A general fixed point theorem for pairs of weakly compatible mappings in G-metric spaces

Valeriu Popa ${ }^{\text {a,* }}$, Alina-Mihaela Patriciu ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Informatics and Educational Sciences, Faculty of Sciences "Vasile Alecsandri" University of Bacău, 157 Calea Mărăşești, Bacău, 600115, Romania.
${ }^{\text {b }}$ Department of Mathematics, Informatics and Educational Sciences, Faculty of Sciences "Vasile Alecsandri" University of Bacău, 157 Calea Mărăşeşti, Bacău, 600115, Romania.

This paper is dedicated to Professor Ljubomir Ćirić
Communicated by Professor V. Berinde

Abstract

In this paper a general fixed point theorem in G-metric spaces for weakly compatible mappings is proved, theorem which generalize the results from Abbas et. al. [M. Abbas and B. E. Rhoades, Appl. Math. and Computation 215 (2009), 262-269] and [M. Abbas, T. Nazir and S. Radanović, Appl. Math. and Computation 217 (2010), 4094-4099]. In the last part of this paper it is proved that the fixed point problem for these mappings is well posed.©(C2012 NGA. All rights reserved.

Keywords: G-metric space, weakly compatible mappings, fixed point.
2010 MSC: Primary 54H25; Secondary 47H10.

1. Introduction

Let (X, d) be a metric space and $S, T:(X, d) \rightarrow(X, d)$ be two mappings. In 1994, Pant 22 introduced the notion of pointwise R - weakly commuting mappings. It is proved in [23] that the notion of pointwise R - weakly commutativity is equivalent to commutativity in coincidence points. Jungck [11 defined S and T to be weakly compatible if $S x=T x$ implies $S T x=T S x$. Thus, S and T are weakly compatible if and only if S and T are pointwise R - weakly commuting.

In [9] and [10, Dhage introduced a new class of generalized metric spaces, named D - metric space. Mustafa and Sims [14], [15] proved that most of the claims concerning the fundamental topological structures

[^0]on D - metric spaces are incorrect and introduced appropriate notion of generalized metric space, named G - metric space. In fact, Mustafa, Sims and other authors studied many fixed point results for self mappings in G - metric spaces under certain conditions [6], [16] - [21, ,33] and other papers.

In [25] and [26], Popa initiated the study of fixed points for mappings satisfying implicit relations.
The notion of well posedness of a fixed point problem has generated much interest to several mathematicians, for example [8], [12], [24], [29], 30], [31]. Recently, Popa [27], [33] and Akkouchi and Popa [3], [4], [5] studied well posedness problem for mappings satisfying implicit relations in metric spaces.

The purpose of this paper is to prove a general fixed point theorem in G-metric spaces for weakly compatible pairs of mappings satisfying an implicit relation which generalize the results from [1] and [13]. In the last part of this paper we define the notion of a fixed point problem in G - metric spaces for two mappings and we prove that in G-metric space with a G-symmetric, the fixed point problem is well posed.

2. Preliminaries

Definition 2.1 ([15]). Let X be a nonempty set and $G: X^{3} \rightarrow \mathbb{R}_{+}$be a function satisfying the following properties:
$\left(G_{1}\right): G(x, y, z)=0$ if $x=y=z$,
$\left(G_{2}\right): 0<G(x, x, y)$ for all $x, y \in X$ with $x \neq y$,
$\left(G_{3}\right): G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $z \neq y$,
$\left(G_{4}\right): G(x, y, z)=G(x, z, y)=G(y, z, x)=\ldots$ (symmetry in all three variables),
$\left(G_{5}\right): G(x, y, z) \leq G(x, a, a)+G(a, y, z)$ for all $x, y, z, a \in X$.
Then the function G is called a G - metric on X and the pair (X, G) is called a G - metric space.
Note that $G(x, y, z)=0$, then $x=y=z$.
Definition $2.2([15])$. Let (X, G) be a metric space. A sequence $\left(x_{n}\right)$ in X is said to be
a) G - convergent if for $\varepsilon>0$, there is an $x \in X$ and $k \in \mathbb{N}$ such that for all $m, n \geq k, G\left(x, x_{n}, x_{m}\right)<\varepsilon$.
b) G - Cauchy if for each $\varepsilon>0$, there exists $k \in \mathbb{N}$ such that for all $n, m, p \geq k, G\left(x_{n}, x_{m}, x_{p}\right)<\varepsilon$, that is $G\left(x_{n}, x_{m}, x_{p}\right) \rightarrow 0$ as $m, n, n \rightarrow \infty$.
c) A G - metric space is said to be G - complete if every G - Cauchy sequence is G - convergent.

Lemma 2.3 ([15]). Let (X, G) be a G - metric space. Then, the following properties are equivalent:

1) $\left(x_{n}\right)$ is G - convergent to x;
2) $G\left(x_{n}, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$;
3) $G\left(x_{n}, x, x\right) \rightarrow 0$ as $n \rightarrow \infty$;
4) $G\left(x_{m}, x_{n}, x\right) \rightarrow 0$ as $m, n \rightarrow \infty$.

