T-asymptotic stability of non-linear matrix Lyapunov systems

M.S.N.Murty ${ }^{\text {a,* }}$, G.Suresh Kumar ${ }^{\text {b }}$
${ }^{a}$ Department of Applied Mathematics, Acharya Nagarjuna University-Nuzvid Campus, Nuzvid-521201, Andhra Pradesh, India.
${ }^{\text {b }}$ Koneru Lakshmaiah University, Department of Mathematics, Vaddeswaram, Guntur, Andra Prdesh, India.
This paper is dedicated to Professor Ljubomir Ćirić
Communicated by Professor V. Berinde

Abstract

In this paper, first we convert the non-linear matrix Lyapunov system into a Kronecker product matrix system with the help of Kronecker product of matrices. Then, we obtain sufficient conditions for Ψ asymptotic stability and Ψ-uniform stability of the trivial solutions of the corresponding Kronecker product system.(C2012 NGA. All rights reserved.

Keywords: Matrix Lyapunov system, Kronecker product, Fundamental matrix, Ψ-asymptotic stability, Ψ-(uniform) stability.
2010 MSC: Primary 34D05; Secondary 49K15, 34C11.

1. Introduction

The importance of Matrix Lyapunov systems, which arise in a number of areas of control engineering problems, dynamical systems, and feedback systems are well known. In this paper we focus our attention to the first order non-linear matrix Lyapunov systems of the form

$$
\begin{equation*}
X^{\prime}(t)=A(t) X(t)+X(t) B(t)+F(t, X(t)), \tag{1.1}
\end{equation*}
$$

where $A(t), B(t)$ are square matrices of order n, whose elements $a_{i j}, b_{i j}$, are real valued continuous functions of t on the interval $R_{+}=[0, \infty)$, and $F(t, X(t))$ is a continuous square matrix of order n defined on $\left(R_{+} \times \mathbb{R}^{n \times n}\right)$, such that $F(t, O)=O$, where $\mathbb{R}^{n \times n}$ denote the space of all $n \times n$ real valued matrices.

[^0]Akinyele [1] introduced the notion of Ψ-stability, and this concept was extended to solutions of ordinary differential equations by Constantin [2]. Later Morchalo [6] introduced the concepts of Ψ-(uniform) stability, Ψ-asymptotic stability of trivial solutions of linear and non-linear systems of differential equations. Further, these concepts are extended to non-linear volterra integro-differential equations by Diamandescu [3], 4]]. Recently, Murty and Suresh Kumar [[7], [8] extended the concepts of Ψ-boundedness, Ψ-stability and Ψ instability to matrix Lyapunov systems.

The purpose of our paper is to provide sufficient conditions for Ψ-asymptotic and Ψ-uniform stability of trivial solutions of the Kronecker product system associated with the non-linear matrix Lyapunov system 1.1). Here, we extend the concept of Ψ-stability in [7] to Ψ-asymptotic stability for matrix Lyapunov systems.

The paper is well organized as follows. In section 2 we present some basic definitions and notations relating to Ψ-(uniform) stability, Ψ-asymptotic stability and Kronecker products. First, we convert the nonlinear matrix Lyapunov system (1.1) into an equivalent Kronecker product system and obtain its general solution. In section 3 we obtain sufficient conditions for Ψ - asymptotic stability of trivial solutions of the corresponding linear Kronecker product system. In section 4 we study Ψ-asymptotic stability and Ψ-uniform stability of trivial solutions of non-linear Kronecker product system. The main results of this paper are illustrated with suitable examples.

This paper extends some of the results of Ψ-asymptotic stability of trivial solutions of linear equations (Theorem 1 and Theorem 2)in Diamandescu [4] to matrix Lyapunov systems.

2. Preliminaries

In this section we present some basic definitions and results which are useful for later discussion.
Let \mathbb{R}^{n} be the Euclidean n-dimensional space. Elements in this space are column vectors, denoted by $u=\left(u_{1}, u_{2}, \ldots u_{n}\right)^{T}\left({ }^{T}\right.$ denotes transpose) and their norm defined by

$$
\|u\|=\max \left\{\left|u_{1}\right|,\left|u_{2}\right|, \ldots\left|u_{n}\right|\right\} .
$$

For a $n \times n$ real matrix, we define the norm

$$
|A|=\sup _{\|x\| \leq 1}\|A x\| .
$$

Let $\Psi_{k}: R_{+} \rightarrow(0, \infty), k=1,2, \ldots n, \ldots n^{2}$, be continuous functions, and let

$$
\Psi=\operatorname{diag}\left[\Psi_{1}, \Psi_{2}, \ldots \Psi_{n^{2}}\right] .
$$

Then the matrix $\Psi(t)$ is an invertible square matrix of order n^{2}, for each $t \geq 0$.
Definition 2.1. 5] Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times q}$ then the Kronecker product of A and B written $A \otimes B$ is defined to be the partitioned matrix

$$
A \otimes B=\left[\begin{array}{cccccc}
a_{11} B & a_{12} B & . & . & . & a_{1 n} B \\
a_{21} B & a_{22} B & . & . & . & a_{2 n} B \\
\cdot & \cdot & . & . & \cdot & \cdot \\
a_{m 1} B & a_{m 2} B & . & . & . & a_{m n} B
\end{array}\right]
$$

is an $m p \times n q$ matrix and is in $\mathbb{R}^{m p \times n q}$.
Definition 2.2. [5] Let $A=\left[a_{i j}\right] \in \mathbb{R}^{m \times n}$, we denote

$$
\hat{A}=V e c A=\left[\begin{array}{c}
A_{.1} \\
A_{.2} \\
\cdot \\
\cdot \\
A_{. n}
\end{array}\right] \text {, where } A_{\cdot j}=\left[\begin{array}{c}
a_{1 j} \\
a_{2 j} \\
\cdot \\
\cdot \\
a_{m j}
\end{array}\right](1 \leq j \leq n)
$$

