Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 5 (2012), 126–132 Research Article



Journal of Nonlinear Science and Applications



Print: ISSN 2008-1898 Online: ISSN 2008-1901

# Fixed points for asymptotic contractions of integral Meir-Keeler type

Elisa Canzoneri<sup>1</sup>, Pasquale Vetro<sup>a,\*</sup>

<sup>a</sup>Università degli Studi di Palermo, Dipartimento di Matematica e Informatica, Via Archirafi, 34 - 90123 Palermo (Italy).

This paper is dedicated to Professor Ljubomir Ćirić

Communicated by Professor V. Berinde

# Abstract

In this paper we introduce the notion of asymptotic contraction of integral Meir-Keeler type on a metric space and we prove a theorem which ensures existence and uniqueness of fixed points for such contractions. This result generalizes some recent results in the literature. ©2012 NGA. All rights reserved.

*Keywords:* Fixed points; Asymptotic contractions of integral type; Contractions of Meir-Keeler type. 2010 MSC: Primary 47H10; Secondary 54H25.

# 1. Introduction and preliminaries

Fixed point theory is an important and actual topic of nonlinear analysis. For the most important contributions on the metric and non-metric setting, see Goebel and Kirk [3], Kirk and Kang [4] and Kirk and Sims [5] (and the references therein). In 1969, Meir and Keeler [7] proved the following very interesting fixed point theorem, which is a generalization of the Banach contraction principle [1]. See also [8, 9, 10].

**Theorem 1.1** (Meir and Keeler [7]). Let (X, d) be a complete metric space and T be a mapping on X. Assume that for every  $\varepsilon > 0$ , there exists  $\delta > 0$  such that  $\varepsilon \leq d(x, y) < \varepsilon + \delta$  implies  $d(Tx, Ty) < \varepsilon$  for  $x, y \in X$ . Then T has a unique fixed point.

In 2002, Branciari [2] introduced a contraction of integral type and proved the following fixed point theorem, which is also a generalization of the Banach contraction principle.

\*Corresponding author

Email addresses: elisa.canzoneri@tiscali.it (Elisa Canzoneri), vetro@math.unipa.it (Pasquale Vetro)

**Theorem 1.2.** Let (X,d) be a complete metric space,  $c \in ]0,1[$ , and  $f: X \to X$  be a mapping such that for each  $x, y \in X$ ,

$$\int_0^{d(fx,fy)} \psi(t)dt \le c \int_0^{d(x,y)} \psi(t)dt,$$

where  $\psi : [0, +\infty[ \to [0, +\infty[$  is a Lebesgue-integrable mapping which is summable (i.e., with finite integral) on each compact subset of  $[0, +\infty[$ , nonnegative, and such that for each  $\varepsilon > 0$ ,  $\int_0^{\varepsilon} \psi(t)dt > 0$ ; then f has a unique fixed point  $a \in X$  such that for each  $x \in X$ ,  $\lim_{n \to +\infty} f^n x = a$ .

In 2003, Kirk [6] introduced the notion of asymptotic contraction on a metric space.

**Definition 1.3.** Let (X, d) be a metric space and let T be a mapping on X. Then T is called an asymptotic contraction on X if there exists a continuous function  $\varphi$  from  $[0, +\infty[$  into itself and a sequence  $\{\varphi_n\}$  of functions from  $[0, +\infty[$  into itself such that

- (i)  $\varphi(0) = 0$ ,
- (ii)  $\varphi(r) < r$  for  $r \in ]0, +\infty[$ ,
- (iii)  $\{\varphi_n\}$  converges to  $\varphi$  uniformly on the range of d,
- (iv) for  $x, y \in X$  and  $n \in \mathbb{N}$ ,

$$d(T^n x, T^n y) \le \varphi_n(d(x, y)).$$

For the class of asymptotic contractions, we have the following interesting result.

**Theorem 1.4** (Kirk [6]). Let (X, d) be a complete metric space and T be a continuous, asymptotic contraction on X with  $\{\varphi_n\}$  and  $\varphi$  in Definition 1.3. Assume that there exists  $x \in X$  such that the orbit  $\{T^n x : n \in \mathbb{N}\}$  of x is bounded, and that  $\varphi_n$  is continuous for  $n \in \mathbb{N}$ . Then there exists a unique fixed point  $z \in X$ . Moreover,  $\lim_{n \to +\infty} T^n x = z$  for all  $x \in X$ .

