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Bab Menara-1008, Tunisie
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Abstract

We establish coupled coincidence and coupled fixed point results for a pair of mappings satisfying a com-
patibility hypothesis in partially ordered metric spaces. An example is given to illustrate our obtained
results. c©2012 NGA. All rights reserved.
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1. Introduction and Preliminaries

In the last years, fixed points of mappings in partially ordered metric spaces have been investigated by
many researchers [1, 2, 3, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22]. The first result in this direction
was given by Ran and Reurings [17, Theorem 2.1] who presented its applications to linear and nonlinear
metric spaces. Subsequently, Nieto and Rodŕiguez-López [15] extended the result of Ran and Reurings [17]
for non-decreasing mappings and applied it to obtain a unique solution for a first order ordinary differential
equation with periodic boundary conditions. Similar applications based on a version of Theorems 2.1-2.5
[15] for a mixed monotone mapping F : X ×X → X were given by Bhaskar and Lakshmikantham [4]. In
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[4], Bhaskar and Lakshmikantham introduced the notion of a coupled fixed point and proved some coupled
fixed point theorems for mappings satisfying a mixed monotone property. They discussed the problem
of uniqueness of coupled fixed point and applied their theorems to problems of existence and uniqueness
of solution for a periodic boundary value problem. Recently, Lakshmikantham and Ćirić [11] introduced
the concept of mixed g-monotone mapping and proved coupled coincidence and coupled common fixed
point theorems for commuting mappings, extending the theorems due to Bhaskar and Lakshmikantham [4].
Successively, Choudhury and Kundu [5], introduced the notion of compatibility of mappings in a partially
ordered metric space and used this notion to establish a coupled coincidence point result which extends the
works of Bhaskar and Lakshmikantham [4] and Lakshmikantham and Ćirić [11].

Now, we recall some definitions introduced in [4, 5, 11].
Let (X,�) be a partially ordered set and F : X → X be a mapping. The mapping F is said to be

non-decreasing if for all x, y ∈ X, x � y implies F (x) � F (y). Similarly, F is said to be non-increasing, if
for all x, y ∈ X, x � y implies F (x) � F (y).

Bhaskar and Lakshmikantham [4] introduced the following notions of mixed monotone mapping and
coupled fixed point.

Definition 1.1. Let (X,�) be a partially ordered set and F : X × X → X. The mapping F is said to
have the mixed monotone property if F is monotone non-decreasing in its first argument and is monotone
non-increasing in its second argument, that is, for all x1, x2 ∈ X, x1 � x2 implies F (x1, y) � F (x2, y), for
any y ∈ X and for all y1, y2 ∈ X, y1 � y2 implies F (x, y1) � F (x, y2), for any x ∈ X.

The concept of the mixed monotone property is generalized by Lakshmikantham and Ćirić [11] as follows.

Definition 1.2. [11]. Let (X,�) be a partially ordered set and F : X × X → X and g : X → X. The
mapping F is said to have the mixed g-monotone property if F is monotone g-non-decreasing in its first
argument and is monotone g-non-increasing in its second argument, that is, for all x1, x2 ∈ X, g(x1) � g(x2)
implies F (x1, y) � F (x2, y), for any y ∈ X and for all y1, y2 ∈ X, g(y1) � g(y2) implies F (x, y1) � F (x, y2),
for any x ∈ X.

Clearly, if g is the identity mapping, then Definition 1.2 reduces to Definition 1.1.

Definition 1.3. An element (x, y) ∈ X ×X is called a coupled fixed point of the mapping F : X ×X → X
if F (x, y) = x and F (y, x) = y.

Definition 1.4. An element (x, y) ∈ X × X is called a coupled coincidence point of the mappings F :
X ×X → X and g : X → X if F (x, y) = g(x) and F (y, x) = g(y).

Definition 1.5. Let (X, d) be a metric space, F : X × X → X and g : X → X. Then, F and g are
compatible if

lim
n→+∞

d(g(F (xn, yn)), F (g(xn), g(yn))) = 0

and
lim

n→+∞
d(g(F (yn, xn)), F (g(yn), g(xn))) = 0

whenever {xn} and {yn} are sequences in X, such that

lim
n→+∞

F (xn, yn) = lim
n→+∞

g(xn) = x and lim
n→+∞

F (yn, xn) = lim
n→+∞

g(yn) = y

for all x, y ∈ X.