Regarding properties and rules for Kronecker product of matrices we refer to Graham (5).
Now by applying the Vec operator to the non-linear matrix Lyapunov system (1.1) and using the above properties, we have

$$
\begin{equation*}
\hat{X}^{\prime}(t)=H(t) \hat{X}(t)+G(t, \hat{X}(t)), \tag{2.1}
\end{equation*}
$$

where $H(t)=\left(B^{T} \otimes I_{n}\right)+\left(I_{n} \otimes A\right)$ is a $n^{2} \times n^{2}$ matrix and $G(t, \hat{X}(t))=V e c F(t, X(t))$ is a column matrix of order n^{2}.
The corresponding linear homogeneous system of (2.1) is

$$
\begin{equation*}
\hat{X}^{\prime}(t)=H(t) \hat{X}(t) . \tag{2.2}
\end{equation*}
$$

Definition 2.3. The trivial solution of (2.1) is said to be Ψ-stable on R_{+}if for every $\varepsilon>0$ and every t_{0} in R_{+}, there exists $\delta=\delta\left(\varepsilon, t_{0}\right)>0$ such that any solution $\hat{X}(t)$ of (2.1) which satisfies the inequality $\left\|\Psi\left(t_{0}\right) \hat{X}\left(t_{0}\right)\right\|<\delta$, also satisfies the inequality $\|\Psi(t) \hat{X}(t)\|<\varepsilon$ for all $t \geq t_{0}$.

Definition 2.4. The trivial solution of (2.1) is said to be Ψ-uniformly stable on R_{+}, if $\delta\left(\varepsilon, t_{0}\right)$ in Definition 2.3 can be chosen independent of t_{0}.

Definition 2.5. The trivial solution of 2.1 is said to be Ψ-asymptotically stable on R_{+}, if it is Ψ-stable on R_{+}and in addition, for any $t_{0} \in R_{+}$, there exists a $\delta_{0}=\delta_{0}\left(t_{0}\right)>0$ such that any solution $\hat{X}(t)$ of (2.1) which satisfies the inequality $\left\|\Psi\left(t_{0}\right) \hat{X}\left(t_{0}\right)\right\|<\delta_{0}$, satisfies the condition $\lim _{t \rightarrow \infty} \Psi(t) \hat{X}(t)=0$.

The following example illustrates the difference between the Ψ-stability and Ψ-asymptotic stability.
Example 2.1. Consider the non-linear matrix Lyapunov system (1.1) with

$$
\begin{gathered}
A(t)=\left[\begin{array}{cc}
\frac{t}{t^{2}-1} & 0 \\
0 & 2 t
\end{array}\right], \quad B(t)=\left[\begin{array}{cc}
0 & e^{t} \\
\frac{-t}{t^{2}-1} & 0
\end{array}\right] \text { and } \\
F(t, X(t))=\left[\begin{array}{cc}
\frac{1+t\left(x_{2}-3 x_{1}\right)}{t^{2}-1} & -e^{t} x_{1}-\frac{t x_{2}}{t^{2}-1}+x_{2} \\
\frac{t x_{4}}{t^{2}-1}-2 t x_{3}-x_{3} & x_{4}^{2} \sec t-x_{4} \tan t-2 t x_{4}-e^{t} x_{3}
\end{array}\right] .
\end{gathered}
$$

Then the solution of (2.1) is

$$
\hat{X}(t)=\left[\begin{array}{c}
\frac{1}{(t+1) \sqrt{t^{2}-1}} \\
e^{-t} \\
e^{t} \\
\frac{-\cos t}{t}
\end{array}\right]
$$

Consider

$$
\Psi(t)=\left[\begin{array}{cccc}
t+1 & 0 & 0 & 0 \\
0 & e^{t} & 0 & 0 \\
0 & 0 & e^{-t} & 0 \\
0 & 0 & 0 & t
\end{array}\right]
$$

for all $t \geq 0$, we have

$$
\Psi(t) \hat{X}(t)=\left[\begin{array}{c}
\frac{1}{\sqrt{t^{2}-1}} \\
1 \\
1 \\
-\cos t
\end{array}\right]
$$

It is easily seen from the Definitions 2.3 and 2.5 , the trivial solution of the system 2.1 is Ψ-stable on R_{+}, but, it is not Ψ-asymptotically stable on R_{+}.

Lemma 2.1. Let $Y(t)$ and $Z(t)$ be the fundamental matrices for the systems

$$
\begin{equation*}
X^{\prime}(t)=A(t) X(t) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[X^{T}(t)\right]^{\prime}=B^{T}(t) X^{T}(t) \tag{2.4}
\end{equation*}
$$

respectively. Then the matrix $Z(t) \otimes Y(t)$ is a fundamental matrix of (2.2) and every solution of (2.2) is of the form $\hat{X}(t)=(Z(t) \otimes Y(t)) c$, where c is a n^{2}-column vector.

