {u ∈ E, ‖u‖ ≤ r} be a bounded subset in E. We shall prove that T (Br) is relatively
compact.

i) We will show that T maps bounded sets into bounded sets in E. In fact, it suffices to show that for
any u ∈ Br there exists a positive constant C such that ‖Tu‖ ≤ C. Using (3.7) we have

|Tu(t)| ≤ 1

Γ(q)

∫ 1

0
|G(t, s)| [k (s)ψ (|u (s)|) + h(s)φ (|cDσ

0+u(s|) + g (s)] ds. (3.9)

Since ψ and φ are nondecreasing then (3.9) implies

|Tu(t)| ≤ 1

Γ(q)

∫ 1

0
|G(t, s)| [k (s)ψ (‖u‖) + h(s)φ (‖u‖) + g (s)] ds

≤ 1

Γ(q)

∫ 1

0
|G(t, s)| [k (s)ψ (r) + h(s)φ (r) + g (s)] ds,
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using similar technics as to get (3.3) it yields

|Tu(t)| ≤ 1

Γ(q)

[
ψ (r)

(∥∥∥Iq−1
0+

k
∥∥∥
L1

+ Iq
0+
k(1) + Iq−2

0+
k(1)

)
+φ (r)

(∥∥∥Iq−1
0+

h
∥∥∥
L1

+ Iq
0+
h(1) + Iq−2

0+
h(1)

)
+
(∥∥∥Iq−1

0+
g
∥∥∥
L1

+ Iq
0+
g(1) + Iq−2

0+
g(1)

)]
=

1

Γ(q)
(Ckψ (r) + Chφ (r) + Cg) . (3.10)

Hence

|Tu(t)| ≤ C1

Γ(q)
[ψ (r) + φ (r) + 1] . (3.11)

Moreover, we have

|cDσ
0+Tu| ≤ ψ (r)

(∥∥∥Iq−σ−1
0+

k
∥∥∥
L1

+
Iq−2

0+
k (1)

Γ(4− σ)

)
(3.12)

+φ (r)

(∥∥∥Iq−σ−1
0+

h
∥∥∥
L1

+
Iq−2

0+
h (1)

Γ(4− σ)

)
+
∥∥∥Iq−σ−1

0+
g
∥∥∥
L1

+
Iq−2

0+
g (1)

Γ(4− σ)
.

Using (3.5) we obtain
|cDσ

0+Tu| ≤ C2 (ψ (r) + φ (r) + 1) . (3.13)

From (3.11) and (3.13) we get

‖Tu‖ = (ψ (r) + φ (r) + 1)

(
C1

Γ(q)
+ C2

)
= C,

then T (Br) is uniformly bounded.
ii) We will show that T maps bounded sets into equicontinuous sets of E. Indeed for any t1, t2 ∈ [0, 1] ,

t1 < t2 and u ∈ Br, let C ′ = max(
∣∣f (t, u (t) ,cDσ

0+u(t)
)∣∣, 0 ≤ t ≤ 1, ‖u‖ < r), therefore

|Tu(t1)− Tu(t2)| ≤ C ′

Γ(q)
(

∫ t1

0
|G(t1, s)−G(t2, s)| ds+

∫ t2

t1

|G(t1, s)−G(t2, s)| ds+

∫ 1

t2

|G(t1, s)−G(t2, s)| ds),

that implies

|Tu(t1)− Tu(t2)|

≤ C ′

Γ(q)

∫ t1

0
(t2 − s)q−1 − (t1 − s)q−1

+ (t2 − t1)
(

(1− s)q−1 + q (q − 1)
(
1 + t22 + t21 + t1t2

)
(1− s)q−3

)
ds

+

∫ t2

t1

(t2 − s)q−1

+ (t2 − t1)
(

(1− s)q−1 + q (q − 1)
(
1 + t22 + t21 + t1t2

)
(1− s)q−3

)
ds

+

∫ 1

t2

(t2 − t1)
(

(1− s)q−1 + q (q − 1)
(
1 + t22 + t21 + t1t2

)
(1− s)q−3

)
ds,

if we consider the function Φ(x) = xq−1 − (q − 1)x, we see that Φ is decreasing on [0, 1], consequently
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(t2 − s)q−1−(t1 − s)q−1 ≤ (q−1) (t2 − t1) , from this and using some elementary computations we deduce

|Tu(t1)− Tu(t2)| ≤ C ′ (t2 − t1) (102 + 49 (t2 − t1))

Γ(q)
(3.14)

On the other hand we have

|cDσ
0+Tu(t1)−c Dσ

0+Tu(t2)|

≤ +
1

Γ(2− σ)

∫ t1

0

(
(t1 − s)−σ+1 − (t2 − s)−σ+1

) ∣∣(Tu(s))′′
∣∣ ds

+
1

Γ(2− σ)

∫ t2

t1

(t2 − s)−σ+1
∣∣(Tu(s))′′

∣∣ ds.
Using (3.5) and (3.12) it yields ∣∣(Tu(t))′′

∣∣ ≤ [ψ (r) + φ (r) + 1]C ′2 (3.15)

then
|cDσ

0+Tu(t1)−c Dσ
0+Tu(t2)| ≤

[ψ (r) + φ (r) + 1]C ′2
(2− σ)Γ(2− σ)