Lemma 2.4 ([15]). If (X, G) is a G - metric space, the following are equivalent:

1) $\left(x_{n}\right)$ is G - Cauchy.
2) For every $\varepsilon>0$, there is $k \in \mathbb{N}$ such that $G\left(x_{n}, x_{m}, x_{m}\right)<\varepsilon$ for all $n, m \geq k$.

Definition $2.5([14])$. Let (X, G) and $\left(X^{\prime}, G^{\prime}\right)$ be two G - metric spaces. A function $f:(X, G) \rightarrow\left(X^{\prime}, G^{\prime}\right)$ is said to be G - continuous at a point $x \in X$ if for $\varepsilon>0$, there exists $\delta>0$ such that for all $x, y \in X$ and $G(a, x, y)<\delta$, then $G^{\prime}(f(a), f(x), f(y))<\varepsilon$.

A function f is G - continuous if f is G - continuous at each $x \in X$.
Lemma 2.6 ([15]). Let (X, G) and $\left(X^{\prime}, G^{\prime}\right)$ be G - metric spaces. Then, a function $f:(X, G) \rightarrow\left(X^{\prime}, G^{\prime}\right)$ is G - continuous at a point $x \in X$ if and only if it is G - sequentially continuous, that is, whenever $\left(x_{n}\right)$ is G - convergent to x, we have that $f\left(x_{n}\right)$ is G - convergent to $f(x)$.
Lemma $2.7([15])$. Let (X, G) be a G - metric space, then the function $G(x, y, z)$ is jointly continuous in all three of its variables.
Definition $2.8([15])$. A G - metric space (X, G) is called symmetric if $G(x, y, y)=G(y, x, x$, for all $x, y \in X$.
Remark 2.9. There exists G - metric space which is not symmetric (Example 1 [15]).

3. Implicit relations

Definition 3.1. Let \mathfrak{F}_{G} be the set of all continuous functions $F\left(t_{1}, \ldots, t_{6}\right): \mathbb{R}_{+}^{6} \rightarrow \mathbb{R}$ such that $\left(F_{1}\right): F$ is nonincreasing in variable t_{5},
$\left(F_{2}\right)$: There exists $h_{1} \in[0,1)$ such that for all $u, v \geq 0, F(u, v, v, u, u+v, 0) \leq 0$ implies $u \leq h_{1} v$.
$\left(F_{3}\right)$: There exists $h_{2} \in[0,1)$ such that for all $t, t^{\prime}>0, F\left(t, t, 0,0, t, t^{\prime}\right)<0$ implies $t \leq h_{2} t^{\prime}$.
Example 3.2. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-a t_{2}-b t_{3}-c t_{4}-d t_{5}-e t_{6}$, where $a, b, c, d, e \geq 0$ and $0<a+b+c+2 d+e<1$. $\left(F_{1}\right)$: Obviously.
$\left(F_{2}\right):$ Let $u, v \geq 0$ be and $F(u, v, v, u, u+v, 0)=u-a v-b v-c u-d(u+v) \leq 0$. Then, $u \leq h_{1} v$, where $0 \leq h_{1}=\frac{a+b+\bar{d}}{1-(c+d)}<1$.
$\left(F_{3}\right):$ Let $t, t^{\prime}>0$ and $F\left(t, t, 0,0, t, t^{\prime}\right)=t-a t-d t-e t^{\prime} \leq 0$. Then $t \leq h_{2} t^{\prime}$, where $0 \leq h_{2}=$ $\frac{e}{1-(a+d)}<1$.

Example 3.3. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-k \max \left\{t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$, where $k \in\left[0, \frac{1}{2}\right)$.
$\left(F_{1}\right)$: Obviously.
$\left(F_{2}\right):$ Let $u, v \geq 0$ be and $F(u, v, v, u, u+v, 0)=u-k \max \{u, v, u+v\} \leq 0$. Hence, $u \leq h_{1} v$, where $0 \leq h_{1}=\frac{k}{1-k}<1$.
$\left(F_{3}\right)$: Let $t, t^{\prime}>0$ and $F\left(t, t, 0,0, t, t^{\prime}\right)=t-k \max \left\{t, t^{\prime}\right\} \leq 0$. If $t>t^{\prime}$, then $t(1-k) \leq 0$, a contradiction. Hence, $t \leq t^{\prime}$ which implies $t \leq h_{2} t^{\prime}$, where $0 \leq h_{2}=k<1$.

