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Abstract

Two classes of multi-point BVPs for first order impulsive functional differential equations with nonlinear
boundary conditions are studied. Sufficient conditions for the existence of at least one solution to these
BVPs are established, respectively. Our results generalize and improve the known ones. Some examples are
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1. Introduction

In recent years, there has been a large number of papers concerned with the solvability of periodic
boundary value problems for first order [1-12,16,18,20,22-27,29-31], second order or higher order [13-16] im-
pulsive functional differential equations. To illustrate the motivation of this paper and compare the results
in this paper to known ones, we first present a survey on studies on boundary value problems for first order
ordinary or functional differential equations with or without impulses effects.
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Jankowski in [17] studied the existence of solutions of boundary value problem for functional differential
equation ( BVP for short ){

x′(t) = f(t, x(t), x(α(t))) ≡ Fx(t), t ∈ [0, T ], T > 0,
x(0) = λx(T ) + k,

(1.1)

where f is continuous, α : [0, T ] → [0, T ] continuous, λ, k ∈ R. Using Banach′s fixed point theorem, it was
proved that BVP(1.1) has unique solutions under some assumptions, one of which is as follows:

(M1). It holds that

|f(t, u1, u2) +Mu1 − f(t, v1, v2)−Mv1| ≤ K1|u1 − v1|+K2|u2 − v2|, t ∈ [0, T ]

when u1, u2, v1, v2 ∈ R for case λ > 0 or

|f(t, u1, u2)− f(t, v1, v2)| ≤ K1|u1 − v1|+K2|u2 − v2|, t ∈ [0, T ]

when u1, u2, v1, v2 ∈ R for case λ < 0.
By applying upper and lower solutions methods and monotone iterative technique, it was proved in

[17] that BVP(1.1) has extremal solutions under some conditions, one of the main assumptions is that the
inequality

f(t, u1, u2)− f(t, v1, v2) ≤ K1[u1 − v1] +K2[u2 − v2]

holds for t ∈ [0, T ], u1 ≤ v1, u2 ≤ v2.

In paper [18], the authors investigated the following BVP with nonlinear boundary conditions{
x′(t) = f(t, x(t)), t ∈ [0, T ], T > 0,
g(x(0), x(T )) = 0,

(1.2)

where f, g are continuous functions. The main assumptions in [7] are as follows.
(M2). α, β are sub-solution and super-solution of above problem respectively satisfying α(t) ≤ β(t), t ∈

[0, T ];
(M3). f and g satisfy that

f(t, v) +Mv ≤ f(t, u) +Mu, t ∈ [0, T ], α(t) ≤ v ≤ u ≤ β(t)

and
g(x′, y)−mx′ ≤ g(x, y)−mx, g(x, y) ≤ g(x, y′)

for x, x′ ∈ [α(0), β(0)] with x ≤ x′ and y, y′ ∈ [α(T ), β(T )] with y ≤ y′;
(M4). there exist constants m,m′,m′′ ≥ 0 such that for every x, x′ ∈ [α(0), β(0)] and y, y′ ∈ [α(T ), β(T )]

with x < x′ and y < y′ the following growth conditions are satisfied

−m′ ≤ g(x′, y)− g(x, y)

x′ − x
≤ m, 0 ≤ g(x, y′)− g(x, y)

y′ − y
≤ m′′.

The author in recent paper [13] also studied the existence of solutions of BVP(1.2), but the methods
used are different from those ones used in [18].

In paper [19], the author studied the existence of solutions of the BVP with nonlinear boundary conditions{
x′(t) = f(t, x(t)), t ∈ [0, T ], T > 0,
g(x(t0), x(t1), · · · , x(tr)) = 0,

(1.3)

where f, g are continuous functions, 0 = t0 < t1 < · · · < tr = T fixed. The main assumptions in [19] are
(M2), (M3) mentioned above and
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(M5). there exists a constant L > 0 such that

g(x, u1, · · · , ur)− g(y, u1, · · · , ur) ≤ L(x− y)

for all α(0) ≤ y ≤ x ≤ β(0) and α(ti) ≤ ui ≤ β(ti), i = 1, · · · , r.

Using fixed point theorems and the lower and upper solution methods, in [30], a pioneer paper concerning
the solvability of periodic boundary value problem for first order impulsive differential equation ( IBVP for
short ), Nieto studied the solvability of

x′(t) + λx(t) = F (t, x(t)), t ∈ [0, T ] \ {t1, · · · , tp},
x(t+k )− x(tk) = Ik(x(tk)), k = 1, · · · , p
x(0 = x(T ),

(1.4)

where λ 6= 0, J = [0, T ], 0 = t0 < t1 < · · · < tp < tp+1 = T . Nieto transformed (4) into the following integral
equation

x(t) =

∫ T

0
g(t, s)F (s, x(s))ds+

p∑
k=1

g(t, tk)Ik(x(tk)),

where

g(t, s) =
1

1− e−λT

{
e−λ(t−s), 0 ≤ s ≤ t ≤ T,
e−λ(T+t−s), 0 ≤ t < s ≤ T.

Then it was showed that IBVP(1.4) has at least one solution under one of the assumptions:
(M6). F is bounded and Ik(k = 1, · · · , p) are bounded;
(M7). There is lk > 0 so that |Ik(x)−Ik(y)| ≤ lk|x−y| and there is l > 0 so that |F (t, x)−F (t, y)| ≤ l|x−y|

hold for all t ∈ J and (x, y) ∈ R2;
(M8). There are α ∈ [0, 1), αk ∈ [0, 1)(k = 1, · · · , p) and ak, bk, b ∈ R, a ∈ PC(J) so that

|F (t, x)| ≤ a(t) + b|x|α, |Ik(x)| ≤ ak + bk|x|αk , k = 1, · · · , p,

hold for all t ∈ J and x ∈ R.

In [20], Nieto considered the following IBVP with periodic boundary conditions
x′(t) + F (t, x(t)) = 0, a.e.t ∈ [0, 1] \ {t1, · · · , tp},
x(t+k )− x(tk) = Ik(x(tk)), k = 1, 2, · · · , p
x(0) = x(T ),

(1.5)

where 0 = t0 < t1 < · · · < tp < tp+1 = 1, F is an impulsive Carathéodory function, Ik is continuous. Nieto
proved the following theorem.