Proof. For proof, we refer to Lemma 1 of [7].
Theorem 2.1. Let $Y(t)$ and $Z(t)$ be the fundamental matrices for the systems (2.3) and (2.4), then any solution of (2.1), satisfying the initial condition $\hat{X}\left(t_{0}\right)=\hat{X}_{0}$, is given by

$$
\begin{align*}
\hat{X}(t)= & (Z(t) \otimes Y(t))\left(Z^{-1}\left(t_{0}\right) \otimes Y^{-1}\left(t_{0}\right)\right) \hat{X}_{0} \\
& +\int_{t_{0}}^{t}(Z(t) \otimes Y(t))\left(Z^{-1}(s) \otimes Y^{-1}(s)\right) G(s, \hat{X}(s)) d s \tag{2.5}
\end{align*}
$$

Proof. First, we show that any solution of 2.1) is of the form
$\hat{X}(t)=(Z(t) \otimes Y(t)) c+\widetilde{X}(t)$, where $\widetilde{X}(t)$ is a particular solution of (2.1) and is given by

$$
\widetilde{X}(t)=\int_{t_{0}}^{t}(Z(t) \otimes Y(t))\left(Z^{-1}(s) \otimes Y^{-1}(s)\right) G(s, \hat{X}(s)) d s
$$

Here we observe that, $\hat{X}\left(t_{0}\right)=\left(Z\left(t_{0}\right) \otimes Y\left(t_{0}\right)\right) c=\hat{X}_{0}, c=\left(Z^{-1}\left(t_{0}\right) \otimes Y^{-1}\left(t_{0}\right)\right) \hat{X}_{0}$. Let $u(t)$ be any other solution of (2.1), write $w(t)=u(t)-X(t)$, then w satisfies (2.2), hence $w=(Z(t) \otimes Y(t)) c$, $u(t)=(Z(t) \otimes Y(t)) c+X(t)$.

Next, we consider the vector $\tilde{X}(t)=(Z(t) \otimes Y(t)) v(t)$, where $v(t)$ is an arbitrary vector to be determined, so as to satisfy equation (2.1). Consider

$$
\begin{aligned}
& \tilde{X}^{\prime}(t)=(Z(t) \otimes Y(t))^{\prime} v(t)+(Z(t) \otimes Y(t)) v^{\prime}(t) \\
& \Rightarrow H(t) \widetilde{X}(t)+G(t, \hat{X}(t))=H(t)(Z(t) \otimes Y(t)) v(t)+(Z(t) \otimes Y(t)) v^{\prime}(t) \\
& \Rightarrow(Z(t) \otimes Y(t)) v^{\prime}(t)=G(t, \hat{X}(t)) \\
& \Rightarrow v^{\prime}(t)=\left(Z^{-1}(t) \otimes Y^{-1}(t)\right) G(t, \hat{X}(t)) \\
& \Rightarrow v(t)=\int_{t_{0}}^{t}\left(Z^{-1}(s) \otimes Y^{-1}(s)\right) G(s, \hat{X}(s)) d s
\end{aligned}
$$

Hence the desired expression follows immediately.

3. Ψ-asymptotic stability of linear systems

In this section we study the Ψ-asymptotic stability of trivial solutions of linear system (2.2).
Theorem 3.1. Let $Y(t)$ and $Z(t)$ be the fundamental matrices of (2.3) and (2.4). Then the trivial solution of (2.2) is Ψ-asymptotically stable on R_{+}if and only if $\lim _{t \rightarrow \infty} \Psi(t)(Z(t) \otimes Y(t))=0$.

Proof. The solution of 2.2 with the initial point at $t_{0} \geq 0$ is

$$
\hat{X}(t)=(Z(t) \otimes Y(t))\left(Z^{-1}\left(t_{0}\right) \otimes Y^{-1}\left(t_{0}\right)\right) \hat{X}\left(t_{0}\right), \quad \text { for } t \geq 0
$$

First, we suppose that the trivial solution of 2.2 is Ψ-asymptotically stable on R_{+}. Then, the trivial solution of (2.2) is Ψ-stable on R_{+}and for any $t_{0} \in R_{+}$, there exists a $\delta_{0}=\delta\left(t_{0}\right)>0$ such that any solution $\hat{X}(t)$ of 2.2 which satisfies the inequality $\left\|\Psi\left(t_{0}\right) \hat{X}\left(t_{0}\right)\right\|<\delta_{0}$, and satisfies the condition $\lim _{t \rightarrow \infty} \Psi(t) \hat{X}(t)=0$.

Therefore, for any $\epsilon>0$ and $t_{0} \geq 0$, there exists a $\delta_{0}>0$ such that $\left\|\Psi\left(t_{0}\right) \hat{X}\left(t_{0}\right)\right\|<\delta_{0}$ and also satisfies

$$
\left\|\Psi(t)(Z(t) \otimes Y(t))\left(Z^{-1}\left(t_{0}\right) \otimes Y^{-1}\left(t_{0}\right)\right) \Psi^{-1}\left(t_{0}\right) \Psi\left(t_{0}\right) \hat{X}\left(t_{0}\right)\right\|<\epsilon \quad \text { for all } t \geq t_{\epsilon, t_{0}}
$$

Let $v \in \mathbb{R}^{n^{2}}$ be such that $\|v\| \leq 1$. For $\hat{X}\left(t_{0}\right)=\frac{\delta_{0}}{2} \Psi^{-1}\left(t_{0}\right) v$, we have $\left\|\Psi\left(t_{0}\right) \hat{X}\left(t_{0}\right)\right\|<\delta_{0}$ and hence,

$$
\begin{aligned}
& \| \Psi(t)(Z(t) \otimes Y(t))\left(Z^{-1}\left(t_{0}\right) \otimes Y^{-1}\left(t_{0}\right) \frac{\delta_{0}}{2} \Psi^{-1}\left(t_{0}\right) v \|<\epsilon\right. \\
\Rightarrow & \left\|\Psi(t)(Z(t) \otimes Y(t))\left(Z^{-1}\left(t_{0}\right) \otimes Y^{-1}\left(t_{0}\right)\right) \Psi^{-1}\left(t_{0}\right)\right\|<\frac{2 \epsilon}{\delta_{0}} \\
\Rightarrow & |\Psi(t)(Z(t) \otimes Y(t))| \leq \frac{2 \epsilon}{\delta_{0}\left|\left(Z^{-1}\left(t_{0}\right) \otimes Y^{-1}\left(t_{0}\right)\right) \Psi^{-1}\left(t_{0}\right)\right|}
\end{aligned}
$$