Example 3.4. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-k \max \left\{t_{2}, t_{3}, t_{4}, \frac{t_{5}+t_{6}}{2}\right.$, $\}$, where $k \in[0,1)$.
$\left(F_{1}\right)$: Obviously.
$\left(F_{2}\right):$ Let $u, v \geq 0$ be and $F(u, v, v, u, u+v, 0)=u-k \max \left\{u, v, \frac{u+v}{2}\right\} \leq 0$. If $u>v$, then $u(1-k) \leq 0$, a contradiction. Hence, $u \leq v$ which implies $u \leq h_{1} v$, where $0 \leq h_{1}=k<1$.
$\left(F_{3}\right):$ Let $t, t^{\prime}>0$ and $F\left(t, t, 0,0, t, t^{\prime}\right)=t-k \max \left\{t, \frac{t+t^{\prime}}{2}\right\} \leq 0$. If $t>t^{\prime}$, then $t(1-k) \leq 0$, a contradiction. Hence, $t \leq t^{\prime}$ which implies $t \leq h_{2} t^{\prime}$, where $0 \leq h_{2}=k<1$.

Example 3.5. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}^{2}-t_{1}\left(a t_{2}+b t_{3}+c t_{4}\right)-d t_{5} t_{6} \leq 0$, where $a, b, c, d \geq 0$ and $0 \leq a+b+c+d<1$. $\left(F_{1}\right)$: Obviously.
$\left(F_{2}\right)$: Let $u, v \geq 0$ be and $F(u, v, v, u, u+v, 0)=u^{2}-u(a v+b v+c u) \leq 0$. If $u>0$, then $u-a v-b v-c u \leq 0$ which implies $u \leq h_{1} v$, where $0 \leq h_{1}=\frac{a+b}{1-c}<1$. If $u=0$ then $u \leq h_{1} v$.

Example 3.6. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-k \max \left\{\frac{t_{3}+t_{4}}{2}, \frac{t_{5}+t_{6}}{2}\right\}$, where $k \in[0,1)$.
$\left(F_{1}\right)$: Obviously.
$\left(F_{2}\right):$ Let $u, v \geq 0$ be such that $F(u, v, v, u, u+v, 0)=u-k \max \left\{v, \frac{u+v}{2}\right\} \leq 0$. If $u>v$, then $u(1-k) \leq 0$, a contradiction. Hence, $u \leq v$ which implies $u \leq h_{1} v$, where $0 \leq h_{1}=k<1$.
$\left(F_{3}\right): F\left(t, t, 0,0, t, t^{\prime}\right)=t-k \max \left\{t, \frac{t+t^{\prime}}{2}\right\} \leq 0$.If $t>t^{\prime}$ then $t(1-k) \leq 0$, a contradiction. Hence $t \leq t^{\prime}$ which implies $t \leq h_{2} t^{\prime}$, where $0 \leq h_{2}=k<1$.
Example 3.7. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}^{3}-c \frac{t_{3}^{2} t_{4}^{2}+t_{5}^{2} t_{6}^{2}}{1+t_{2}+t_{3}+t_{4}}$, where $c \in[0,1)$.
$\left(F_{1}\right)$: Obviously.
$\left(F_{2}\right):$ Let $u, v \geq 0$ be and $F(u, v, v, u, u+v, 0)=u^{3}-c \frac{v^{2} u^{2}}{1+2 v+u} \leq 0$. If $u>0$, then $u \leq c v \frac{v}{1+2 v+u} \leq$ $c v$. Hence, $u \leq h_{1} v$, where $0 \leq h_{1}=c<1$. If $u=0$, then $u \leq h_{1} v$.
$\left(F_{3}\right)$: Let $t, t^{\prime}>0$ be such that $F\left(t, t, 0,0, t, t^{\prime}\right)=t^{3}-c \frac{t^{2} t^{\prime 2}}{1+t} \leq 0$, which implies $t^{2}-c \frac{t}{1+t} t^{\prime 2} \leq c t^{\prime 2}$. Hence $t \leq h_{2} t^{\prime}$, where $0 \leq h_{2}=\sqrt{c}<1$. If $u=0$ then $u \leq h_{1} v$.

Example 3.8. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}^{2}-a t_{2}^{2}-b \frac{t_{5} t_{6}}{1+t_{3}^{2}+t_{4}^{2}}$, where $a, b \geq 0$ and $0 \leq a+b<1$.
$\left(F_{1}\right)$: Obviously.
$\left(F_{2}\right)$: Let $u, v \geq 0$ be and $F(u, v, v, u, u+v, 0)=u^{2}-a v^{2} \leq 0$. Hence, $u \leq h_{1} v$, where $0 \leq h_{1}=\sqrt{a}<1$.
$\left(F_{3}\right)$: Let $t, t^{\prime}>0$ be and $F\left(t, t, 0,0, t, t^{\prime}\right)=t^{2}-a t^{2}-b t t^{\prime} \leq 0$, which implies $t \leq h_{2} t^{\prime}$, where $0 \leq h_{2}=$ $\frac{b}{1-a}<1$.
Example 3.9. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-a t_{2}-b t_{3}-c \max \left\{2 t_{4}, t_{5}+t_{6}\right\}$, where $a, b, c \geq 0$ and $0 \leq a+b+2 c<1$.
$\left(F_{1}\right)$: Obviously.
$\left(F_{2}\right):$ Let $u, v \geq 0$ be and $F(u, v, v, u, u+v, 0)=u-a v-c \max \{2 u, u+v\} \leq 0$. If $u>v$, then $u(1-(a+b+2 c)) \leq 0$, a contradiction. Hence, $u \leq v$ which implies $u \leq h_{1} v$, where $0 \leq h_{1}=\frac{a+b+c}{1-c}<1$.
 $0 \leq h_{2}=\frac{c}{1-(a+c)}<1$.