In this paper, we generalize the results of Bhaskar and Lakshmikantham [4] by considering generalized
contractive conditions for a pair of mappings and prove results concerning coupled coincidence point and
coupled fixed point. We give also an example to illustrate our results.
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2. The Main Result

Our first result is the following coupled coincidence point theorem.

Theorem 2.1. Let (X,�) be a partially ordered set and suppose there is a metric d on X such that (X, d)
is a complete metric space. Let F : X × X → X and g : X → X be mappings such that F has the
mixed g-monotone property on X and there exist two elements x0, y0 ∈ X with g(x0) � F (x0, y0) and
g(y0) � F (y0, x0). Suppose there exist non-negative real numbers α, β, L with α+ β < 1 such that

d(F (x, y), F (u, v)) ≤ αmin{d(F (x, y), g(x)), d(F (u, v), g(x))}+ βmin{d(F (x, y), g(u)), d(F (u, v), g(u))}
+Lmin{d(F (x, y), g(u)), d(F (u, v), g(x))}, (2.1)

for all (x, y), (u, v) ∈ X ×X with g(x) � g(u) and g(y) � g(v). Further suppose that F (X ×X) ⊆ g(X), g
is continuous non-decreasing, g and F are compatible and also either

(a) F is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence {xn} in X converges to x ∈ X, then xn � x for all n,
(ii) if a non-increasing sequence {yn} in X converges to y ∈ X, then yn � y for all n,

holds. Then, there exist x, y ∈ X such that F (x, y) = g(x) and F (y, x) = g(y), that is, F and g have a
coupled coincidence point (x, y) ∈ X ×X.

Proof. Let x0, y0 ∈ X be such that g(x0) � F (x0, y0) and g(y0) � F (y0, x0). Since F (X ×X) ⊆ g(X), we
can choose x1, y1 ∈ X such that g(x1) = F (x0, y0) and g(y1) = F (y0, x0).

Analogously, there exist x2, y2 ∈ X such that g(x2) = F (x1, y1) and g(y2) = F (y1, x1).
Continuing this process, we can construct two sequences {xn} and {yn} in X such that

g(xn+1) = F (xn, yn) and g(yn+1) = F (yn, xn) ∀ n ≥ 0. (2.2)

Now we prove that for all n ≥ 0,

g(xn) � g(xn+1) and g(yn) � g(yn+1). (2.3)

We shall use the mathematical induction. Let n = 0, since g(x0) � F (x0, y0) and g(y0) � F (y0, x0), in
view of g(x1) = F (x0, y0) and g(y1) = F (y0, x0), we have g(x0) � g(x1) and g(y0) � g(y1), that is, (2.3)
holds for n = 0. We assume that (2.3) hold for some n > 0. As F has the mixed g-monotone property and
g(xn) � g(xn+1), g(yn) � g(yn+1), from (2.2), we get

g(xn+1) = F (xn, yn) � F (xn+1, yn), F (yn+1, xn) � F (yn, xn) = g(yn+1). (2.4)

Also for the same reason we have

g(xn+2) = F (xn+1, yn+1) � F (xn+1, yn), F (yn+1, xn) � F (yn+1, xn+1) = g(yn+2).

Merging the above results, we obtain g(xn+1) � g(xn+2) and g(yn+1) � g(yn+2).
Thus by the mathematical induction, we conclude that (2.3) holds for all n ≥ 0.
We check easily that

g(x0) � g(x1) � g(x2) � · · · � g(xn+1) � · · ·

and
g(y0) � g(y1) � g(y2) � · · · � g(yn+1) � · · · .
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Since g(xn) � g(xn−1) and g(yn) � g(yn−1), from (2.1) and (2.2), we have

d(g(xn+1), g(xn)) = d(F (xn, yn), F (xn−1, yn−1)

≤ αmin{d(F (xn, yn), g(xn)), d(F (xn−1, yn−1), g(xn))}
+βmin{d(F (xn, yn), g(xn−1)), d(F (xn−1, yn−1), g(xn−1))}
+Lmin{d(F (xn, yn), g(xn−1)), d(F (xn−1, yn−1), g(xn))},

that is

d(g(xn+1), g(xn)) ≤ βd(g(xn), g(xn−1)). (2.5)