Theorem A[20]. Suppose there exist r > 0 and k > 0 such that

F (t, u)

u
≥ k > 0 a.e. t ∈ J and for every |u| ≥ r; lim

u→0

Ik(u)

u
= 0 for k = 1, · · · , p.

Then IBVP(1.5) has at least one solution.

In paper [21], the author proved that if there exist r > 0, k > 0, cj , kj ∈ R and ξ ∈ L1(J) so that

F (t, u)

u
≥ k +

ξ(t)

u
, a.e. t ∈ J, |u| > r,

|Ik(x)| ≤ ck + kk|x|, |x| > r, k = 1, · · · , p,
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p∑
k=1

kj < 1− e−kT ,

then IBVP(1.5) has at least one solution.

In [22], Franco and Nieto studied the following IBVP
x′(t) = f(t, x(t)), a.e.t ∈ J \ {t1, · · · , tp},
x(t+k )− x(tk) = Ik(x(tk)), k = 1, 2, · · · , p
x(0) = x(T ).

(1.6)

Using upper and lower solutions method and the monotone technique, they proved IBVP(1.6) has at least
one solution under the existence assumptions of lower solution α and upper solution β and the following
condition:

(M9). Ik are continuous and nondecreasing and f satisfies

f(t, u)− f(t, v) ≥ −M(u− v)

for a.e. t ∈ J and all (u, v) ∈ R2 with α(t) ≤ v ≤ u ≤ β(t), where M = min{Mα,Mβ} and Mα and Mβ

satisfying

−
∫ T

tp

e−Mβ(T−s)[f(s, β(s))− β′(s)]ds ≥ β(T )− β(0)

and ∫ T

tp

e−Mα(T−s)[f(s, α(s))− α′(s)]ds ≥ α(0)− β(T ).

In a recent paper [23], Liu studied the following periodic boundary value problem of first order impulsive
functional differential equation

x′(t) + a(t)x(t) = f(t, x(t), x(α1(t)), · · · , x(αn(t))), a.e. t ∈ [0, T ],
x(t+k )− x(tk) = Ik(x(tk)), k = 1, 2, · · · , p
x(0) = x(T ).

Sufficient conditions for the existence of at least one solution of above mentioned IBVP were established in
[23].

In recent paper [24], Liu and Ge studied the existence of periodic solutions of the following first order
differential equation with linear impulses effects{

x′(t) + a(t)x(t) + F (t, x(t− τ(t))) = 0, t ∈ R, t 6= tk, k ∈ Z,
x(t+k )− x(tk) = bkx(tk), k = 1, 2, · · · . (1.7)

Using fixed point theorem, they proved that (1.7) has at least three positive periodic solutions under some
assumptions imposed on F and bk, and at least one periodic solution under some other assumption.

Recently, the authors in paper [11] studied the solvability of periodic boundary value problems for
non-Lipschizian impulsive functional differential equations.

We find that, besides [18,19], there was no other paper concerned with the existence of solutions of
multi-point boundary value problems for first order impulsive differential equations with nonlinear bound-
ary conditions.

In this paper, we investigate the existence of solutions of nonlinear multi-point boundary value problems
for nonlinear first order impulsive functional differential equations with nonlinear boundary conditions

x′(t) = f(t, x(t), x(α1(t)), · · · , x(αn(t))), a.e. t ∈ [0, T ],
∆x(tk) = Ik(x(t1), · · · , x(tm)), k = 1, · · · ,m,
x(T ) = g(x(s0), x(s1), · · · , x(sr)),

(1.8)
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and 
x′(t) = f(t, x(t), x(α1(t)), · · · , x(αn(t))), a.e. t ∈ [0, T ],
∆x(tk) = Ik(x(t1), · · · , x(tm)), k = 1, · · · ,m,
x(0) = g(x(s0), x(s1), · · · , x(sr)),

(1.9)

where T > 0, 0 = s0 < s1 < · · · < sr = T and 0 < t1 < · · · < tm < T are constants, αk ∈ C1([0, T ], [0, T ])
for all k = 1, · · · , n, and its inverse function denoted by βk, f is an impulsive Carathéodory function, Ik and
g are continuous functions, ∆x(tk) = x(t+k )− x(t−k ). New results on the existence of solutions of IBVP(1.8)
and IBVP(1.9) are established, respectively. The technical methods used are motivated by [23] and are
different from those in [2,18,16,19,25,9,26,21,27].

Applying the main results obtained to the following BVPs with impulses effects
x′(t) = f(t, x(t), x(α(t))) ≡ Fx(t), t ∈ [0, T ], T > 0,
∆x(tk) = Ik(x(tk)), k = 1, · · · ,m,
x(0) = λx(T ) + k

(∗)

and 
x′(t) = f(t, x(t)), t ∈ [0, T ], T > 0,
∆x(tk) = Ik(x(tk)), k = 1, · · · ,m,
g(x(s0), x(s1), · · · , x(sr)) = 0,

(∗∗)

where 0 < t1 < · · · < tp < T and Ik is continuous for k = 1, · · · , p, f is continuous, α : [0, T ] → [0, T ] con-
tinuous, λ, k ∈ R, f, g, Ik are continuous functions, 0 = s0 < s1 < · · · < sr = T and 0 < t1 < · · · < tm < T
fixed, the corollaries are novelty, generalize those ones in [17] and the methods used are different from those
ones in [12,14,17].

The remainder of this paper is divided into two sections. In Section 2, we present the main results (
Theorem 2.1 and Theorem 2.2 ), and some examples to illustrate the theorems are also given in this section.
In Section 3, we prove Theorem 2.1 and Theorem 2.2.

2. Main Results and Examples

In this section, we establish the main results. To define solutions of IBVP(1.8) or IBVP(1.9), we first
introduce two Banach spaces.

Let u : J = [0, T ] → R, and 0 = t0 < t1 < · · · < tm < tm+1 = T , for k = 0, · · · ,m, define the function
uk : (tk, tk+1)→ R by uk(t) = u(t). We will use the following sets

X =



x : J → R, xk ∈ C0(tk, tk+1), k = 0, · · · ,m,

there exist the limits


limt→t−k

x(t) = x(tk),

limt→t+k
x(t),

limt→0+ x(t) = x(0),
limt→T− x(t) = x(T )


and

Y = X ×Rm+1

with the norms
||u|| = ||u||X = max{ sup

t∈(tk,tk+1)
|uk(t)|, k = 0, · · · ,m}

for u ∈ X and

||y|| = ||y||Y = max

{
||u||X , max

1≤k≤m+1
{|xk|}

}
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for y = {u, x1, · · · , xm+1} ∈ Y , respectively. It is easy to show that X and Y are Banach spaces.