for $t \geq t_{\epsilon, t_{0}}$. Therfore, $\lim _{t \rightarrow \infty} \Psi(t)(Z(t) \otimes Y(t))=0$.
Conversely, suppose that $\lim _{t \rightarrow \infty} \Psi(t)(Z(t) \otimes Y(t))=0$. Then, there exists $M>0$ such that $\mid \Psi(t)(Z(t) \otimes$ $Y(t)) \mid \leq M$ for $t \geq 0$. From (i) of Theorem 3 [7], it follows that the trivial solution of (2.2) is Ψ-stable on R_{+}. For any $\hat{X}\left(t_{0}\right) \in \mathbb{R}^{n^{2}}$, we have

$$
\lim _{t \rightarrow \infty} \Psi(t) \hat{X}(t)=\lim _{t \rightarrow \infty} \Psi(t)(Z(t) \otimes Y(t))\left(Z^{-1}\left(t_{0}\right) \otimes Y^{-1}\left(t_{0}\right)\right) \hat{X}\left(t_{0}\right)=0
$$

Thus, the trivial solution of 2.2 is Ψ-asymptotically stable on R_{+}.
The above Theorem 3.1 is illustrated by the following example.
Example 3.1. Consider the linear homogeneous matrix Lyapunov system corresponding to (1.1) with

$$
A(t)=\left[\begin{array}{cc}
\frac{1}{t+1} & 0 \\
0 & \frac{-1}{t+1}
\end{array}\right], \quad B(t)=\left[\begin{array}{cc}
1 & 0 \\
0 & -2
\end{array}\right]
$$

Then the fundamental matrices of (2.3), (2.4) are

$$
Y(t)=\left[\begin{array}{cc}
t+1 & 0 \\
0 & \frac{1}{t+1}
\end{array}\right], \quad Z(t)=\left[\begin{array}{cc}
e^{t} & 0 \\
0 & e^{-2 t}
\end{array}\right]
$$

Now the fundamental matrix of 2.2 is

$$
Z(t) \otimes Y(t)=\left[\begin{array}{cccc}
e^{t}(t+1) & 0 & 0 & 0 \\
0 & \frac{e^{t}}{t+1} & 0 & 0 \\
0 & 0 & (t+1) e^{-2 t} & 0 \\
0 & 0 & 0 & \frac{e^{-2 t}}{t+1}
\end{array}\right]
$$

Consider

$$
\Psi(t)=\left[\begin{array}{cccc}
\frac{e^{-2 t}}{t+1} & 0 & 0 & 0 \\
0 & \frac{e^{-t}}{t+1} & 0 & 0 \\
0 & 0 & \frac{e^{2 t}}{(t+1)^{2}} & 0 \\
0 & 0 & 0 & \frac{e^{2 t}}{\sqrt{t+1}}
\end{array}\right]
$$

for all $t \geq 0$, we have

$$
\Psi(t)(Z(t) \otimes Y(t))=\left[\begin{array}{cccc}
e^{-t} & 0 & 0 & 0 \\
0 & \frac{1}{(t+1)^{2}} & 0 & 0 \\
0 & 0 & \frac{1}{t+1} & 0 \\
0 & 0 & 0 & \frac{1}{(t+1)^{\frac{3}{2}}}
\end{array}\right]
$$

It is easily seen from Theorem 3.1 , the system (2.2) is Ψ-asymptotically stable on R_{+}.
Remark 3.1. Ψ-asymptotic stability need not imply classical asymptotic stability.
The Remark 3.1 is illustrated by the following example.
Example 3.2. Consider the linear homogeneous matrix Lyapunov system corresponding to 1.1 with

$$
A(t)=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right], \quad B(t)=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

Then the fundamental matrices of (2.3), (2.4) are

$$
Y(t)=\left[\begin{array}{cc}
e^{t} \sin t & e^{t} \cos t \\
-e^{t} \cos t & e^{t} \sin t
\end{array}\right], \quad Z(t)=\left[\begin{array}{cc}
e^{-t} & 0 \\
0 & e^{-t}
\end{array}\right]
$$

Now the fundamental matrix of (2.2) is

$$
Z(t) \otimes Y(t)=\left[\begin{array}{cccc}
\sin t & \cos t & 0 & 0 \\
-\cos t & \sin t & 0 & 0 \\
0 & 0 & \sin t & \cos t \\
0 & 0 & -\cos t & \sin t
\end{array}\right]
$$

Clearly the system $\left(2.2\right.$ is stable, but it is not asymptotically stable on R_{+}. Consider

$$
\Psi(t)=\left[\begin{array}{cccc}
\frac{1}{t+1} & 0 & 0 & 0 \\
0 & \frac{1}{t+1} & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{t+1}} & 0 \\
0 & 0 & 0 & \frac{1}{\sqrt{t+1}}
\end{array}\right]
$$

for all $t \geq 0$, we have

$$
\Psi(t)(Z(t) \otimes Y(t))=\left[\begin{array}{cccc}
\frac{\sin t}{t+1} & \frac{\cos t}{t+1} & 0 & 0 \\
-\frac{\cos t}{t+1} & \frac{\sin t}{t+1} & 0 & 0 \\
0 & 0 & \frac{\sin t}{\sqrt{t+1}} & \frac{\cos t}{\sqrt{t+1}} \\
0 & 0 & -\frac{\cos s}{\sqrt{t+1}} & \frac{\sin t}{\sqrt{t+1}}
\end{array}\right]
$$

Thus, from Theorem 3.1 the system 2.2 is Ψ-asymptotically stable on R_{+}.
Theorem 3.2. Let $Y(t), Z(t)$ be the fundamental matrices of (2.2), 2.4. If there exists a continuous function $\phi: R_{+} \rightarrow(0, \infty)$ such that $\int_{0}^{\infty} \phi(s) d s=\infty$, and a positive constant N satisfying

$$
\int_{0}^{t} \phi(s)\left|\Psi(t)(Z(t) \otimes Y(t))\left(Z^{-1}(s) \otimes Y^{-1}(s)\right) \Psi^{-1}(s)\right| d s \leq N, \quad \text { for all } t \geq 0
$$

then, the linear system (2.2) is Ψ-asymptotically stable on R_{+}.