Similarly, since g(yn−1) � g(yn) and g(xn−1) � g(xn), from (2.1) and (2.2), we have

d(g(yn), g(yn+1)) ≤ αd(g(yn), g(yn−1)). (2.6)

From (2.5) and (2.6), we have

d(g(xn+1), g(xn)) + d(g(yn), g(yn+1)) ≤ βd(g(xn), g(xn−1)) + αd(g(yn), g(yn−1))

≤ (α+ β)d(g(xn), g(xn−1)) + (α+ β)d(g(yn), g(yn−1))

= (α+ β)[d(g(xn), g(xn−1)) + d(g(yn), g(yn−1))].

Set ρn = d(g(xn+1), g(xn)) + d(g(yn+1), g(yn)) and δ = α+ β, then the sequence {ρn} is decreasing as

0 ≤ ρn ≤ δρn−1 ≤ δ2ρn−2 ≤ · · · ≤ δnρ0

which implies

lim
n→+∞

ρn = lim
n→+∞

[d(g(xn+1), g(xn)) + d(g(yn+1), g(yn))] = 0. (2.7)

Thus,
lim

n→+∞
d(g(xn+1), g(xn)) = 0 and lim

n→+∞
d(g(yn+1), g(yn))] = 0.

In what follows, we shall prove that {g(xn)} and {g(yn)} are Cauchy sequences.

For each m ≥ n, we have

d(g(xm), g(xn)) ≤ d(g(xm), g(xm−1)) + d(g(xm−1), g(xm−2)) + · · ·+ d(g(xn+1), g(xn))

and
d(g(ym), g(yn)) ≤ d(g(ym), g(ym−1)) + d(g(ym−1), g(ym−2)) + · · ·+ d(g(yn+1), g(yn)).

Therefore

d(g(xm), g(xn)) + d(g(ym), g(yn)) ≤ ρm−1 + ρm−2 + · · ·+ ρn

≤ (δm−1 + δm−2 + · · ·+ δn)ρ0

≤ δn

1− δ
ρ0

which implies that
lim

n,m→+∞
[d(g(xm), g(xn)) + d(g(ym), g(yn))] = 0.

This imply that {g(xn)} and {g(yn)} are Cauchy sequences in X. Now, since (X, d) is a complete metric
space, there exists (x, y) ∈ X ×X such that

lim
n→+∞

F (xn, yn) = lim
n→+∞

g(xn) = x and lim
n→+∞

F (yn, xn) = lim
n→+∞

g(yn) = y. (2.8)
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From (2.8) and the continuity of g, we get

lim
n→+∞

g(g(xn)) = g(x) and lim
n→+∞

g(g(yn)) = g(y). (2.9)

From (2.2) and the compatibility of F and g, we have{
limn→+∞ d(g(F (xn, yn)), F (g(xn), g(yn))) = 0,
limn→+∞ d(g(F (yn, xn)), F (g(yn), g(xn))) = 0.

(2.10)

Finally, we claim that (x, y) is a coupled coincidence point of F and g.

Taking the limit as n→ +∞ in (2.10), by (2.2), (2.8), (2.9) and the continuity of F , we get

g(x) = lim
n→+∞

g(g(xn+1)) = lim
n→+∞

F (g(xn), g(yn))

= F ( lim
n→+∞

g(xn), lim
n→+∞

g(yn)) = F (x, y),

g(y) = lim
n→+∞

g(g(yn+1)) = lim
n→+∞

F (g(yn), g(xn))

= F ( lim
n→+∞

g(yn), lim
n→+∞

g(xn)) = F (y, x).