Example 3.10. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-a t_{2}-b t_{3}-c \max \left\{t_{4}+t_{5}, 2 t_{6}\right\}$, where $a, b, c \geq 0$ and $0 \leq a+b+3 c<1$.
$\left(F_{1}\right)$: Obviously.
$\left(F_{2}\right):$ Let $u, v \geq 0$ be and $F(u, v, v, u, u+v, 0)=u-a v-b v-c(2 u+v) \leq 0$, which implies $u \leq h_{1} v$, where $0 \leq h_{1}=\frac{a+b+c}{1-2 c}<1$.
$\left(F_{3}\right):$ Let $t, t^{\prime}>0$ be and $F\left(t, t, 0,0, t, t^{\prime}\right)=t-a t-c \max \left\{t, 2 t^{\prime}\right\}$. If $t>2 t^{\prime}$ then $t(1-a-c) \leq 0$, a contradiction. Hence $t \leq 2 t^{\prime}$ which implies $t \leq h_{2} t^{\prime}$, where $0 \leq h_{2}=\frac{2 c}{1-a}<1$.
Example 3.11. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-c \max \left\{t_{2}, t_{3}, \sqrt{t_{4} t_{6}}, \sqrt{t_{5} t_{6}}\right\}$, where $c \in[0,1)$.
$\left(F_{1}\right)$: Obviously.
$\left(F_{2}\right):$ Let $u, v \geq 0$ be such that $F(u, v, v, u, u+v, 0)=u-c v \leq 0$, which implies $u \leq h_{1} v$, where $0 \leq h_{1}=c<1$.
$\left(F_{3}\right):$ Let $t, t^{\prime}>0$ be and $F\left(t, t, 0,0, t, t^{\prime}\right)=t-c \max \left\{t, \sqrt{t t^{\prime}}\right\} \leq 0$. If $t>t^{\prime}$ then $t(1-c) \leq 0$, a contradiction. Hence $t \leq t^{\prime}$ which implies $t \leq h_{2} t^{\prime}$, where $0 \leq h_{2}=c<1$.
Example 3.12. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-k \max \left\{t_{2}, t_{3}, t_{4}, \frac{2 t_{4}+t_{6}}{3}, \frac{2 t_{4}+t_{3}}{3}, \frac{t_{5}+t_{6}}{3}\right\}$, where $k \in[0,1)$.
$\left(F_{1}\right)$: Obviously.
$\left(F_{2}\right):$ Let $u, v \geq 0$ be such that

$$
F(u, v, v, u, u+v, 0)=u-k \max \left\{u, v, \frac{2 u}{3}, \frac{2 u+v}{3}, \frac{u+v}{3}\right\} \leq 0
$$

If $u>v$, then $u(1-k) \leq 0$, a contradiction. Hence $u \leq v$ which implies $u \leq h_{1} v$, where $0 \leq h_{1}=k<1$.
$\left(F_{3}\right):$ Let $t, t^{\prime}>0$ be and $F\left(t, t, 0,0, t, t^{\prime}\right)=t-k \max \left\{t, \frac{t^{\prime}}{3}, \frac{t+t^{\prime}}{3}\right\}$. If $t>t^{\prime}$ then $t(1-k) \leq 0$, a contradiction. Hence $t \leq t^{\prime}$ which implies $t \leq h_{2} t^{\prime}$, where $0 \leq h_{2}=k<1$.

4. General fixed point theorem

Definition 4.1. Let f and g be self maps of a nonempty set X. If $w=f x=g x$ for some $x \in X$, then x is called a coincidence point of f and g and w is called a point of coincidence of f and g.

Lemma 4.2 ([1]). Let f and g be weakly compatible self mappings of nonempty set X. If f and g have a unique point of coincidence $w=f x=g x$, then w is the unique common fixed point of f and g.