A function F is called an impulsive Carathéodory function if
∗ F (•, u0, u1, · · · , un) ∈ X for each u = (u0, u1, · · · , un) ∈ Rn;
∗ F (t, •, · · · , •) is continuous for a.e. t ∈ J \ {t1, · · · , tm};
∗ for each r > 0 there exists hr ∈ L1(J) such that

|F (t, u0, u1, · · · , un)| ≤ hr(t)

holds for a.e. t ∈ J \ {t1, · · · , tm} and every u satisfying maxi=0,1,··· ,n |ui| ≤ r.

By a solution of IBVP(1.8) ( or IBVP(1.9) ) we mean a function u ∈ X satisfying all equations in (1.8)
(or (1.9)).

The main results are as follows:
Theorem 2.1. Suppose

(A) there exists a constant M > 0 such that Ik(x1, · · · , xm)xk ≥ −M
m for all x1, · · · , xm ∈ R and

k = 1, · · · ,m;
(C) there exist functions h : [0, T ]× Rn+1 → R, gi : [0, T ]× R → R(i = 0, 1, · · · , n) and r : [0, T ]→ R

such that
(i) f(t, x0, · · · , xn) = h(t, x0, · · · , xn)+

∑n
i=0 gi(t, xi)+r(t) holds for all (t, x0, · · · , xn) ∈ [0, T ]×Rn+1;

(ii) gi(t, x)(i = 0, 1, 2, 3, · · · , n) satisfies that gi(•, x) ∈ X for every x ∈ R and gi(t, •) is continuous
for a.e. t ∈ [0, T ], r ∈ X;

(iii) h satisfies that h(•, x0, · · · , xn) ∈ X for every (x0, · · · , xn) ∈ Rn+1 and h(t, •, · · · , •) is
continuous for a.e. t ∈ [0, T ];

(iv) There exist constants θ ≥ 0 and β > 0 such that

h(t, x0, · · · , xn)x0 ≥ β|x0|θ+1

holds for all (t, x0, · · · , xn) ∈ [0, T ]×Rn+1;

(v) lim|x|→+∞ supt∈[0,T ]
|gi(t,x)|
|x|θ = ri ∈ [0,+∞) for i = 0, 1, 2, · · · , n, where θ is defined in (iv);

(D) for each δ > 0, max|x0|≤δ |g(x0, · · · , xr)| is bounded and

lim
x0→∞

|g(x0, x1, · · · , xr)|
|x0|

= α < 1 uniformly in (x1, · · · , xr) ∈ Rr.

Then IBVP(1.8) has at least one solution if

r0 +

n∑
k=1

rk||β′k||θ/(1+θ) < β. (2.1)

Theorem 2.2. Suppose
(A1) there exists a constant M > 0 such that (2xk + Ik(x1, · · · , xm))Ik(x1, · · · , xm) ≤ M

m for all
x1, · · · , xm ∈ R and k = 1, · · · ,m;

(C1) there exist functions h : [0, T ]×Rn+1 → R, gi : [0, T ]×R→ R(i = 0, 1, · · · , n) and r : [0, T ]→ R
such that (C)(i),(C)(ii),(C)(iii) and (C)(v) in Theorem 2.1 hold and

(iv) there exist constants θ ≥ 0 and β > 0 such that

h(t, x0, · · · , xn)x0 ≤ −β|x0|θ+1

holds for all (t, x0, · · · , xn) ∈ [0, T ]×Rn+1;
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(D1) for each δ > 0, max|xr|≤δ |g(x0, · · · , xr)| is bounded and

lim
xr→∞

|g(x0, x1, · · · , xr)|
|xr|

= α < 1 uniformly in (x0, · · · , xr−1) ∈ Rr;

Then IBVP(1.9) has at least one solution if (2.1) holds.

Corollary 2.1. Suppose
(A0) Ik(x1, · · · , xm)xk ≥ −M for all x1, · · · , xm ∈ R and k = 1, · · · ,m;
and (C), (D) in Theorem 2.1 hold. Then IBVP(1.8) has at least one solution if (10) hold.

Corollary 2.2. Suppose
(A10) (2xk + Ik(x1, · · · , xm))Ik(x1, · · · , xm) ≤M for all x1, · · · , xm ∈ R and k = 1, · · · ,m;
and (C1), (D1) in Theorem 2.2 hold. Then IBVP(1.9) has at least one solution if (2.1) hold.

Now, we present some examples to illustrate above theorems. Since the boundary conditions in examples
are non-homogeneous, these examples can not be solved by the results in known papers [1,13,14,16,17,34,10-
12,5,28-32] and [23].

Example 2.1. Consider the following IBVP x′(t) =
∑2p+1

k=1 akx
k(t) + r(t), t ∈ [0, T ], t 6= tk, k = 1, · · · ,m,

∆x(tk) = bk[x(tk)]
α, k = 1, · · · ,m,

x(T ) = λx(0) + k,

(2.2)

where p a nonnegative integer, m a positive integer, α is a ratio of two positive odd integers, T > 0,
0 < t1 < · · · < tm < T , s0 = 0, s1 = T , bk ∈ R for all k = 1, · · · ,m, a2p+1 ∈ R and ak ∈ R for all
k = 1, · · · , 2p, r ∈ X, λ ∈ R, k ∈ R.

Case 1. |λ| < 1.

Proof. Corresponding to IBVP(1.8), one sees that

f(t, x0) =

2p+1∑
k=0

akx
k
0 + r(t),

Ik(x1, · · · , xm) = bkx
α
k , k = 1, · · · ,m,

g(x0, x1) = λx0 + k.

It is easy to see that
(A). since α is a ratio of two odd positive integers, we have Ik(x1, · · · , xm)xk = bk[xk]

α+1 ≥ 0 for all
x1, · · · , xm ∈ R and k = 1, · · · ,m if bk ≥ 0(i = 1, 2, · · · ,m).

(C). Let h(t, x0) = a2p+1x
2p+1
0 , g0(t, x0) =

∑2p
k=1 akx

k
0; Then (C)(i),(C)(ii),(C)(iii) in Theorem 2.1

hold. Furthermore, (C)(iv) in Theorem 2.1 holds with β = a2p+1 > 0 and θ = 2p+ 1 if a2p+1 > 0; (C)(v)
holds with r0 = 0.