Proof. Let $b(t)=|\Psi(t)(Z(t) \otimes Y(t))|^{-1}$ for $t \geq 0$. From the identity

$$
\begin{aligned}
& \left(\int_{0}^{t} \phi(s) b(s) d s\right) \Psi(t)(Z(t) \otimes Y(t)) \\
& \quad=\int_{0}^{t} \phi(s) \Psi(t)(Z(t) \otimes Y(t))\left(Z^{-1}(s) \otimes Y^{-1}(s)\right) \Psi^{-1}(s) \Psi(s)(Z(s) \otimes Y(s)) b(s) d s,
\end{aligned}
$$

it follows that

$$
\begin{aligned}
& \left(\int_{0}^{t} \phi(s) b(s) d s\right)|\Psi(t)(Z(t) \otimes Y(t))| \\
& \leq \int_{0}^{t} \phi(s)\left|\Psi(t)(Z(t) \otimes Y(t))\left(Z^{-1}(s) \otimes Y^{-1}(s)\right) \Psi^{-1}(s)\right||\Psi(s)(Z(s) \otimes Y(s))| b(s) d s
\end{aligned}
$$

Thus, the scalar function $a(t)=\int_{0}^{t} \phi(s) b(s) d s$ satisfies the inequality

$$
a(t) b^{-1}(t) \leq N, \quad \text { for } \quad t \geq 0 .
$$

We have $a^{\prime}(t)=\phi(t) b(t) \geq N^{-1} \phi(t) a(t)$ for $t \geq 0$. It follows that

$$
a(t) \geq a\left(t_{1}\right) e^{N^{-1} \int_{t_{1}}^{t} \phi(s) d s}, \quad \text { for } t \geq t_{1}>0
$$

and hence

$$
|\Psi(t)(Z(t) \otimes Y(t))|=b^{-1}(t) \leq N a^{-1}\left(t_{1}\right) e^{-N^{-1} \int_{t_{1}}^{t} \phi(s) d s}, \quad \text { for } t \geq t_{1}>0 .
$$

Since $|\Psi(t)(Z(t) \otimes Y(t))|$ is a continuous function on the compact interval $\left[0, t_{1}\right]$, there exists a positive constant M such that $|\Psi(t)(Z(t) \otimes Y(t))| \leq M$ for $t \geq 0$. Therefore, the trivial solution of 2.2 is Ψ-stable on R_{+}, and also from

$$
\int_{0}^{\infty} \phi(s) d s=\infty, \text { it follws that } \lim _{t \rightarrow \infty} \Psi(t)(Z(t) \otimes Y(t))=0
$$

Hence by using Theorem 3.1, system (2.2) is Ψ-asymptotically stable.

4. Ψ-asymptotic stability of non-linear systems

In this section we obtain sufficient conditions for Ψ-asymptotic stability and Ψ-uniform stability of trivial solutions of non-linear system (2.1).

Theorem 4.1. Suppose that
(i) The fundamental matrices $Y(t)$ and $Z(t)$ of (2.3), (2.4) are satisfying the condition

$$
\int_{0}^{t} \phi(s)\left|\Psi(t)(Z(t) \otimes Y(t))\left(Z^{-1}(s) \otimes Y^{-1}(s)\right) \Psi^{-1}(s)\right| d s \leq N, \text { for all } t \geq 0
$$

where N is a positive constant and ϕ is a continuous positive function on R_{+}such that $\int_{0}^{\infty} \phi(s) d s=\infty$.
(ii) The function G satisfies the condition

$$
\|\Psi(t) G(t, \hat{X}(t))\| \leq \alpha(t)\|\Psi(t) \hat{X}(t)\|
$$

for every vector valued continuous function $\hat{X}: R_{+} \rightarrow \mathbb{R}^{n^{2}}$, where α is a continuous non-negative function on R_{+}such that

$$
q=\sup _{t \geq 0} \frac{\alpha(t)}{\phi(t)}<\frac{1}{N} .
$$

Then, the trivial solution of equation (2.1) is Ψ-asymptotically stable on R_{+}.
Proof. From the first assumption of the theorem, Theorems 3.1 and 3.2, we have

$$
\lim _{t \rightarrow \infty}|\Psi(t)(Z(t) \otimes Y(t))|=0
$$

hence there exists a positive constant M such that

$$
|\Psi(t)(Z(t) \otimes Y(t))| \leq M, \text { for all } t \geq 0
$$

From the second assumption of the theorem, we have

$$
\frac{\alpha(t)}{\phi(t)} \leq \sup _{t \geq 0} \frac{\alpha(t)}{\phi(t)}=q<\frac{1}{N}
$$

For a given $\epsilon>0$ and $t_{0} \geq 0$, we choose $\delta=\min \left\{\epsilon, \frac{(1-q N) \epsilon}{\left.M \mid\left(Z^{-1}\left(t_{0}\right) \otimes Y^{-1}\left(t_{0}\right)\right) \Psi^{-1}\left(t_{0}\right)\right\}}\right\}$. Let $\hat{X}_{0} \in R^{n^{2}}$ such that $\left.\| \Psi\left(t_{0}\right) \hat{X}_{0}\right) \|<\delta$.