Recently, Suzuki [11] introduced the notion of asymptotic contraction of Meir-Keeler type on a metric space, and proved a fixed point theorem for such class of contractions.

**Definition 1.5.** Let (X, d) be a metric space. Then a mapping T on X is said to be an asymptotic contraction of Meir-Keeler type (ACMK, for short) if there exists a sequence  $\{\varphi_n\}$  of functions from  $[0, +\infty[$  into itself satisfying the following:

- (i)  $\limsup_{n \to +\infty} \varphi_n(\varepsilon) \le \varepsilon$  for all  $\varepsilon > 0$ ,
- (ii) for each  $\varepsilon > 0$  there exist  $\delta > 0$  and  $\nu \in \mathbb{N}$  such that  $\varphi_{\nu}(t) \leq \varepsilon$  for all  $t \in [\varepsilon, \varepsilon + \delta]$ ,
- (iii)  $d(T^n x, T^n y) < \varphi_n(d(x, y))$  for all  $n \in \mathbb{N}$  and  $x, y \in X$  with  $x \neq y$ .

**Theorem 1.6.** Let (X, d) be a complete metric space and T be an ACMK on X. Assume that  $T^m$  is continuous for some  $m \in \mathbb{N}$ . Then there exists a unique fixed point  $z \in X$ . Moreover,  $\lim_{n \to +\infty} T^n x = z$  for all  $x \in X$ .

*Remark* 1.7. Every contraction of Meir-Keeler type and each asymptotic contraction on a metric space is an asymptotic contraction of Meir-Keeler type (see Propositions 2 and 3 of [11]).

In this paper, we introduce the notion of asymptotic contraction of integral Meir-Keeler type, and prove a fixed point theorem for such contractions. Our result is a generalization of Theorem 1.6. Moreover, since Theorem 1.6 is a generalization of Theorems 1.1 and 1.4, our result generalizes also Theorems 1.1 and 1.4.

## 2. Asymptotic contraction of integral Meir-Keeler type

In this section we introduce the notion of asymptotic contraction of Meir-Keeler type, and prove a fixed point result for such class of contractions.

Let  $\Psi$  be the class of functions  $\psi : [0, +\infty[ \rightarrow [0, +\infty[$  with the following properties:

- (j)  $\psi$  is Lebesgue-integrable on each interval [0, a], with a > 0,
- (jj)  $\int_0^{\varepsilon} \psi(t) dt > 0$  for each  $\varepsilon > 0$ .

**Definition 2.1.** Let (X, d) be a metric space. Then a mapping T on X is said to be an asymptotic contraction of integral Meir-Keeler type (ACIMK, for short) if there exists a sequence  $\{\varphi_n\}$  of functions from  $[0, +\infty]$  into itself satisfying the following:

- (i)  $\limsup_{n \to +\infty} \varphi_n(\varepsilon) \le \varepsilon$  for all  $\varepsilon > 0$ ,
- (ii) for each  $\varepsilon > 0$  there exist  $\delta > 0$  and  $s \in \mathbb{N}$  such that  $\varphi_s(t) \leq \varepsilon$  for all  $t \in [\varepsilon, \varepsilon + \delta]$ ,
- (iii)  $\int_0^{d(T^nx,T^ny)}\psi(t)dt < \varphi_n(\int_0^{d(x,y)}\psi(t)dt)$  for all  $n \in \mathbb{N}$  and  $x, y \in X$  with  $x \neq y$ , where  $\psi \in \Psi$ .

**Lemma 2.2.** Let (X, d) be a complete metric space and  $T : X \to X$  a mapping. Assume that there exists a sequence  $\{\varphi_n\}$  of functions from  $[0, +\infty[$  into itself satisfying the following:

- (a) for each  $\varepsilon > 0$  there exist  $\delta > 0$  and  $s \in \mathbb{N}$  such that  $\varphi_s(t) \leq \varepsilon$  for all  $t \in [\varepsilon, \varepsilon + \delta]$ ,
- (b)  $\int_0^{d(T^nx,T^ny)} \psi(t)dt < \varphi_n(\int_0^{d(x,y)} \psi(t)dt)$  for all  $n \in \mathbb{N}$  and  $x, y \in X$  with  $x \neq y$ , where  $\psi \in \Psi$ .

If  $d(T^n u, T^{n+1}u) \to 0$  for some  $u \in X$ , then  $\{T^n u\}$  is a Cauchy sequence.