(D). lim|x0|→+∞
|g(x0,x1)|
|x0| = α = |λ| < 1.

One sees that (2.1) holds since r0 = 0. It follows from Corollary 2.1 that IBVP(2.2) has at least one
solution if a2p+1 > 0 and bk ≥ 0(k = 1, 2, · · · ,m).

Case 2. |λ| > 1.
At this case, we have 1/|λ| < 1. Transform IBVP(2.2) into x′(t) =

∑2p+1
k=1 akx

k(t) + r(t), t ∈ [0, T ], t 6= tk, k = 1, · · · ,m,
∆x(tk) = bk[x(tk)]

α, k = 1, · · · ,m,
x(0) = 1

λx(T )− k
λ .
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Corresponding to IBVP(1.9), one sees that

f(t, x0) =

2p+1∑
k=0

akx
k
0 + r(t),

Ik(x1, · · · , xm) = bk[xk]
α, k = 1, · · · ,m,

g(x0, x1) =
1

λ
x1 −

k

λ
.

It is easy to see that
(A1). [2xk + Ik(x1, · · · , xp)]Ik(x1, · · · , xp) = [2xk + bk[xk]

α]bk[xk]
α ≤ 0 for all x1, · · · , xm ∈ R and

k = 1, · · · ,m if α = 1 and (2 + bk)bk ≤ 0.
(C1). Let h(t, x0) = a2p+1x

2p+1
0 , g0(t, x0) =

∑2p
k=1 akx

k
0,. Then (C)(i),(C)(ii),(C)(iii) in Theorem 2.1

hold; (C1)(iv) holds with θ = 2p+ 1 and β = a2p+1 if a2p+1 < 0; (C)(v) holds with r0 = 0.

(D1). lim|x1|→+∞
|g(x0,x1)|
|x1| = α = 1

|λ| < 1.

It follows from Corollary 2.2 that IBVP(2.2) has at least one solution if α = 1, a2p+1 < 0, and
bk(2 + bk) ≤ 0 for all k = 1, 2, · · · ,m.

Case 3. |λ| = 1.
Let y(t) = e−tx(t), then x′(t) = et[y(t) + y′(t)] and

∆y(tk) = y(t+k )− y(tk) = e−tkx(t+k )− etkx(tk) = etk∆x(tk) = bke
−tk [x(tk)]

α = bke
(α−1)tky(tk).

We change IBVP(2.2) to
y′(t) = −y(t) +

∑2p+1
k=1 ake

(k−1)tyk(t) + r(t)e−t, t ∈ [0, T ], t 6= tk, k = 1, · · · ,m,
∆y(tk) = bke

(α−1)tk [y(tk)]
α, k = 1, · · · ,m,

y(T ) = λ
eT
y(0) + k

eT
.

Corresponding to IBVP(1.8), one sees that

f(t, x0) = −x0 +

2p+1∑
k=1

ake
(k−1)txk0 + r(t),

Ik(x1, · · · , xm) = bke
(α−1)tk [xk]

α, k = 1, · · · ,m,

g(x0, x1) =
λ

eT
x0 +

k

eT
.

It is easy to see that
(A). since α is a ratio of two odd positive integers, we have Ik(x1, · · · , xp)xk = bke

(α−1)tk [xk]
α+1 ≥ 0

for all x1, · · · , xm ∈ R and k = 1, · · · ,m if bk ≥ 0 for all k = 1, 2, · · · ,m;
(C). Let h(t, x0) = a2p+1x

2p+1
0 , g0(t, x0) = −x0 +

∑2p
k=1 akx

k
0, r(t) be replaced by r(t)e−t. Then (C)(i),

(C) (ii), (C)(iii) hold; (C)(iv) holds with θ = 2p + 1 and β = a2p+1 if a2p+1 > 0; (C)(v) holds with
r0 = 0 if p > 0.

(D). lim|x0|→+∞
|g(x0,x1)|
|x0| = α = 1

eT
< 1.

One sees that (2.1) holds since r0 = 0. Then Corollary 2.1 implies that IBVP(2.2) has at least one
solution if p > 0, a2p+1 > 0 and bk ≥ 0 for all k = 1, 2, · · · ,m.

If p = 0, one sees that (A) and (D) in Theorem 2.1 hold and
(C). Let h(t, x0) = (a1−1)x0, g0(t, x0) = 0, r(t) be replaced by r(t)e−t. Then (C)(i), (C)(ii), (C)(iii)

hold; (C)(iv) holds with θ = 1 and β = a1 − 1 if a1 − 1 > 0; (C)(v) holds with r0 = 0.
One sees that (2.1) holds since r0 = 0. Hence Corollary 2.1 implies that IBVP(2.2) has at least one

solution if a2p+1 > 1 and bk ≥ 0 for all k = 1, 2, · · · ,m.
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Remark. Consider the following BVP x′(t) =
∑2p+1

k=1 akx
k(t) + r(t), t ∈ [0, T ], t 6= tk, k = 1, · · · ,m,

∆x(tk) = bkx(tk) + ck, k = 1, · · · ,m,
x(T ) = λx(0) + k,

where p a nonnegative integer, m a positive integer, T > 0, 0 < t1 < · · · < tm < T , s0 = 0, s1 = T , bk ≥ 0
for all k = 1, · · · ,m, ck ∈ R for all k = 1, · · · ,m, a2p+1 ∈ R and ak ∈ R for all k = 1, · · · , 2p, r ∈ X,
λ ∈ R, k ∈ R.

It is easy to see that

xkIk(x1, x2, · · · , xm) = bkx
2
k + ckxk = bk

(
xk +

ck
2bk

)2

−
c2
k

2bk
≥ −

c2
k

2bk
.

Hence (A) in Theorem 2.1 holds. Similarly to above discussion, we can get the existence results of this
BVP by using Theorem 2.1.

Example 2.2. Consider the following IBVP

x′(t) = a2p+1

(
1 + x2(t) +

∑2n+1
k=1 x2

(
1
k t
))
x2p+1(t) +

∑2p
k=1 akx

k(t)

+
∑2n+1

k=1 ckx
2p+1

(
1
k t
)

+ r(t),
t ∈ [0, T ], t 6= tk, k = 1, · · · ,m,

∆x(tk) = bk[x(tk)]
3, k = 1, · · · ,m,

x(T ) = 1
2 [x(0)]α + a sinx(ξ) + b,

(2.3)

where T > 0, p is a positive integer, a2p+1 > 0, c2m+1 ∈ R,and ak, ck ∈ R for all k = 1, · · · , 2p, r ∈ X,
0 < t1 < · · · < tm < T , bk ≥ 0 for all k = 1, · · · ,m, 0 ≤ α ≤ 1, ξ ∈ (0, T ), a, b ∈ R.