For $\tau>t_{0}$ and $t \in\left[t_{0}, \tau\right]$. Consider

$$
\begin{aligned}
\|\Psi(t) \hat{X}(t)\| \leq & \left\|\Psi(t)(Z(t) \otimes Y(t))\left(Z^{-1}\left(t_{0}\right) \otimes Y^{-1}\left(t_{0}\right)\right) \Psi^{-1}\left(t_{0}\right) \Psi\left(t_{0}\right) \hat{X}\left(t_{0}\right)\right\| \\
& +\int_{t_{0}}^{t} \mid \Psi(t)(Z(t) \otimes Y(t))\left(Z^{-1}(s) \otimes Y^{-1}(s)\right)\| \|(s) G(s, \hat{X}(s)) \| d s \\
\leq & \left|\Psi(t)(Z(t) \otimes Y(t))\left\|\left(Z^{-1}\left(t_{0}\right) \otimes Y^{-1}\left(t_{0}\right)\right) \Psi^{-1}\left(t_{0}\right) \mid\right\| \Psi\left(t_{0}\right) \hat{X}_{0} \|\right. \\
& +\int_{t_{0}}^{t} \phi(s)\left|\Psi(t)(Z(t) \otimes Y(t))\left(Z^{-1}(s) \otimes Y^{-1}(s)\right) \Psi^{-1}(s)\right| \frac{\alpha(s)}{\phi(s)}\|\Psi(s) \hat{X}(s)\| d s \\
< & M\left|\left(Z^{-1}\left(t_{0}\right) \otimes Y^{-1}\left(t_{0}\right)\right) \Psi^{-1}\left(t_{0}\right)\right| \delta+N q \sup _{t_{0} \leq t \leq \tau}\|\Psi(t) \hat{X}(t)\| .
\end{aligned}
$$

Therefore,

$$
\sup _{t_{0} \leq t \leq \tau}\|\Psi(t) \hat{X}(t)\| \leq(1-N q)^{-1} M\left|\left(Z^{-1}\left(t_{0}\right) \otimes Y^{-1}\left(t_{0}\right)\right) \Psi^{-1}\left(t_{0}\right)\right| \delta<\epsilon .
$$

It follows that the trivial solution of equation (2.1) is Ψ-stable on R_{+}. To prove, the trivial solution of (2.1) is Ψ-asymptotically stable, we must show further that $\left.\lim _{t \rightarrow \infty} \| \Psi(t) \hat{X}(t)\right) \|=0$.

Suppose that $\left.\lim _{t \rightarrow \infty} \sup \| \Psi(t) \hat{X}(t)\right) \|=\lambda>0$. Let θ be such that $q N<\theta<1$, then there exists $t_{1} \geq t_{0}$ such that $\|\Psi(t) \hat{X}(t)\|<\frac{\lambda}{\theta}$ for all $t \geq t_{1}$. Thus for $t>t_{1}$, we have

$$
\begin{aligned}
\|\Psi(t) \hat{X}(t)\| \leq & |\Psi(t)(Z(t) \otimes Y(t))|\left|\left(Z^{-1}\left(t_{0}\right) \otimes Y^{-1}\left(t_{0}\right)\right) \Psi^{-1}\left(t_{0}\right)\right|\left\|\Psi\left(t_{0}\right) \hat{X}\left(t_{0}\right)\right\| \\
& +\int_{t_{0}}^{t}\left|\Psi(t)(Z(t) \otimes Y(t))\left(Z^{-1}(s) \otimes Y^{-1}(s)\right) \Psi^{-1}(s)\right|\|\Psi(s) G(s, \hat{X}(s))\| d s \\
< & \left|\Psi(t)(Z(t) \otimes Y(t)) \|\left(Z^{-1}\left(t_{0}\right) \otimes Y^{-1}\left(t_{0}\right)\right) \Psi^{-1}\left(t_{0}\right)\right| \delta \\
& +\int_{t_{0}}^{t_{1}}\left|\Psi(t)(Z(t) \otimes Y(t))\left(Z^{-1}(s) \otimes Y^{-1}(s)\right) \Psi^{-1}(s)\right| \alpha(s)\|\Psi(s) \hat{X}(s)\| d s \\
& +\int_{t_{1}}^{t} \phi(s)\left|\Psi(t)(Z(t) \otimes Y(t))\left(Z^{-1}(s) \otimes Y^{-1}(s)\right) \Psi^{-1}(s)\right| \frac{\alpha(s)}{\phi(s)}\|\Psi(s) \hat{X}(s)\| d s \\
< & \left|\Psi(t)(Z(t) \otimes Y(t)) \|\left(Z^{-1}\left(t_{0}\right) \otimes Y^{-1}\left(t_{0}\right)\right) \Psi^{-1}\left(t_{0}\right)\right| \delta
\end{aligned}
$$

$$
\begin{aligned}
& \quad+\int_{t_{0}}^{t_{1}}|\Psi(t)(Z(t) \otimes Y(t))|\left|\left(Z^{-1}(s) \otimes Y^{-1}(s)\right) \Psi^{-1}(s)\right| \alpha(s)\|\Psi(s) \hat{X}(s)\| d s \\
& \quad+\int_{t_{1}}^{t} \phi(s)\left|\Psi(t)(Z(t) \otimes Y(t))\left(Z^{-1}(s) \otimes Y^{-1}(s)\right) \Psi^{-1}(s)\right| \frac{q \lambda}{\theta} d s \\
& \leq|\Psi(t)(Z(t) \otimes Y(t))|\left\{\left|\left(Z^{-1}\left(t_{0}\right) \otimes Y^{-1}\left(t_{0}\right)\right) \Psi^{-1}\left(t_{0}\right)\right| \delta\right. \\
& \left.\quad+\int_{t_{0}}^{t_{1}}\left|\left(Z^{-1}(s) \otimes Y^{-1}(s)\right) \Psi^{-1}(s)\right| \alpha(s)\|\Psi(s) \hat{X}(s)\| d s\right\}+\frac{M q \lambda}{\theta} .
\end{aligned}
$$