*Proof.* For fixed  $\varepsilon > 0$ , let  $\sigma = \int_0^{\varepsilon} \psi(t) dt$ . By (a), there exist  $\delta > 0$  and  $s \in \mathbb{N}$  such that  $\varphi_s(t) \leq \sigma$  for each  $t \in [\sigma, \sigma + \delta]$ . Now, we choose  $\nu \in ]0, \varepsilon[$  such that

$$\int_{\varepsilon}^{\varepsilon+\nu}\psi(t)dt<\delta$$

In correspondence of  $\nu$ , there exists  $n(\nu) \in \mathbb{N}$  such that  $d(u_n, u_{n+1}) < \frac{\nu}{s}$  for all  $n \ge n(\nu)$ , where  $u_n = T^n u$ . Suppose that there exist  $m, p \in \mathbb{N}$ , with  $m > p \ge n(\nu)$  such that  $d(u_m, u_p) > 2\varepsilon$  and define

$$k = \min\{j \in \mathbb{N} : p < j \text{ and } \varepsilon + \nu \le d(u_p, u_j)\} \le m$$

From

$$2\nu < \varepsilon + \nu \le d(u_p, u_k) \le \sum_{j=p}^{k-1} d(u_j, u_{j+1}) \le \sum_{j=p}^{k-1} \frac{\nu}{s} = (k-p)\frac{\nu}{s},$$

we deduce that 2s < k - p and hence p < k - 2s < k - s. It implies that  $d(u_p, u_{k-s}) < \varepsilon + \nu$ . Then

$$d(u_p, u_{k-s}) \geq d(u_p, u_k) - d(u_{k-s}, u_k)$$
  
$$\geq d(u_p, u_k) - \sum_{j=0}^{s-1} d(u_{k-j-1}, u_{k-j})$$
  
$$\geq \varepsilon + \nu - s \frac{\nu}{s} = \varepsilon.$$

Consequently,

$$\sigma = \int_0^\varepsilon \psi(t)dt \le \int_0^{d(u_p, u_{k-s})} \psi(t)dt \le \int_0^{\varepsilon+\nu} \psi(t)dt < \sigma + \delta.$$

We show that  $d(u_{p+s}, u_k) \leq \varepsilon$ . If  $d(u_{p+s}, u_k) > \varepsilon$ , by (b), we have

$$\begin{split} \int_0^{\varepsilon} \psi(t)dt &\leq \int_0^{d(u_{p+s},u_k)} \psi(t)dt = \int_0^{d(T^s u_p,T^s u_{k-s})} \psi(t)dt \\ &< \varphi_s(\int_0^{d(u_p,u_{k-s})} \psi(t)dt) \\ &\leq \int_0^{\varepsilon} \psi(t)dt = \sigma, \end{split}$$

which is a contradiction. Then

$$d(u_p, u_k) \leq \sum_{j=1}^s d(u_{p+j-1}, u_{p+j}) + d(u_{p+s}, u_k) < s\frac{\nu}{s} + \varepsilon = \nu + \varepsilon,$$

that is a contradiction with the definition of k. Therefore  $d(u_n, u_m) < 2\varepsilon$  for all  $m > n \ge n(\nu)$  and so  $\{u_n\}$  is a Cauchy sequence.

**Theorem 2.3.** Let (X,d) be a complete metric space and T be an ACIMK on X. Assume that  $T^m$  is continuous for some  $m \in \mathbb{N}$ . Then there exists a unique fixed point  $z \in X$ . Moreover,  $\lim_{n \to +\infty} T^n x = z$  for all  $x \in X$ .

*Proof.* Let  $\{\varphi_n\}$  be as in Definition 2.1. We first show that

$$\lim_{n \to +\infty} d(T^n x, T^n y) = 0 \quad \text{for all } x, y \in X.$$
(2.1)

Fix  $x, y \in X$  with  $x \neq y$ . If  $T^m x = T^m y$  for some  $m \in \mathbb{N}$ , clearly (2.1) holds. We assume that  $T^m x \neq T^m y$  for all  $m \in \mathbb{N}$  and define

$$\alpha := \limsup_{n \to +\infty} \int_0^{d(T^n x, T^n y)} \psi(t) dt > 0.$$

Now, (ii) of Definition 2.1 ensures that there is  $s \in \mathbb{N}$  such that

$$\int_0^{d(T^sx,T^sy)} \psi(t)dt < \varphi_s(\int_0^{d(x,y)} \psi(t)dt) \le \int_0^{d(x,y)} \psi(t)dt.$$