Proof. Corresponding to IBVP(1.8), one sees that s0 = 0, s1 = ξ, s2 = T and

f(t, x0, · · · , x2n+1) = a2p+1

(
1 +

2n+1∑
i=0

x2
i

)
x2p+1

0 +

2p∑
k=1

akx
k
0 +

2n+1∑
k=1

ckx
2p+1
k + r(t),

Ik(x1, · · · , xm) = bk[xk]
3, k = 1, · · · , p,

g(x0, x1, x2) =
1

2
[x0]α + a sinx1 + b,

αk(t) =
1

k
t, k = 1, · · · , 2n+ 1.

It is easy to see that βk(t) = kt with ||βk|| = kT and
(A). Ik(x1, · · · , xp)xk = bk[xk]

4 ≥ 0 for all x1, · · · , xm ∈ R and k = 1, · · · ,m since bk ≥ 0.
(C). Let

h(t, x0, · · · , x2n+1) = a2p+1

(
1 +

2n+1∑
i=0

x2
i

)
x2p+1

0 ,

g0(t, x0) =

2p∑
k=1

akx
k
0,

gi(t, xi) = cix
2p+1
i (i = 1, · · · , 2n+ 1),

and r be defined in IBVP(12). Then (C)(i), (C)(ii), (C)(iii) hold; (C)(iv) holds with θ = 2p + 1 and
β = a2p+1 if a2p+1 > 0; (C)(v) holds with r0 = 0 and ri = |ci|(i = 1, · · · , 2n+ 1).

(D). lim|x0|→+∞
|g(x0,x1,x2)|
|x0| =

{
0, α ∈ [0, 1),
1
2 , α = 1

< 1.
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It follows from Corollary 2.1 that IBVP(2.3) has at least one solution if

T
2p+1
2p+2

2p+1∑
k=1

k
2p+1
2p+2 |ck| < a2p+1.

3. Proofs of Theorems

In this section, we prove theorems given in Section 2. The following abstract existence theorem will be
used, whose proof can be see in [7].
Lemma 3.1. Let X and Y be Banach spaces. Suppose L : D(L) ⊂ X → Y is a Fredholm operator of
index zero with KerL = {0}, N : X → Y is L−compact on any open bounded subset of X. If 0 ∈ Ω ⊂ X is
an open bounded subset and Lx 6= λNx for all x ∈ D(L) ∩ ∂Ω and λ ∈ [0, 1], then there exist at least one
x ∈ Ω such that Lx = Nx.

Consider IBVP(8), we define the linear operator L : DomL ⊆ X → Y and the nonlinear operator
N : X → Y by

Lx(t) =



x′(t)
∆x(t1)
·
·
·

∆x(tm)
x(T )


for x ∈ D(L)

where D(L) = {u ∈ X, uk ∈ C1(tk, tk+1), k = 0, 1, · · · ,m} and

Nx(t) =



f(t, x(t), x(α1(t)), · · · , x(αn(t)))
I1(x(t1), · · · , x(tm))

·
·
·

Im(x(t1), · · · , x(tm))
g(x(s0), x(s1), · · · , x(sr))


for x ∈ X.

Since 

x′(t) = 0,
∆x(t1) = 0,

·
·
·

∆x(tm) = 0,
x(T ) = 0

has unique solution x(t) ≡ 0, and Ik, g are continuous, f is Carathéodory function, we have the followings
(i). KerL = {0}.
(ii). L is a Fredholm operator of index zero.
(iii). Let Ω ⊂ X be an open bounded subset with Ω ∩D(L) 6= ∅, then N is L−compact on Ω.
(iv). x ∈ D(L) is a solution of BV P (8) if and only if x is a solution of the operator equation Lx = Nx

in D(L).
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Proof of Theorem 2.1. Let λ ∈ (0, 1). Suppose x is a solution of the system
x′(t) = λf(t, x(t), x(α1(t)), · · · , x(αn(t))), a.e. t ∈ [0, T ],
∆x(tk) = λIk(x(t1), · · · , x(tm)), k = 1, · · · ,m,
x(T ) = λg(x(s0), x(s1), · · · , x(sr)).

(3.1)

We divide the remainder of the proof into two steps.
Step 1. Prove that there exists ξ ∈ [0, T ] and a constant M ′ > 0 such that |x(ξ)| ≤M ′.
Since (D) holds, we get that there exist constants δ′ > 0 and α1 ∈ [α, 1) such that

|g(x0, x1, · · · , xr)|
|x0|

< α1 for all |x0| > δ′ and (x1, · · · , xr) ∈ Rr.

If |x(s0)| = |x(0)| ≤ δ′, then this Step is completed with ξ = 0 and M ′ = δ′. If |x(0)| > δ′, then we do the
following.

Multiplying two sides of the first equation in (3.1) by x(t), integrating it from 0 to T , we get from (C)(i)
that

1

2
(x(T ))2 − 1

2
(x(0))2 − 1

2

m∑
k=1

[(
x(t+k )

)2 − (x(t−k )
)2]

= λ

∫ T

0
f(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds

= λ

(∫ T

0
h(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds+

∫ T

0
g0(s, x(s))x(s)ds

+

n∑
i=1

∫ T

0
gi(s, x(αi(s))x(s)ds+

∫ T

0
r(s)x(s)ds

)
.

It follows from (A) that(
x(t+k )

)2 − (x(t−k )
)2

=
(
x(t+k )− x(t−k )

) (
x(t+k ) + x(t−k )

)
= ∆x(tk) (2x(tk) + ∆x(tk))

= λIk(x(t1), · · · , x(tm)) (2x(tk) + λIk(x(t1), · · · , x(tm)))

≥ 2λx(tk)Ik(x(t1), · · · , x(tm)) ≥ −2λ
M

m
.