From $\lim _{t \rightarrow \infty}|\Psi(t)(Z(t) \otimes Y(t))|=0$, it follows that there exists $T>0$, sufficiently large, such that

$$
|\Psi(t)(Z(t) \otimes Y(t))|<\frac{\lambda-\frac{M q \lambda}{\theta}}{2 Q} \text { for all } t \geq T
$$

where

$$
\begin{aligned}
Q= & \left|\left(Z^{-1}\left(t_{0}\right) \otimes Y^{-1}\left(t_{0}\right)\right) \Psi^{-1}\left(t_{0}\right)\right| \delta \\
& +\int_{t_{0}}^{t_{1}}\left|\left(Z^{-1}(s) \otimes Y^{-1}(s)\right) \Psi^{-1}(s)\right| \alpha(s)\|\Psi(s) \hat{X}(s)\| d s .
\end{aligned}
$$

Thus, for $t \geq T$ we have

$$
\begin{aligned}
\|\Psi(t) \hat{X}(t)\| & <\frac{\lambda-\frac{M q \lambda}{\theta}}{2}+\frac{M q \lambda}{\theta} \\
& <\frac{\lambda+\frac{M q \lambda}{\theta}}{2} .
\end{aligned}
$$

It follows from the definition of θ

$$
\lambda \leq \frac{\lambda+\frac{M q \lambda}{\theta}}{2}<\lambda
$$

which is a contradiction. Therefore

$$
\lim _{t \rightarrow \infty}\|\Psi(t) \hat{X}(t)\|=0
$$

Thus, the trivial solution of (2.1) is Ψ-asymptotically stable on R_{+}.
Example 4.1. Consider the non-linear matrix Lyapunov system (1.1) with

$$
A(t)=\left[\begin{array}{cc}
\frac{1}{t+1} & 0 \\
0 & \frac{-1}{t+1}
\end{array}\right], B(t)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \text { and } F(t, X(t))=\left[\begin{array}{cc}
\frac{\sin \left(x_{1}\right)}{4(t+1)} & \frac{x_{3}}{8(t+1)} \\
\frac{x_{2}}{2(t+1)} & \frac{\sin \left(x_{4}\right)}{6(t+1)}
\end{array}\right] .
$$

The fundamental matrices of (2.3), (2.4) are

$$
Y(t)=\left[\begin{array}{cc}
t+1 & 0 \\
0 & \frac{1}{t+1}
\end{array}\right], \quad Z(t)=\left[\begin{array}{cc}
e^{t} & 0 \\
0 & e^{t}
\end{array}\right] .
$$

Therefore, the fundamental matrix of (2.2) is

$$
Z(t) \otimes Y(t)=\left[\begin{array}{cccc}
e^{t}(t+1) & 0 & 0 & 0 \\
0 & \frac{e^{t}}{t+1} & 0 & 0 \\
0 & 0 & (t+1) e^{t} & 0 \\
0 & 0 & 0 & \frac{e^{t}}{t+1}
\end{array}\right]
$$

Consider

$$
\Psi(t)=\left[\begin{array}{cccc}
\frac{e^{-t}}{(t+1)^{2}} & 0 & 0 & 0 \\
0 & e^{-t} & 0 & 0 \\
0 & 0 & \frac{e^{-t}}{(t+1)^{2}} & 0 \\
0 & 0 & 0 & e^{-t}
\end{array}\right]
$$

for all $t \geq 0$, then we have

$$
\Psi(t)(Z(t) \otimes Y(t))\left(Z^{-1}(s) \otimes Y^{-1}(s)\right) \Psi^{-1}(s)=\left(\frac{s+1}{t+1}\right) I_{4}
$$

Taking $\phi(t)=\frac{1}{t+1}$, for all $t \geq 0$. Clearly $\phi(t)$ is continuous on R_{+}and $\int_{0}^{\infty} \phi(s) d s=\infty$. Also

$$
\int_{0}^{t} \phi(s)\left|\Psi(t)(Z(t) \otimes Y(t))\left(Z^{-1}(s) \otimes Y^{-1}(s)\right) \Psi^{-1}(s)\right| d s=\frac{t}{t+1} \leq 1, \text { for all } t \geq 0
$$

Further, the matrix G satisfies condition (ii), with $\alpha(t)=\frac{1}{2(t+1)}, \alpha(t)$ is a continuous non-negative function on R_{+}and satisfies

$$
q=\sup _{t \geq 0} \frac{\alpha(t)}{\phi(t)}=\frac{1}{2}<\frac{1}{N}=1
$$

Thus, from Theorem 4.1, the trivial solution of non-linear system (2.1) is Ψ-asymptotically stable on R_{+}.
Theorem 4.2. Let $Y(t), Z(t)$ be the fundamental matrices of (2.3), 2.4 respectively satisfying the condition

$$
\left|\Psi(t)(Z(t) \otimes Y(t))\left(Z^{-1}(s) \otimes Y^{-1}(s)\right) \Psi^{-1}(s)\right| \leq L
$$

for all $0 \leq s \leq t<\infty$, where L is a positive number. Assume that the function G satisfies

$$
\|\Psi(t) G(t, \hat{X}(t))\| \leq \alpha(t) \| \Psi(t) \hat{X}(t)) \|, \quad 0 \leq t<\infty
$$

and for every $\hat{X} \in \mathbb{R}^{n^{2}}$, where $\alpha(t)$ is a continuous non-negative function such that $\beta=\int_{0}^{\infty} \alpha(s) d s<\infty$. Then, the trivial solution of (2.1) is Ψ-uniformly stable on R_{+}.