Lemma 4.3. Let (X, G) be a G - metric space and $f, g:(X, G) \rightarrow(X, G)$ two functions such that

$$
\begin{gather*}
F(G(f x, f y, f y), G(g x, g y, g y), G(g x, f x, f x), G(g y, f y, f y) \tag{4.1}\\
G(g x, f y, f y), G(g y, f x, f x)) \leq 0
\end{gather*}
$$

for all $x, y \in X$ and F satisfying property $\left(F_{3}\right)$. Then, f and g have at most a point of coincidence.
Proof. Suppose that $u=f p=g p$ and $v=f q=g q$. Then by (4.1) we have

$$
\begin{gathered}
F(G(f q, f p, f p), G(g q, g p, g p), G(g q, f q, f q), G(g p, f p, f p), \\
G(g q, f p, f p), G(g p, f q, f q)) \leq 0 \\
F(G(g q, g p, g p), G(g q, g p, g p), 0,0, G(g q, g p, g p), G(g q, g p, g p)) \leq 0
\end{gathered}
$$

which implies by $\left(F_{3}\right)$ that

$$
G(g q, g p, g p) \leq h_{2} G(g p, g q, g q) .
$$

Similarly, we obtain that

$$
G(g p, g q, g q) \leq h_{2} G(g q, g p, g p)
$$

which implies that $G(g q, g p, g p)\left(1-h_{2}^{2}\right) \leq 0$. Hence $G(g q, g p, g p)=0$, i.e. $g q=g p$. Therefore $u=f p=$ $g p=g q=f q=v$.

Theorem 4.4. Let (X, G) be a G - metric space and $f, g:(X, G) \rightarrow(X, G)$ satisfying inequality (4.1) for all $x, y \in X$, where $F \in \mathfrak{F}_{G}$. If $f(X) \subset g(X)$ and $g(X)$ is a G - complete metric subspace of (X, G), then f and g have a unique point of coincidence. Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point.

Proof. Let x_{0} be an arbitrary point of X and $x_{1} \in X$ such that $f x_{0}=g x_{1}$. This can be done since $f(X) \subset g(X)$. Continuing this process, having chosen x_{n} in X, we obtain x_{n+1} such that $f x_{n}=g x_{n+1}$. Then, by (4.1) we have successively

$$
\begin{gathered}
F\left(G\left(f x_{n-1}, f x_{n}, f x_{n}\right), G\left(g x_{n-1}, g x_{n}, g x_{n}\right), G\left(g x_{n-1}, f x_{n-1}, f x_{n-1}\right)\right. \\
\left.G\left(g x_{n}, f x_{n}, f x_{n}\right), G\left(g x_{n-1}, f x_{n}, f x_{n}\right), G\left(g x_{n}, f x_{n-1}, f x_{n-1}\right)\right) \leq 0 \\
F\left(G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right), G\left(g x_{n-1}, g x_{n}, g x_{n}\right), G\left(g x_{n-1}, g x_{n}, g x_{n}\right)\right. \\
\left.G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right), G\left(g x_{n-1}, g x_{n+1}, g x_{n+1}\right), 0\right) \leq 0
\end{gathered}
$$

By $\left(F_{1}\right)$ and $\left(G_{5}\right)$ we obtain

$$
\begin{gathered}
F\left(G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right), G\left(g x_{n-1}, g x_{n}, g x_{n}\right), G\left(g x_{n-1}, g x_{n}, g x_{n}\right)\right. \\
\left.G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right), G\left(g x_{n-1}, g x_{n}, g x_{n}\right)+G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right), 0\right) \leq 0
\end{gathered}
$$

By $\left(F_{2}\right)$ we obtain

$$
\begin{equation*}
G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right) \leq h_{1} G\left(g x_{n-1}, g x_{n}, g x_{n}\right) \tag{4.2}
\end{equation*}
$$

Continuing the above process we obtain

$$
\begin{equation*}
G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right) \leq h_{1}^{n} G\left(g x_{0}, g x_{1}, g x_{1}\right) \tag{4.3}
\end{equation*}
$$

Then for $m>n$

$$
\begin{aligned}
G\left(g x_{n}, g x_{m}, g x_{m}\right) \leq & G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right)+G\left(g x_{n+1}, g x_{n+2}, g x_{n+2}\right)+ \\
& +\ldots+G\left(g x_{m-1}, g x_{m}, g x_{m}\right) \\
\leq & \left(h_{1}^{n}+h_{1}^{n+1}+\ldots+h_{1}^{m-1}\right) G\left(g x_{0}, g x_{1}, g x_{1}\right) \\
\leq & \frac{h_{1}^{n}}{1-h_{1}} G\left(g x_{0}, g x_{1}, g x_{1}\right)
\end{aligned}
$$

which implies that $G\left(g x_{n}, g x_{m}, g x_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$.
Hence, $\left(g x_{n}\right)$ is a G - Cauchy sequence. Since $g(X)$ is G - complete, there exists a point q in $g(X)$ such that $g x_{n} \rightarrow q$ as $n \rightarrow \infty$. Consequently, we can find a point $p \in X$ such that $g p=q$. We prove that $f p=g p$.