Since

x(T )2 − x(0)2 = λ2g(x(s0), x(s1), · · · , x(sr))
2 − x(0)2

= −x(0)2

[
1− λ2

(
|g(x(s0), x(s1), · · · , x(sr))|

|x(0)|

)2
]

≤ −x(0)2[1− λ2α2
1] ≤ 0,

we get

1

2
(x(T ))2 − 1

2
(x(0))2 − 1

2

m∑
k=1

[(
x(t+k )

)2 − (x(t−k )
)2] ≤ λM.

Then ∫ T

0
h(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds+

∫ T

0
g0(s, x(s))x(s)ds

+

n∑
i=1

∫ T

0
gi(s, x(αi(s))x(s)ds+

∫ T

0
r(s)x(s)ds ≤M.
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It follows from (C)(iv) that

β

∫ T

0
|x(s)|θ+1ds ≤

∫ T

0
h(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds

≤ M −
∫ T

0
g0(s, x(s))x(s)ds−

n∑
i=1

∫ 1

0
gi(s, x(αi(s))x(s)ds

−
∫ T

0
r(s)x(s)ds

≤ M +
n∑
i=0

∫ T

0
|gi(s, x(αi(s))||x(s)|ds+

∫ T

0
|r(s)||x(s)|ds.

Since (2.1) holds, choose ε > 0 such that

(r0 + ε) +

n∑
k=1

(rk + ε)||β′k||θ/(1+θ) < β. (3.2)

For such ε > 0, from (C)(v), there exists a constant δ > 0 such that for every i = 0, 1, · · · , n,

|gi(t, x)| < (ri + ε)|x|θ uniformly for t ∈ [0, T ] and |x| > δ. (3.3)

Let

∆1,i = {t : t ∈ [0, T ], |x(αi(t))| ≤ δ}, i = 1, · · · , n,
∆2,i = {t : t ∈ [0, T ], |x(αi(t))| > δ}, i = 1, · · · , n,
gδ,i = max

t∈[0,T ],|x|≤δ
|gi(t, x)|, i = 0, 1, · · · , n,

∆1 = {t ∈ [0, T ], |x(t)| ≤ δ},
∆2 = {t ∈ [0, T ], |x(t)| > δ}.
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Let K = max{||r||, gδ,i : i = 0, 1, · · · , n}. Then we get

β

∫ T

0
|x(s)|θ+1ds

≤ M +
n∑
i=0

∫
∆2,i

|gi(s, x(αi(s))||x(s)|ds+

∫ T

0
|r(s)||x(s)|ds

+
n∑
i=0

∫
∆1,i

|gi(s, x(αi(s))||x(s)|ds

≤ (r0 + ε)

∫ T

0
|x(s)|θ+1ds+

n∑
k=1

(rk + ε)

∫ T

0
|x(αi(s))|θ|x(s)|ds

+

∫ T

0
|r(s)||x(s)|ds +

n∑
k=0

gδ,k

∫ T

0
|x(s)ds

≤ M + (r0 + ε)

∫ T

0
|x(s)|θ+1ds

+

n∑
k=1

(rk + ε)

(∫ T

0
|x(αi(s))|θ+1ds

) θ
1+θ
(∫ T

0
|x(s)|θ+1ds

) 1
1+θ

+K(n+ 2)T
θ

1+θ

(∫ T

0
|x(s)|θ+1ds

) 1
1+θ

= M + (r0 + ε)

∫ T

0
|x(s)|θ+1ds

+
n∑
k=1

(rk + ε)

(∫ αk(T )

αk(0)
|x(u)|θ+1|β′k(u)|du

) θ
1+θ (∫ T

0
|x(s)|θ+1ds

) 1
1+θ

+K(n+ 2)T
θ

1+θ

(∫ T

0
|x(s)|θ+1ds

) 1
1+θ

≤ M + (r0 + ε)

∫ T

0
|x(s)|θ+1ds

+

n∑
k=1

(rk + ε)||β′k||
θ

1+θ

(∫ T

0
|x(u)|1+θdu

) θ
1+θ
(∫ T

0
|x(s)|θ+1ds

) 1
1+θ

+K(n+ 2)T
θ

1+θ

(∫ T

0
|x(s)|θ+1ds

) 1
1+θ

= M +

(
(r0 + ε) +

n∑
k=1

(rk + ε)||β′k||
θ

1+θ

)∫ T

0
|x(s)|θ+1ds

+K(n+ 2)T
θ

1+θ

(∫ T

0
|x(s)|θ+1ds

) 1
1+θ

.

That is(
β − (r0 + ε)−

n∑
k=1

(rk + ε)||β′k||
θ

1+θ

)∫ T

0
|x(s)|θ+1ds ≤M +K(n+ 2)T

θ
1+θ

(∫ T

0
|x(s)|θ+1ds

) 1
1+θ

.
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It follows from (3.2) that there exists a constant M1 > 0 such that
∫ T

0 |x(s)|θ+1ds ≤M1. Hence there exists

ξ ∈ [0, T ] such that |x(ξ)| ≤ (M1/T )
1
θ+1 .

Hence there exits ξ ∈ [0, T ] such that |x(ξ)| ≤ max{δ′, (M1/T )
1
θ+1 } =: M ′. Step 1 is complete.

Step 2. Prove that there exists a constant M ′′ > 0 such that ||x|| ≤M ′′.
If t < ξ, multiplying two sides of the first equation in (3.1) by x(t), integrating it from t to ξ, we get,

using (A) and (C), similar to Step 1, that

1

2
(x(t))2 =

1

2
(x(ξ))2 − 1

2

∑
ξ≤tk<t

[(
x(t+k )

)2 − (x(t−k )
)2]

−λ
∫ ξ

t
f(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds

≤ M +
1

2
M ′2 − λ

∫ ξ

t
f(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds

≤ M +
1

2
M ′2 − λ

(∫ ξ

t
h(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds

+

∫ ξ

t
g0(s, x(s))x(s)ds

+
n∑
i=1

∫ ξ

t
gi(s, x(αi(s))x(s)ds+

∫ ξ

t
r(s)x(s)ds

)

≤ M +
1

2
M ′2 − βλ

∫ ξ

t
|x(s)|θ+1ds− λ

∫ ξ

t
g0(s, x(s))x(s)ds

−λ
n∑
i=1

∫ ξ

t
gi(s, x(αi(s))x(s)ds− λ

∫ ξ

t
r(s)x(s)ds

≤ M +
1

2
M ′2 +

n∑
i=0

∫ T

0
|gi(s, x(αi(s))||x(s)|ds+

∫ T

0
|r(s)||x(s)|ds

≤ M +
1

2
M ′2 +

(
(r0 + ε) +

n∑
k=1

(rk + ε)||β′k||
θ

1+θ

)∫ T

0
|x(s)|θ+1ds

+(n+ 2)KT
θ

1+θ

(∫ T

0
|x(s)|θ+1ds

) 1
θ+1

≤ M +
1

2
M ′2 +

(
(r0 + ε) +

n∑
k=1

(rk + ε)||βk||θ/(1+θ)

)
M1

+(n+ 2)KT
θ

1+θM
1
θ+1

1

=: M2.