Proof. Let $\epsilon>0$ and $\delta(\epsilon)=\frac{\epsilon}{2 L} e^{-L \beta}$. For $t_{0} \geq 0$ and $\hat{X}_{0} \in \mathbb{R}^{n^{2}}$ be such that $\left\|\Psi\left(t_{0}\right) \hat{X}_{0}\right\|<\delta(\epsilon)$, we have

$$
\begin{aligned}
&\|\Psi(t) \hat{X}(t)\| \leq\left\|\Psi(t)(Z(t) \otimes Y(t))\left(Z^{-1}\left(t_{0}\right) \otimes Y^{-1}\left(t_{0}\right)\right) \Psi^{-1}\left(t_{0}\right) \Psi\left(t_{0}\right) \hat{X}\left(t_{0}\right)\right\| \\
&+\int_{t_{0}}^{t}\left\|\Psi(t)(Z(t) \otimes Y(t))\left(Z^{-1}(s) \otimes Y^{-1}(s)\right) \Psi^{-1}(s) \Psi(s) G(s, \hat{X}(s))\right\| d s \\
& \leq\left.\left|\Psi(t)(Z(t) \otimes Y(t))\left(Z^{-1}\left(t_{0}\right) \otimes Y^{-1}\left(t_{0}\right)\right) \Psi^{-1}\left(t_{0}\right)\right| \| \Psi\left(t_{0}\right) \hat{X}_{0}\right) \| \\
&+\int_{t_{0}}^{t}\left|\Psi(t)(Z(t) \otimes Y(t))\left(Z^{-1}(s) \otimes Y^{-1}(s)\right) \Psi^{-1}(s)\right|\|\Psi(s) G(s, \hat{X}(s))\| d s \\
& \leq L\left\|\Psi\left(t_{0}\right) \hat{X}_{0}\right\|+L \int_{t_{0}}^{t} \alpha(s)\|\Psi(s) \hat{X}(s)\| d s
\end{aligned}
$$

By Gronwall's inequality

$$
\begin{aligned}
\|\Psi(t) \hat{X}(t)\| & \leq L\left\|\Psi\left(t_{0}\right) \hat{X}_{0}\right\| e^{L \int_{t_{0}}^{t} \alpha(s) d s} \\
& \leq L \delta(\epsilon) e^{L \beta}<\epsilon
\end{aligned}
$$

for all $t \geq t_{0}$. This proves that the trivial solution of 2.1 is Ψ-uniformly stable on R_{+}.

Example 4.2. In Example 4.1, taking

$$
F(t, X(t))=\left[\begin{array}{ll}
\frac{x_{1}}{(t+1)^{2}} & \frac{\sin \left(x_{3}\right)}{(t+1)^{2}} \\
\frac{\sin \left(x_{2}\right)}{(t+1)^{2}} & \frac{x_{4}}{(t+1)^{2}}
\end{array}\right]
$$

Then the conditions of Theorem 4.2 are satisfied with $L=1$ and $\alpha(t)=\frac{1}{(t+1)^{2}}$. Clearly, $\alpha(t)$ is continuous non-negative function and $\int_{0}^{\infty} \alpha(s) d s=1$. Therefore, from Theorem 4.2 the trivial solution of (2.1) is Ψ uniformly stable on R_{+}.

References

[1] O. Akinyele, On partial stability and boundedness of degree k, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., (8), 65 (1978), 259-264. 1
[2] A. Constantin,Asymptotic properties of solutions of differential equations, Analele Universităţii din Timişoara, Seria Ştiin ţe Matematice, vol. XXX, fasc. 2-3 (1992), 183-225. 1
[3] A. Diamandescu, On the Ψ - stability of Nonlinear Volterra Integro-differential System, Electronic Journal of Differential Equations, 2005 (56) (2005), 1-14. 1
[4] A. Diamandescu, On the Ψ - asymptotic stability of Nonlinear Volterra Integro-differential System, Bull. Math. Sc. Math.Roumanie, Tome. 46(94) (1-2) (2003), 39-60. 1
[5] A. Graham, Kronecker Products and Matrix Calculus: with applications, Ellis Horwood Series in Mathematics and its Applications. Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley \& Sons, Inc.], New York, 1981. 2.1, 2.2, 2
[6] J. Morchalo, On $\Psi-L_{p}$-stability of nonlinear systems of differential equations, Analele Ştiinţifice ale Universităţii "Al. I. Cuza" Iaşi, Tomul XXXVI, s. I - a, Matematicăf. 4(1990), 353-360. 1
[7] M.S.N. Murty and G. Suresh Kumar, On Ψ-Boundedness and Ψ-Stability of Matrix Lyapunov Systems, Journal of Applied Mathematics and Computing, Springer, 26 (2008), 67-84. 1, 2, 3
[8] M.S.N. Murty, G.S. Kumar, P.N. Lakshmi and D. Anjaneyulu, On Ψ-instability of Non-linear Matrix Lyapunov Systems, Demonstrtio Mathematica, 42 (4) (2009), 731-743. 1

[^0]: *Corresponding author
 Email addresses: drmsn2002@gmail.com (M.S.N.Murty), drgsk006@kluniversity.in (G.Suresh Kumar)