Thus, we proved that F (x, y) = g(x) and F (y, x) = g(y).
Now, suppose that (b) holds. Since {g(xn)} is non-decreasing and g(xn)→ x, and {g(yn)} is non-increasing
and g(yn)→ y, by assumption (b), we have g(gxn) � g(x) and g(gyn) � g(y) for all n. Then, we get

d(g(x), F (x, y)) ≤ d(g(x), g(g(xn+1))) + d(g(g(xn+1)), F (x, y))

= d(g(x), g(g(xn+1))) + d(g(F (xn, yn)), F (x, y))

= d(g(x), g(g(xn+1))) + d(g(F (xn, yn)), F (g(xn), g(yn)))

+d(F (g(xn), g(yn)), F (x, y))

≤ d(g(x), g(g(xn+1))) + d(g(F (xn, yn)), F (g(xn), g(yn)))

+αmin{d(F (g(xn), g(yn)), g(gxn)), d(F (x, y), g(g(xn)))}
+βmin{d(F (g(xn), g(yn)), g(x)), d(F (x, y), g(x))}+

+Lmin{F (g(xn), g(yn)), g(x)), d(F (x, y), g(g(xn)))}.

Taking the limit as n→ +∞ in the above inequality and using (2.8) and (2.10), we get d(g(x), F (x, y)) = 0.
Hence g(x) = F (x, y). Similarly, one can show that g(y) = F (y, x). Thus F and g have a coupled coincidence
point. This makes end to the proof.

If g = I, the identity mapping in Theorem 2.1, then we deduce the following result of coupled fixed
point.

Corollary 2.2. Let (X,�) be a partially ordered set and suppose there is a metric d on X such that (X, d)
is a complete metric space. Let F : X×X → X be a mapping such that F has the mixed monotone property
on X and there exist two elements x0, y0 ∈ X with x0 � F (x0, y0) and y0 � F (y0, x0). Also suppose there
exist non-negative real numbers α, β and L with α+ β < 1 such that

d(F (x, y), F (u, v)) ≤ αmin{d(F (x, y), x), d(F (u, v), x)}+ βmin{d(F (x, y), u), d(F (u, v), u)}
+Lmin{d(F (x, y), u), d(F (u, v), x)},

for all (x, y), (u, v) ∈ X ×X with x � u and y � v and either (a) or (b) of Theorem 2.1 holds. Then, there
exist x, y ∈ X such that F (x, y) = x and F (y, x) = y, that is, F has a coupled fixed point (x, y) ∈ X ×X.

Remark 2.3. By choosing α, β and L suitably, one can deduce some corollaries from Theorem 2.1.

For example, if α = β = 0 in Theorem 2.1, then we can state the following corollary.
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Corollary 2.4. Let (X,�) be a partially ordered set and suppose there is a metric d on X such that (X, d)
is a complete metric space. Let F : X × X → X and g : X → X be mappings such that F has the
mixed g-monotone property on X and there exist two elements x0, y0 ∈ X with g(x0) � F (x0, y0) and
g(y0) � F (y0, x0). Suppose that there exists a non-negative real number L such that

d(F (x, y), F (u, v)) ≤ Lmin{d(F (x, y), g(u)), d(F (u, v), g(x))},

for all (x, y), (u, v) ∈ X × X with g(x) � g(u) and g(y) � g(v). Further suppose F (X × X) ⊆ g(X), g is
continuous non-decreasing, g and F are compatible, and also suppose either (a) or (b) of Theorem 2.1 holds.
Then, there exist x, y ∈ X such that F (x, y) = g(x) and F (y, x) = g(y), that is, F and g have a coupled
coincidence point (x, y) ∈ X ×X.

Now we give sufficient conditions for uniqueness of the coupled coincidence point. If (X,�) is a partially
ordered set, then we endow the product space X ×X with the following partial order:

for (x, y), (u, v) ∈ X ×X, (u, v) � (x, y)⇔ x � u, y � v.

Theorem 2.5. In addition to the hypotheses of Theorem 2.1, suppose that L = 0 and for every (x, y), (x∗, y∗) ∈
X × X there exists (u, v) ∈ X × X such that (F (u, v), F (v, u)) is comparable to (F (x, y), F (y, x)) and
(F (x∗, y∗), F (y∗, x∗)). Then F and g have a unique coupled coincidence point, that is, there exists a unique
(x, y) ∈ X ×X such that g(x) = F (x, y) and g(y) = F (y, x).