Hence one sees that
x2(t) ≤ 2M2 = M3 for t ∈ [0, ξ].
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This implies x2(0) ≤M3. So

x2(T ) = λ2g(x(s0), x(s1), · · · , x(sr))
2

≤ max

{
max
|x0|≤δ′

g(x(s0), x(s1), · · · , x(sr))
2, max

δ′<|x0|≤
√
M3

|g(x(s0), x(s1), · · · , x(sr))
2

}

≤ max

{
max
|x0|≤δ′

g(x(s0), x(s1), · · · , x(sr))
2, max

δ′<|x0|≤
√
M3

α2
1|x(s0)|2

}

≤ max

{
max
|x0|≤δ′

g(x(s0), x(s1), · · · , x(sr))
2, α2

1M3

}
.

It follows from (D) that there exists a constant M4 > 0 such that |x(T )| ≤M4. For t ∈ [ξ, T ], we have

1

2
(x(t))2 =

1

2
(x(T ))2 − 1

2

∑
ξ≤tk<t

[(
x(t+k )

)2 − (x(t−k )
)2]

−λ
∫ T

t
f(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds.

Similar to above discussion, we get that there is M5 > 0 so that x2(t) ≤ M5 for t ∈ [ξ, T ]. All above
discussion implies that there is M ′′′ = max{M3,M5} > 0 so that |x(t)| ≤M ′′′. Thus ||x|| ≤M ′′′.

It follows that Ω1 = {x ∈ D(L) : Lx = λNx for some λ ∈ [0, 1]} is bounded.
Let Ω ⊃ Ω1 be an open bounded subset of X, it is easy to see that Lx 6= λNx for all x ∈ D(L) ∩ ∂Ω

and λ ∈ [0, 1]. It follows from Lemma 3.1 that equation Lx = Nx has at least one solution x ∈ Ω, then x is
a solution of IBVP(1.8). The proof is complete.
Remark 1. In Theorem 2.1, the assumption (D) may be changed into the following

(D′). There exists constant δ′ > 0 such that

|g(x0, x1, · · · , xr)|
|x0|

≤ 1 for all |x0| > δ′ and (x1, · · · , xr) ∈ Rr.

Consider BVP(9), we define the linear operator L1 : D(L1) ⊆ X → Y by

L1x(t) =



x′(t)
∆x(t1)
·
·
·

∆x(tm)
x(0)


for x ∈ D(L)

where D(L1) = {u ∈ X, uk ∈ C1(tk, tk+1), k = 0, 1, · · · ,m} and the nonlinear operator N : X → Y is the
same that for IBVP(8). �
Proof of Theorem 2.2. Let λ ∈ (0, 1). Suppose x is a solution of the system

x′(t) = λf(t, x(t), x(α1(t)), · · · , x(αm(t))), a.e. t ∈ [0, T ],
∆x(tk) = λIk(x(t1), · · · , x(tm)), k = 1, · · · ,m,
x(0) = λg(x(s0), x(s1), · · · , x(sr)).

(3.4)

We divide the remainder of the proof into two steps.
Step 1. Prove that there exists ξ ∈ [0, T ] and a constant M > 0 such that |x(ξ)| ≤M .
Since (D1) holds, we get that there exist constants δ′ > 0 and α1 ∈ [α, 1) such that

|g(x0, x1, · · · , xr)|
|xr|

< α1 for all |xr| > δ′ and (x1, · · · , xr) ∈ Rr.
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If |x(sr)| = |x(T )| ≤ δ′, then this step is completed with ξ = T and M = δ′. If |x(T )| > δ′, then we do the
following.

Multiplying two sides of the first equation in (3.4) by x(t), integrating it from 0 to T , we get

1

2
(x(T ))2 − 1

2
(x(0))2 − 1

2

m∑
k=1

[(
x(t+k )

)2 − (x(t−k )
)2]

= λ

∫ T

0
f(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds

= λ

(∫ T

0
h(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds+

∫ T

0
g0(s, x(s))x(s)ds

+

n∑
i=1

∫ T

0
gi(s, x(αi(s))x(s)ds+

∫ T

0
r(s)x(s)ds

)
.

It follows from (A1) that(
x(t+k )

)2 − (x(t−k )
)2

=
(
x(t+k )− x(t−k )

) (
x(t+k ) + x(t−k )

)
= ∆x(t−k )

(
2x(t−k ) + ∆x(t−k )

)
= λIk(x(t1), · · · , x(tm))

(
2x(t−k ) + λIk(x(t1), · · · , x(tm))

)
≤ λIk(x(t1), · · · , x(tm))

(
2x(t−k ) + Ik(x(t1), · · · , x(tm))

)
≤ 2λ

M

m
.

Since

x(T )2 − x(0)2 = [x(T )]2 − λ2g(x(s0), x(s1), · · · , x(sr))
2

= x(T )2

[
1− λ2

(
|g(x(s0), x(s1), · · · , x(sr))|

|x(T )|

)2
]

≥ x(T )2[1− λ2α2
1] ≥ 0,

we get ∫ T

0
h(s, x(s), x(α1(s)), · · · , x(αn(s)))x(s)ds+

∫ T

0
g0(s, x(s))x(s)ds

+

n∑
i=1

∫ T

0
gi(s, x(αi(s))x(s)ds+

∫ T

0
r(s)x(s)ds ≥M.

It follows from (C1) that

β

∫ T

0
|x(s)|m+1ds

≤ M +

∫ T

0
|g0(s, x(s))||x(s)|ds+

n∑
i=1

∫ T

0
|gi(s, x(αi(s))||x(s)|ds

+

∫ T

0
|r(s)||x(s)|ds.