By (4.1) we have successively

$$
\begin{aligned}
& F\left(G\left(f x_{n-1}, g p, g p\right), G\left(g x_{n-1}, g p, g p\right), G\left(g x_{n-1}, f x_{n-1}, f x_{n-1}\right),\right. \\
& \left.G(g p, f p, f p), G\left(g x_{n-1}, f p, f p\right), G\left(g p, f x_{n-1}, f x_{n-1}\right)\right) \leq 0 \\
& \quad F\left(G\left(g x_{n}, f p, f p\right), G\left(g x_{n-1}, g p, g p\right), G\left(g x_{n-1}, g x_{n}, g x_{n}\right)\right. \\
& \left.\quad G(g p, f p, f p), G\left(g x_{n-1}, f p, f p\right), G\left(g p, g x_{n}, g x_{n}\right)\right) \leq 0
\end{aligned}
$$

Letting n tend to infinity, we obtain

$$
F(G(g p, f p, f p), 0,0, G(g p, f p, f p), G(g p, f p, f p), 0) \leq 0
$$

By $\left(F_{1}\right)$ it follows that $G(g p, f p, f p)=0$ which implies $g p=f p$. Hence $w=f p=g p$ is a point of coincidence of f and g. By Lemma 4.3, w is the unique point of coincidence. Moreover, if f and g are weakly compatible, by Lemma $4.2, w$ is the unique common fixed point of f and g.

Remark 4.5. 1) By Example 3.2 with $d=e=0$ and Theorem 4.4 we obtain a partial result from Theorem 2.3 [1].
2) By Example 3.2 for $b=c=d=e=0$ we obtain Theorem 2.1 [13].
3) By Example 3.2 for $b=c=2$ and Theorem 4.4 we obtain a partial result from Theorem 2.6 [1].
4) By Example 3.3 , for $h \in\left[0, \frac{1}{2}\right)$ we obtain a partial result of Theorems 2.4, 2.5 [1] which is a form of Ciric result [7] in G - metric space.
5) By Examples $3.4-3.12$ we obtain new results.

5. Well posedness problem of fixed point for two mappings in G - metric spaces

Definition 5.1. Let (X, G) be a metric space and $f:(X, d) \rightarrow(X, d)$ be a mapping. The fixed point problem f is said to be well posed [8] if

1) $\quad f$ has a unique fixed point $x_{0} \in X$,
2) for any sequence $\left(x_{n}\right) \in X$ with $\lim _{n \rightarrow \infty} d\left(x_{n}, f x_{n}\right)=0$ we have

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{0}\right)=0
$$

Definition 5.2. A function $F: \mathbb{R}_{+}^{6} \rightarrow \mathbb{R}$ have property $\left(F_{p}\right)$ if for $u, v, w \geq 0$ and $F(u, v, 0, w, u, v) \leq 0$, there exists $p \in(0,1)$ such that $u \leq p \max \{v, w\}$.

Example 5.3. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-a t_{2}-b t_{3}-c t_{4}-d t_{5}-e t_{6}$, as in Example 3.2 ,
Let $u, v, w \geq 0$ be and $F(u, v, 0, w, u, v)=u-a v-c w-d u-e v \leq 0$ which implies $u \leq p \max \{v, w\}$, where $0<p=\frac{\bar{a}+c+e}{1-d}<1$.

Example 5.4. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-k \max \left\{t_{2}, \ldots, t_{6}\right\}$, where $k \in\left[0, \frac{1}{2}\right)$.
Let $u, v, w \geq 0$ be and $F(u, v, 0, w, u, v)=u-k \max \{v, w\} \leq 0$. If $u>\max \{v, w\}$, then $u(1-k) \leq 0$, a contradiction. Hence $u \leq \max \{v, w\}$ which implies $u \leq p \max \{v, w\}$, where $0<p=k<1$.
Example 5.5. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-k \max \left\{t_{2}, t_{3}, t_{4}, \frac{t_{5}+t_{6}}{2}\right\}$, where $k \in[0,1)$.
Let $u, v, w \geq 0$ be and $F(u, v, 0, w, u, v)=u-k \max \left\{v, w, \frac{1}{2}(u+v)\right\}$. If $u>\max \{v, w\}$, then $u>\frac{u+v}{2}$, which implies $u(1-k) \leq 0$, a contradiction, hence $u \leq \max \{v, w\}$ which implies $u \leq p \max \{v, w\}$, where $0<p=k<1$.

Example 5.6. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}^{2}-t_{2}\left(a t_{2}+b t_{3}+c t_{4}\right)-d t_{5} t_{6}$, where $a, b, c, d \geq 0$ and $0 \leq a+b+c+d<1$.
Let $u, v, w \geq 0$ be and $F(u, v, 0, w, u, v)=u^{2}-u(a v+c w)-d u v \leq 0$. If $u>0$, then $u \leq p \max \{v, w\}$, where $0 \leq p=a+c+d<1$. If $u=0$, then $u \leq p \max \{v, w\}$.
Example 5.7. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-k \max \left\{t_{2}, \frac{t_{3}+t_{4}}{2}, \frac{t_{5}+t_{6}}{2}\right\}$, where $k \in[0,1)$.
Let $u, v, w \geq 0$ be and $F(u, v, 0, w, u, v)=u-k \max \left\{v, \frac{w}{2}, \frac{u+v}{2}\right\}$ which implies $u-k \max \left\{v, \frac{w}{2}, \frac{u+v}{2}\right\} \leq$ 0 . If $u>\max \{v, w\}$, then $u(1-k) \leq 0$, a contradiction. Hence $u \leq \max \{v, w\}$ which implies $u \leq$ $p \max \{v, w\}$, where $0<p=k<1$.