[
2(t2 − t1)2−σ + t2−σ2 − t2−σ1

]
(3.16)

when t1 → t2, in (3.14) and (3.16) then |Tu(t1)− Tu(t2)| and∣∣cDσ
0+Tu(t1)−c Dσ

0+Tu(t2)
∣∣ tend to 0. Consequently T (Br) is equicontinuous. From Arzela-Ascoli Theorem

we deduce that T is completely continuous.
Now we apply Leray Schauder nonlinear alternative to prove that T has at least one nontrivial solution

in E.
Let Ω = {u ∈ E : ‖u‖ < r}, for any u ∈ ∂Ω, such that u = λTu, 0 < λ < 1, we get with the help of

(3.11)

|u(t)| = λ |Tu(t)| ≤ |Tu(t)| ≤ C1

Γ(q)
[ψ (r) + φ (r) + 1] . (3.17)

It follows from (3.13)
|cDσ

0+u(t)| ≤ C2 (ψ (r) + φ (r) + 1) . (3.18)

From (3.17), (3.18) and (3.8) we deduce that

‖u‖ ≤ (ψ (r) + φ (r) + 1)

(
C1

Γ(q)
+ C2

)
< r

this contradicts the fact that u ∈ ∂Ω. Lemma 3.5 allows us to conclude that the operator T has a fixed
point u∗ ∈ Ω and then the fractional boundary value problem (P1) has a nontrivial solution u∗ ∈ E. The
proof is complete.

Example 3.6. The fractional boundary value problem{
cD

7
2

0+
u =

(
t

10

)3
u+

(
t−1
20

)2
D

5
4

0+
u+ (t+ 1), 0 < t < 1,

u (0) = u(1) = u′′ (1) = u′′ (0) = 0,
(3.19)

has a unique solution in E.
Proof. We have f (t, x, y) =

(
t

10

)3
x+

(
t−1
20

)2
y + (t+ 1), 3 < q = 7

2 < 4, σ = 5
4 < 2 and

|f (t, x, x)− f (t, y, y)| ≤
(
t

10

)3

|x− x|+
(
t− 1

20

)2

|y − y|
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then g(t) =
(
t

10

)3
and h(t) =

(
t−1
20

)2
. Some calculus give∥∥∥Iq−1

0+
g
∥∥∥
L1

= 3.2065× 10−6, Iq
0+
g(1) = 3.2064× 10−6,

Iq−2
0+

g(1) = 0.11463× 10−3, Cg = 0.24208× 10−3, Ag = 9.7155× 10−4∥∥∥Iq−1
0+

h
∥∥∥
L1

= 5.4709× 10−4, Iq
0+
h(1) = 5.4709× 10−4,∥∥∥Iq−σ−1

0+
g
∥∥∥
L1

= 3.245 7× 10−6,
∥∥∥Iq−σ−1

0+
h
∥∥∥
L1

= 5. 191 8× 10−4

Iq−2
0+

h(1) = 0.32239× 10−2, Ch = 0.21591× 10−2, Ah = 2.8815× 10−2

Cg + Ch = 0.45799× 10−2 <
1

2

Ag +Ah = 2. 598 2× 10−3 <
1

2

Thus Theorem 3.2 implies that the fractional boundary value problem (3.19) has a unique in E.

Example 3.7. The fractional boundary value problem cD
10
3

0+
u =

(1+t2)
100

(
e−tu2 + ln(2 + (cD

6
5

0+
u)2) + 1

1+t

)
= 0, 0 < t < 1

u (0) = u(1) = u′′ (1) = u′′ (0) = 0
(3.20)

has at least one nontrivial solution in E. Applying Theorem 3.4, we have q = 10
3 , σ = 6

5 and

|f (t, x, x)| =
(
1 + t2

)
e−t
( x

10

)2
+
(
1 + t2

) ln(2 + x2)

100
+

(
1 + t2

)
100 (1 + t)

≤
(
|x|
10

)2 (
1 + t2

)
+
(
1 + t2

) ln(2 + x2)

100
+
(
1 + t2

)
≤ k (t)ψ (|x|) + h(t)φ (|x|) + g (t) ,

where k (t) = h(t) = g (t) = 1 + t2, ψ (x) =
(
|x|
10

)2
, φ (x) = ln(2+x2)

100 , f (t, 0, 0) 6= 0.

Let us find r such that (3.8) holds, for this we have∥∥∥Iq−1
0+

g
∥∥∥
L1

= 0.117332, Iq−2
0+

g(1) = 1.0559, Iq−1
0+

g(1) = 0.40979∥∥∥Iq−σ−1
0+

g
∥∥∥
L1

= 0.508 63, Iq
0+
g(1) = 0.11733,

0.508 63 +
1

Γ
(
4− 6

5

)1.0559

C1 = 0.645 3, Ag = C2 = 1.138 5

We see that (3.8) is equivalent to 1.370 8
((

r
10

)2
+ ln(2+r2)

100 + 1
)
− r which is negative for r ≥ 2.
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