Proof. From Theorem 2.1, the set of coupled coincidence points of F and g is non-empty. Suppose that
(x, y) and (x∗, y∗) are coupled coincidence points of F and g, that is, g(x) = F (x, y), g(y) = F (y, x),
g(x∗) = F (x∗, y∗) and g(y∗) = F (y∗, x∗), then we show that

g(x) = g(x∗) and g(y) = g(y∗). (2.11)

By assumption, there exists (u, v) ∈ X ×X such that (F (u, v), F (v, u)) is comparable to (F (x, y), F (y, x))
and (F (x∗, y∗), F (y∗, x∗)). Put u0 = u, v0 = v, and choose u1, v1 ∈ X so that g(u1) = F (u0, v0) and
g(v1) = F (v0, u0). Then, proceeding as in the proof of Theorem 2.1, we can inductively define sequences
{g(un)}, {g(vn)} such that

g(un+1) = F (un, vn) and g(vn+1) = F (vn, un) ∀n ≥ 0.

Further, set x0 = x, y0 = y, x∗0 = x∗, y∗0 = y∗ and, on the same way, define the sequences {g(xn)}, {g(yn)},
{g(x∗n)} and {g(y∗n)}. Then it is easy to show that

g(xn)→ F (x, y), g(yn)→ F (y, x), g(x∗n)→ F (x∗, y∗) and g(y∗n)→ F (y∗, x∗)

as n→ +∞.
Since (F (x, y), F (y, x)) = (g(x1), g(y1)) = (g(x), g(y)) and (F (u, v), F (v, u)) = (g(u1), g(v1)) are compa-
rable, then g(x) � g(u1) and g(y) � g(v1). It is easy to show that (g(x), g(y)) and (g(un), g(vn)) are
comparable, that is, g(x) � g(un) and g(y) � g(vn) for all n ≥ 1. Thus from (2.1), we have

d(g(x), g(un+1)) = d(F (x, y), F (un, vn))

≤ αmin{d(F (x, y), g(x)), d(F (un, vn), g(x))}
+βmin{d(F (x, y), g(un)), d(F (un, vn), g(un))}.

Now, since F (x, y) = g(x), we get

d(g(x), g(un+1)) ≤ βmin{d(g(x), g(un)), d(F (un, vn), g(un))}

and hence

d(g(x), g(un+1)) ≤ βd(g(x), g(un)). (2.12)
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Again from (2.1), we have

d(g(vn+1), g(y)) = d(F (vn, un), F (y, x))

≤ αmin{d(F (vn, un), g(vn)), d(F (y, x), g(vn))}
+βmin{d(F (vn, un), g(y)), d(F (y, x), g(y))}.

Since F (y, x) = g(y), we get

d(g(vn+1), g(y)) ≤ αmin{d(F (vn, un), g(vn)), d(g(y), g(vn))},

and so

d(g(vn+1), g(y)) ≤ αd(g(vn), g(y)). (2.13)

From (2.12) and (2.13), we have

d(g(x), g(un+1)) + d(g(y), g(vn+1)) ≤ βd(g(x), g(un)) + αd(g(vn), g(y))

≤ (α+ β)[d(g(x), g(un)) + d(g(y), g(vn))]

≤ (α+ β)2[d(g(x), g(un−1)) + d(g(y), g(vn−1))]

· · ·
≤ (α+ β)n+1[d(g(x), g(u0)) + d(g(y), g(v0))].

Taking the limit as n→ +∞, we get limn→+∞[d(g(x), g(un)) + d(g(y), g(vn))] = 0. It implies that

lim
n→+∞

d(g(x), g(un)) = lim
n→+∞

d(g(y), g(vn)) = 0. (2.14)

Following the same lines as above, one can show that

lim
n→+∞

d(g(x∗), g(un)) = lim
n→+∞

d(g(y∗), g(vn)) = 0. (2.15)

By the triangle inequality, (2.14) and (2.15), we get

d(g(x), g(x∗) ≤ d(g(x), g(un+1)) + d(g(x∗), g(un+1))→ 0 as n→ +∞,

d(g(y), g(y∗) ≤ d(g(y), g(vn+1)) + d(g(y∗), g(vn+1))→ 0 as n→ +∞.

Therefore, we have g(x) = g(x∗) and g(y) = g(y∗) and so (2.11) holds.