Example 5.8. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}^{3}-c \frac{t_{3}^{2} t_{4}^{2}+t_{5}^{2} t_{6}^{2}}{1+t_{2}+t_{3}+t_{4}}$, where $c \in[0,1)$.
Let $u, v, w \geq 0$ be and $F(u, v, 0, w, u, v)=u^{3}-c \frac{u^{2} v^{2}}{1+v+w} \leq 0$. If $u>0$, then $u \leq c v \frac{v}{1+v+w} \leq c v \leq$ $p \max \{v, w\}$, where $0<p=c<1$. If $u=0$, then $u \leq p \max \{v, w\}$.

Example 5.9. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}^{2}-a t_{2}^{2}-c \frac{t_{5} t_{6}}{1+t_{3}^{2}+t_{4}^{2}}$, where $a>0$ and $a+c<1$.
Let $u, v, w \geq 0$ be and $F(u, v, 0, w, u, v)=u^{2}-c \frac{u v}{1+v^{2}} \leq 0$ which implies $u^{2}-a v^{2}-c u v \leq 0$. Let $v>0$, then $f(t)=t^{2}-c t-a$, where $t=\frac{u}{v}$. Then $f(0)<0$ and $f(1)>0$ and hence there exists $p \in(0,1)$ such that $f(t) \leq 0$ for $t \leq p$. Hence $u \leq p v \leq p \max \{v, w\}$. If $v=0$, then $u=0$ and $u \leq p \max \{v, w\}$.

Example 5.10. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-a t_{2}-c \max \left\{2 t_{4}, t_{5}+t_{6}\right\}$, where $0 \leq a+2 c<1$.
Let $u, v, w \geq 0$ be and $F(u, v, 0, w, u, v)=u-a v-c \max \{2 w, u+v\}$. If $u>\max \{v, w\}$ then $u(1-a-2 c) \leq 0$, a contradiction. Hence $u \leq \max \{v, w\}$ which implies $u \leq p \max \{v, w\}$, where $0<p=a+2 c<1$.

Example 5.11. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-a t_{2}-b t_{3}-c \max \left\{t_{4}+t_{5}, 2 t_{6}\right\} \leq 0$, where $0<p=a+3 c<1$. The proof is similar to the proof of Example 5.8.

Example 5.12. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-c \max \left\{t_{2}, t_{3}, \sqrt{t_{4} t_{6}}, \sqrt{t_{5} t_{6}}\right\}$, where $c \in[0,1)$.
Let $u, v, w \geq 0$ be and $F(u, v, 0, w, u, v)=u-c \max \{v, \sqrt{v w}, \sqrt{u v}\} \leq 0$. If $u>\max \{v, w\}$ then $u(1-c) \leq 0$, a contradiction. Hence $u \leq \max \{v, w\}$ which implies $u \leq p \max \{v, w\}$, where $0<p=c<1$.

Example 5.13. $F\left(t_{1}, \ldots, t_{6}\right)=t_{1}-k \max \left\{t_{2}, t_{3}, t_{4}, \frac{2 t_{4}+t_{6}}{3}, \frac{2 t_{4}+t_{5}}{3}, \frac{t_{5}+t_{6}}{3}\right\}$, where $k \in[0,1)$.
Let $u, v, w \geq 0$ be and $F(u, v, 0, w, u, v)=u-k \max \left\{v, w, \frac{2 w+v}{3}, \frac{2 w}{3}, \frac{u+v}{3}\right\} \leq 0$. If $u>\max \{v, w\}$ then $u(1-k) \leq 0$, a contradiction. Hence $u \leq \max \{v, w\}$ which implies $u \leq p \max \{v, w\}$, where 0 $<p=k<1$.

Definition 5.14. Let (X, G) be a G - metric space and $f, g:(X, G) \rightarrow(X, G)$. The common fixed problem of f and g is said to be well posed if:

1) $\quad f$ and g have a unique common fixed point,
2) for any sequence $\left(x_{n}\right)$ in X with

$$
\lim _{n \rightarrow \infty} G\left(x_{n}, f x_{n}, f x_{n}\right)=0
$$

and

$$
\lim _{n \rightarrow \infty} G\left(x_{n}, g x_{n}, g x_{n}\right)=0
$$

then

$$
\lim _{n \rightarrow \infty} G\left(x, x_{n}, x_{n}\right)=0
$$

Theorem 5.15. Let (X, G) be a symmetric G - metric space. For mappings $f, g:(X, G) \rightarrow(X, G)$ satisfying Theorem 4.4 and F having property $\left(F_{p}\right)$, the fixed point problem of f and g is well posed.