By (i) of Definition 2.1, we have

$$\alpha := \limsup_{n \to +\infty} \int_0^{d(T^{n+s}x, T^{n+s}y)} \psi(t)dt$$

$$\leq \limsup_{n \to +\infty} \varphi_n(\int_0^{d(T^sx, T^sy)} \psi(t)dt)$$

$$\leq \int_0^{d(T^sx, T^sy)} \psi(t)dt$$

$$< \varphi_s(\int_0^{d(x,y)} \psi(t)dt) \leq \int_0^{d(x,y)} \psi(t)dt$$

Consequently, we deduce that  $\alpha < \int_0^{d(T^px,T^py)} \psi(t)dt$  for all  $p \in \mathbb{N}$  and hence

$$\lim_{n \to +\infty} \int_0^{d(T^n x, T^n y)} \psi(t) dt = \alpha.$$
(2.2)

By (ii) of Definition 2.1, there exist  $\delta > 0$  and  $m \in \mathbb{N}$  such that  $\varphi_m(t) \leq \alpha$  for every  $t \in [\alpha, \alpha + \delta]$ . Now, we choose  $p \in \mathbb{N}$  such that

$$\int_0^{d(T^px,T^py)}\psi(t)dt\leq \alpha+\delta.$$

From

$$\int_0^{d(T^{m+p}x,T^{m+p}y)} \psi(t)dt < \varphi_m(\int_0^{d(T^px,T^py)} \psi(t)dt) \le \alpha,$$

which is a contradiction, we deduce that  $\alpha = 0$ . Therefore, we obtain (2.1) as consequence of the property  $\int_0^{\varepsilon} \psi(t) dt > 0$  for all  $\varepsilon > 0$  and (2.2), with  $\alpha = 0$ .

Let  $x \in X$  and consider the sequence  $\{T^n x\}$ , which is a Cauchy sequence by Lemma 2.2. Since X is complete, there exists  $z \in X$  such that  $T^n x \to z$ . Then, from the continuity of  $T^m$ , we have

$$z = \lim_{n \to +\infty} T^{n+m} x = \lim_{n \to +\infty} T^m(T^n x) = T^m z,$$

that is, z is a fixed point of  $T^m$ . Since

$$\lim_{n \to +\infty} d(T^{nm+1}x, Tz) = \lim_{n \to +\infty} d(T^{nm+1}x, T^{nm+1}z) = 0$$

by (2.1), we have

$$Tz = \lim_{n \to +\infty} T^{nm+1}x = z,$$

that is, z is a fixed point of T. If Tx = x, then

$$d(z,x) = \lim_{n \to +\infty} d(T^n z, T^n x) = 0$$

by (2.1), and hence x = z. Therefore the fixed point of T is unique. Finally, since x is arbitrary,  $\lim_{n \to +\infty} T^n x = z$  for every  $x \in X$ . This completes the proof.

*Remark* 2.4. Every asymptotic contraction of Meir-Keeler is an asymptotic contraction of integral Meir-Keeler type and so Theorem 2.3 is a generalization of Theorem 1.6. Moreover, since each contraction of Branciari is an asymptotic contraction of integral Meir-Keeler type, we deduce that Theorem 2.3 is a generalization of Theorem 1.2.

The following example shows that Theorem 2.3 is a proper generalization of Theorem 1.2.

**Example 2.5.** Let  $X = [0, +\infty)$  be endowed with the Euclidean metric d(x, y) = |x - y|. Define  $T : X \to X$  and  $\psi, \varphi : [0, +\infty] \to [0, +\infty)$  by

$$T(x) = \frac{x}{1+x}, \quad \forall \ x \in X, \quad \psi(t) = 2t \text{ and } \varphi(t) = \frac{t}{1+t}, \ \forall \ t \in [0, +\infty[.$$

We have

$$\begin{split} \int_{0}^{d(Tx,Ty)} \psi(t) dt &= \frac{|x-y|^2}{[(1+x)(1+y)]^2} \\ &< \frac{|x-y|^2}{1+|x-y|^2} \\ &= \varphi(|x-y|^2) \\ &= \varphi(\int_{0}^{d(x,y)} \psi(t) dt). \end{split}$$

This implies that T is an asymptotic contraction of integral Meir-Keeler type with respect to the sequence  $\{\varphi_n\}$ , where  $\varphi_n = \varphi$  for all  $n \in \mathbb{N}$ . Therefore all the conditions of Theorem 2.3 are fulfilled. Consequently, it follows from Theorem 2.3 that T has a unique fixed point  $0 \in X$ .