If g = I, the identity mapping in Theorem 2.5, then we deduce the following corollary.

Corollary 2.6. In addition to the hypotheses of Corollary 2.2, suppose that L = 0 and for every (x, y), (x∗, y∗) ∈
X × X there exists a (u, v) ∈ X × X such that (F (u, v), F (v, u)) is comparable to (F (x, y), F (y, x)) and
(F (x∗, y∗), F (y∗, x∗)). Then F has a unique coupled fixed point, that is, there exists a unique (x, y) ∈ X×X
such that x = F (x, y) and y = F (y, x).

Now, we state and prove the last theorem of this paper.

Theorem 2.7. In addition to the hypotheses of Theorem 2.1, if g(x0) and g(y0) are comparable and L = 0,
then F and g have a coupled coincidence point (x, y) such that g(x) = F (x, y) = F (y, x) = g(y).

Proof. By Theorem 2.1, we can construct two sequences {xn} and {yn} in X such that g(xn) → g(x) and
g(yn) → g(y), where (x, y) is a coincidence point of F and g. Suppose g(x0) � g(y0), then it is an easy
matter to show that

g(xn) � g(yn) ∀n ≥ 0.
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Thus, by (2.1) we have

d(g(xn), g(yn)) = d(F (xn−1, yn−1), F (yn−1, xn−1))

≤ αmin{d(F (xn−1, yn−1), g(xn−1)), d(F (yn−1, xn−1), g(xn−1))}
+βmin{d(F (xn−1, yn−1), g(yn−1)), d(F (yn−1, xn−1), g(yn−1))}

= αmin{d(g(xn), g(xn−1)), d(g(yn), g(xn−1))}
+βmin{d(g(xn), g(yn−1)), d(g(yn), g(yn−1))}.

By taking the limit as n → +∞, we get d(g(x), g(y)) = 0. Hence F (x, y) = g(x) = g(y) = F (y, x). Similar
arguments can be used if g(y0) � g(x0). To avoid repetitions details are omitted. This makes end to the
proof.

If we assume g = I in Theorem 2.7, then we deduce the following corollary.

Corollary 2.8. In addition to the hypotheses of Corollary 2.1, if x0 and y0 are comparable and L = 0, then
F has a coupled fixed point, that is, there exists x such that F (x, x) = x.

Example 2.9. Let X = [0,+∞). Then (X,�) is a partially ordered set with the natural ordering of real

numbers. Let d(x, y) = |x− y| for x, y ∈ X. Define g : X → X by g(x) = 4x2

min{α,β} with 0 < α+ β < 1, and
F : X ×X → X by

F (x, y) =

{
x2−y2

4 if x > y,
0 if x ≤ y.

Denote δ = min{α, β}. By routine calculations, the reader can easily verify that the following assumptions
hold:

(I) (X, d) is a complete metric space;

(II) F has the mixed g-monotone property;

(III) (x0, y0) = (0,
√
δ)⇒ g(x0) = 0 = F (x0, y0) and g(y0) = 4 > δ

4 = F (y0, x0) (as x0 < y0);

(IV) F (X ×X) ⊆ g(X);

(V) F and g are continuous; g is non-decreasing.

Here, we show only that F and g are compatible and condition (2.1) in Theorem 2.1 is satisfied for all real
numbers α, β, with 0 < α+ β < 1, and L ≥ 0.
• F and g are compatible.
Consider two sequences {xn} and {yn} in X such that

lim
n→+∞

F (xn, yn) = lim
n→+∞

g(xn) = x ∈ X (2.16)

and
lim

n→+∞
F (yn, xn) = lim

n→+∞
g(yn) = y ∈ X. (2.17)

We have to prove that {
limn→+∞ d(g(F (xn, yn)), F (g(xn), g(yn))) = 0,
limn→+∞ d(g(F (yn, xn)), F (g(yn), g(xn))) = 0.

(2.18)

We claim that (x, y) = (0, 0). In fact, suppose that x > 0. From (2.16) and the definition of F , there exists
n0 ∈ N such that xn > yn for all n ≥ n0. Then, from (2.17) and the definition of F , we get

0 = lim
n→+∞

F (yn, xn) = lim
n→+∞

g(yn) = y.