The remainder of the proof is similar to that of Theorem 2.1 and is omitted.
Remark 2. In Theorem 2.2, the assumption (D1) may be changed into the following

(D1′). There exist constants δ′ > 0 such that

|g(x0, x1, · · · , xr)|
|xr|

≤ 1 for all |xr| > δ′ and (x0, · · · , xr−1) ∈ Rr.



Y. Liu, J. Nonlinear Sci. Appl. 5 (2012), 133–150 149

Acknowledgements

The authors thank the referee for the valuable comments and suggestions.

References

[1] A. Cabada, The monotone method for first order problems with linear and nonlinear boundary conditions, Appl.
Math. Comput. 63 (1994), 163-186.

[2] D. Franco, J. J. Nieto, First order impulsive ordinary differential equations with anti-periodic and nonlinear
boundary value conditions, Nonl. Anal. 42 (2000), 163-173.

[3] D. Franco, J. J. Nieto, A new maximum principle for impulsive first order problems, Internat. J. Theoret. Phys.
37 (1998), 1607-1616.

[4] R. Hakl, A. Lomtatidze, B. Puza, On a boundary value problem for first order scalar functional differential
equations, Nonl. Anal. 53 (2003)391-405.

[5] Z. He, J. Yu, Periodic boundary value problems for first order impulsive ordinary differential equations, J. Math.
Anal. Appl. 272 (2002), 67-78.

[6] D. Jiang, J. J. Nieto, W. Zuo, On monotone method for first order and second order periodic boundary value
problems and periodic solutions of functional differential equations, J. Math. Anal. Appl. 289 (2004), 691-699.

[7] G. S. Ladde, V. Lakshmikantham, A. S. Vatsala, Monotone iterative techniques for nonlinear differential equa-
tions, Pitman Advanced Publishing Program, 1985.

[8] X. Li, X. Lin, D. Jiang, X. Zhang, �Existence and multiplicity of positive periodic solutions to functional differential
equations with impulse effects, Nonl. Anal., 62 (2005), 683-701.

[9] X. Liu, Nonlinear boundary value problems for first order impulsive integra-differential equations, Appl. Anal. 36
(1990), 119-130.

[10] J. J. Nieto, N. Alvarez-Noriega, Periodic boundary value problems for nonlinear first order ordinary differential
equations, Acta Math. Hungar, 71(1996)49-58.

[11] J. J. Nieto, R. Rodriguez-Lopez, Periodic boundary value problem for non-Lipschitzian impulsive functional
differential equations, J. Math. Anal. Appl. 318 (2006), 593-610.

[12] C. Pierson-Gorez, Impulsive differential equations of first order with periodic boundary conditions, Diff. Equs.
Dyn. Systems, 11 (1993), 185-196.

[13] A. Cabada, The method of lower and upper solutions for second, third, fourth, and higher order boundary value
problems, J. Math. Anal. Appl. 185 (1994), 302-320.

[14] A. Cabada, J. J. Nieto, D. Franco, S. I. Trofimchuk, A generalization of the monotone method for second order
periodic boundary value problems with impulses at fixed points, Dynamics Contin. Discrete Impuls. System, 7
(2000), 145-158.

[15] A. S. Vatsala, Y. Sun, Periodic boundary value problems of impulsive differential equations, Appl. Anal. 44 (1992),
145-158.

[16] D. Franco, R.L. Pouso, Nonresonance conditions and extremal solutions for first order impulsive problems under
weak assumptions, ANZIAM J. 44 (2003), 393-407.

[17] T. Jankowski, Existence of solutions of boundary value problems for differential equations with delayed arguments,
J. Comput. Appl. Math. 156 (2003), 239-252.

[18] D. Franco, J. J. Nieto, D. O’Regan, Existence of solutions for first order ordinary differential equations with
nonlinear boundary conditions, Appl. Math. Letters, 153 (2004), 793-802.

[19] T. Jankowski, Existence of solutions of differential equations with nonlinear multi-point boundary conditions,
Comput. Math. Appl. 47 (2004), 1095-1103.

[20] J. J. Nieto, Impulsive resonance periodic problems of first order, Appl. Math. Letters, 15 (2002), 489-493.
[21] J. J. Nieto, Periodic boundary value problems for first order impulsive ordinary differential equations, Nonl. Anal.

51 (2002), 1223-1232.
[22] D. Franco, J. J. Nieto, Maximum principles for periodic impulsive first order problems, J. Comput. Appl. Math.

88 (1998), 144-159.
[23] Y. Liu, Further results on periodic boundary value problems for nonlinear first order impulsive functional differ-

ential equations, J. Math. Anal. Appl. 327 (2007), 435-452.
[24] Y. Liu, W. Ge, Stability theorems and existence results for periodic solutions of nonlinear impulsive delay differ-

ential equations with variable coefficients, Nonl. Anal. 57 (2004), 363-399.
[25] L. Kong, J. Sun, Nonlinear boundary value problem of first order impulsive functional differential equations, J.

Math. Anal. Appl. 318 (2006), 726-741.
[26] E. Liz, Existence and approximation of solutions for impulsive first order problems with nonlinear boundary

conditions, Nonl. Anal. 25 (1995), 1191-1198.
[27] X. Yang, J. Shen, Nonlinear boundary value problems for first order impulsive functional differential equations,

Appl. Math. Comput. 189 (2007), 1943-1952.
[28] D. R. Smart, Fixed point theorems, Cambridge University Press, Cambridge, 1980.



Y. Liu, J. Nonlinear Sci. Appl. 5 (2012), 133–150 150

[29] S. Tang, L. Chen, Global attractivity in a ”food-limited” population model with impulsive effects, J. Math. Anal.
Appl. 292 (2004), 211-221.

[30] J. J. Nieto, Basic theory for nonresonance impulsive periodic problems of first order, J. Math. Anal. Appl. 205
(1997), 423-433.

[31] Z. Luo, Z. Jing, Periodic boundary value problem for first-order impulsive functional differential equations, Com-
put. Math. Appl. 55 (2008), 2094-2107.

[32] R. E. Gaines, J. L. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Lecture Notes in Math.,
568, Springer, Berlin, 1977.

[33] T. Jankowski, Ordinary differential equations with nonlinear boundary conditions of anti-periodic type, Comput.
Math. Appl. 47 (2004), 1419-1428.

[34] J.J. Nieto, Differential inequalities for functional perturbations of first order ordinary differential equations, Appl.
Math. Letters, 15 (2002), 173-179.


	1 Introduction
	2 Main Results and Examples
	3 Proofs of Theorems