In this case Theorem 1.2 cannot be used to have the existence of a fixed point of T in X because its assumptions are not satisfied. In fact, assume that there exists some constant  $c \in ]0, 1[$  such that

$$\int_0^{d(Tx,Ty)} \psi(t)dt \le c \int_0^{d(x,y)} \psi(t)dt,$$

that is

$$\frac{|x-y|^2}{[(1+x)(1+y)]^2} \le c|x-y|^2$$

for all  $x, y \in X$  with  $x \neq y$ . This yields that  $1 \leq c < 1$ , which is a contradiction.

Now, we give an example of an asymptotic contraction of integral Meir-Keeler type that is not an asymptotic contraction of Meir-Keeler type.

**Example 2.6.** Let  $X = \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}, n \geq 2\}$  be endowed with the Euclidean metric d(x, y) = |x - y|. Define  $T : X \to X$  and  $\psi, \varphi_n : [0, +\infty[ \to [0, +\infty[$  by

$$Tx = \begin{cases} 0 & \text{if } x = 0\\ \frac{1}{n+1} & \text{if } x = \frac{1}{n}, \end{cases} \quad \psi(t) = \begin{cases} 0 & \text{if } t = 0\\ t^{1/t-2}[1-\ln t] & \text{if } t \in ]0, 1/2]\\ 1/4 & \text{if } t > 1/2, \end{cases}$$
$$\varphi_n(t) = \begin{cases} t & \text{if } n \text{ is odd}\\ t/2 & \text{if } n \text{ is even.} \end{cases}$$

Since

$$\int_0^{d(Tx,Ty)} \psi(t)dt \le \frac{1}{2} \int_0^{d(x,y)} \psi(t)dt$$

for all  $x, y \in X$  with  $x \neq y$  (see Example 3.6 of [2]), we deduce that T is an asymptotic contraction of integral Meir-Keeler type with respect to the sequence  $\{\varphi_n\}$ .

We note that for every even  $n \in \mathbb{N}$ , one can choose  $p \in \mathbb{N}$  such that  $\frac{p}{n+p} > k$  for every  $k \in ]0,1[$ . Then, for x = 0 and y = 1/p, we have

$$d(T^n x, T^n y) = \frac{1}{n+p} > \frac{k}{p} = k d(x, y).$$

It follows that T is not an asymptotic contraction of Meir-Keeler type with respect to the sequence  $\{\varphi_n\}$ .

### Acknowledgements

The authors thank the referee for his valuable comments. The second author is supported by Università degli Studi di Palermo, Local University Project R. S. ex 60%.

### References

- S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133–181.
- [2] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 29 (2002), 531–536. 1, 2.6
- [3] K. Goebel and W.A. Kirk, Topics in metric fixed-point theory, Cambridge Univ. Press, Cambridge, 1990. 1
- [4] W.A. Kirk and B.G. Kang, A fixed point theorem revisited, J. Korean Math. Soc. 34 (1997), 285–291. 1
- [5] W.A. Kirk and B. Sims (Eds.): Handbook of metric fixed point theory, Kluwer Academic Publishers, Dordrecht, 2001. 1
- [6] W.A. Kirk, Fixed points of asymptotic contractions, J. Math. Anal. Appl. 277 (2003), 645–650. 1, 1.4
- [7] A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969), 326–329. 1, 1.1

- [8] T. Suzuki, Meir-Keeler contractions of integral type are still Meir-Keeler contractions, Int. J. Math. Math. Sci. 2007 (2007), Article ID 39281, 6 pages. 1
- [9] T. Suzuki, Several fixed point theorems in complete metric spaces, Yokohama Math. J. 44 (1997), 61–72. 1
- [10] T. Suzuki, Several fixed point theorems concerning-distance, Fixed Point Theory Appl. 2004 (2004), 195–209. 1
- T. Suzuki, Fixed-point theorem for asymptotic contractions of Meir-Keeler type in complete metric spaces, Nonlinear Anal. 64 (2006), 971–978. 1, 1.7