From the definition of g, this implies that

lim
n→+∞

g(yn) = lim
n→+∞

4y2n
δ

= y = 0,
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that is,
lim

n→+∞
yn = y = 0.

Now, using (2.16) and the definition of F , we obtain

lim
n→+∞

F (xn, yn) = lim
n→+∞

x2n − y2n
4

= lim
n→+∞

x2n
4

= x.

Using (2.16) and the definition of g, we have

lim
n→+∞

4x2n
δ

= x.

From the uniqueness of the limit, we get

4x =
δx

4
,

that is,
(16− δ)x = 0.

Since 0 < δ < 1, we obtain that x = 0, which is a contradiction. Then, x = 0. Similarly, one can also show
that y = 0. Then, we have

lim
n→+∞

F (xn, yn) = lim
n→+∞

g(xn) = lim
n→+∞

F (yn, xn) = lim
n→+∞

g(yn) = 0. (2.19)

Now, (2.18) follows immediately from (2.19), the continuity of F , the continuity of g and the continuity of
d. Thus we proved that F and g are compatible.
• Condition (2.1) holds, for all (x, y), (u, v) ∈ X ×X with g(x) � g(u) and g(y) � g(v).
We distinguish the following four cases:

Case 1. If x ≤ y and u ≤ v, then we have

d(F (x, y), F (u, v)) = d(0, 0) = 0 ≤ αd
(

0,
4x2

δ

)
+ βd

(
0,

4u2

δ

)
+Lmin

{
d

(
0,

4u2

δ

)
, d

(
0,

4x2

δ

)}
.

Case 2. if x ≤ y and u > v, then we have

d(F (x, y), F (u, v)) = d

(
0,
u2 − v2

4

)
=
u2 − v2

4
≤ u2

4
< β

15u2

4δ

< αmin

{
d

(
0,

4x2

δ

)
, d

(
u2 − v2

4
,
4x2

δ

)}
+βmin

{
d

(
0,

4u2

δ

)
, d

(
u2 − v2

4
,
4u2

δ

)}
+Lmin

{
d

(
0,

4u2

δ

)
, d

(
u2 − v2

4
,
4x2

δ

)}
.

Case 3. If x > y and u > v, without restriction of generality we suppose x < u, and then we have

d(F (x, y), F (u, v)) = d

(
x2 − y2

4
,
u2 − v2

4

)
=

1

4
|u2 − v2 − x2 + y2| ≤ 1

2
u2

< β
15u2

4δ
< αmin

{
d

(
x2 − y2

4
,
4x2

δ

)
, d

(
u2 − v2

4
,
4x2

δ

)}
+βmin

{
d

(
x2 − y2

4
,
4u2

δ

)
, d

(
u2 − v2

4
,
4u2

δ

)}
+Lmin

{
d

(
x2 − y2

4
,
4u2

δ

)
, d

(
u2 − v2

4
,
4x2

δ

)}
.
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Case 4. If x > y and u ≤ v, then, from g(x) � g(u) and g(y) � g(v), it follows v ≥ u ≥ x > y ≥ v. This is a
contradiction, and so this case must not be considered.

Thus condition (2.1) holds in all the cases. Hence by Theorem 2.1, F and g have a coupled coincidence
point (0, 0) ∈ X ×X. (Moreover, (0, 0) is a coupled fixed point of F ).

On the other hand, we have

d(F (2, 1), F (3, 1/2)) =
23

16
and

d(2, 3) + d(1, 1/2)

2
=

3

4
.

Then, there is no k ∈ [0, 1) such that

d(F (x, y), F (u, v)) ≤ k

2
[d(x, u) + d(y, v)] for all x ≤ u, y ≥ v.

Then, Theorem 2.1 of Bhaskar and Lakshmikantham [4] cannot be applied in this case. Moreover, there is
no function φ : [0,+∞)→ [0,+∞), with φ(t) < t and limr→t+ φ(r) < t for each t > 0, such that

d(F (x, y), F (u, v)) ≤ φ
(
d(x, u) + d(y, v)

2

)
for all x ≤ u, y ≥ v.

Then, also Theorem 2.1 of Lakshmikantham and Ćirić [11] cannot be applied in this case.
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