Proof. By Theorem $4.4 f$ and g have a unique common fixed point x. Let $\left(x_{n}\right)$ be a sequence in (X, G) such that $\lim _{n \rightarrow \infty} G\left(x_{n}, f x_{n}, f x_{n}\right)=0$ and $\lim _{n \rightarrow \infty} G\left(x_{n}, g x_{n}, g x_{n}\right)=0$. By (4.1) we have successively

$$
\begin{gathered}
F\left(G\left(f x, f x_{n}, f x_{n}\right), G\left(g x, g x_{n}, g x_{n}\right), G(g x, f x, f x)\right. \\
\left.G\left(g x_{n}, f x_{n}, f x_{n}\right), G\left(g x, f x_{n}, f x_{n}\right), G\left(g x_{n}, f x, f x\right)\right) \leq 0 \\
F\left(G\left(x, f x_{n}, f x_{n}\right), G\left(x, g x_{n}, g x_{n}\right), 0, G\left(g x_{n}, f x_{n}, f x_{n}\right)\right. \\
\left.G\left(x, f x_{n}, f x_{n}\right), G\left(g x_{n}, x, x\right)\right) \leq 0
\end{gathered}
$$

Since G is a symmetric G - metric, $G\left(g x_{n}, x, x\right)=G\left(x, g x_{n}, g x_{n}\right)$ and

$$
\begin{gathered}
F\left(G\left(x, f x_{n}, f x_{n}\right), G\left(x, g x_{n}, g x_{n}\right), 0, G\left(g x_{n}, f x_{n}, f x_{n}\right),\right. \\
\left.G\left(x, f x_{n}, f x_{n}\right), G\left(x, g x_{n}, g x_{n}\right)\right) \leq 0
\end{gathered}
$$

By $\left(F_{p}\right)$ we have

$$
\begin{aligned}
G\left(x, f x_{n}, f x_{n}\right) & \leq p \max \left\{G\left(x, g x_{n}, g x_{n}\right), G\left(g x_{n}, f x_{n}, f x_{n}\right)\right\} \\
& \leq p\left(G\left(x, g x_{n}, g x_{n}\right)+G\left(g x_{n}, f x_{n}, f x_{n}\right)\right)
\end{aligned}
$$

Then by $\left(G_{5}\right)$ and the fact that (X, G) is a symmetric G - metric space we have

$$
\begin{aligned}
G\left(x, x_{n}, x_{n}\right) \leq & G\left(x, f x_{n}, f x_{n}\right)+G\left(f x_{n}, x_{n}, x_{n}\right) \\
\leq & p\left(G\left(x, g x_{n}, g x_{n}\right)+G\left(g x_{n}, f x_{n}, f x_{n}\right)\right)+G\left(f x_{n}, x_{n}, x_{n}\right) \\
\leq & p\left(G\left(x, x_{n}, x_{n}\right)+G\left(x_{n}, g x_{n}, g x_{n}\right)+G\left(g x_{n}, x_{n}, x_{n}\right)+\right. \\
& \left.+G\left(x_{n}, f x_{n}, f x_{n}\right)\right)+G\left(f x_{n}, x_{n}, x_{n}\right) \\
= & p\left(G\left(x, x_{n}, x_{n}\right)+2 G\left(x_{n}, g x_{n}, g x_{n}\right)+\right. \\
& \left.+G\left(x_{n}, f x_{n}, f x_{n}\right)\right)+G\left(f x_{n}, x_{n}, x_{n}\right) .
\end{aligned}
$$

Hence $G\left(x, x_{n}, x_{n}\right) \leq \frac{p+1}{1-p} G\left(x_{n}, f x_{n}, f x_{n}\right)+\frac{2 p}{1-p} G\left(x_{n}, g x_{n}, g x_{n}\right)$. Letting n tend to infinity we obtain $\lim _{n \rightarrow \infty} G\left(x, x_{n}, x_{n}\right)=0$. Hence the common fixed point problem of f and g is well posed.

Remark 5.16. By Theorem 4.4 and Examples 5.3 - 5.13 we obtain new results.

Acknowledgements:

The authors thank the referee for the valuable comments and suggestions.

References

[1] M. Abbas and B. E. Rhoades, Common fixed point results for noncommuting mappings without continuity in generalized metric spaces, Appl. Math. and Computation 215 (2009), 262-269. 1, 4.5
[2] M. Abbas, T. Nazir and S. Radanović, Some periodic point results in generalized metric spaces, Appl. Math. and Computation 217 (2010), 4094-4099.
[3] M. Akkouchi and V. Popa, Well posedness of common fixed point problem for three mappings under strict contractive conditions, Bull. Math. Inform. Physics, Petroleum - Gas Univ. Ploieşti 61, 2 (2009), 1-10. 1
[4] M. Akkouchi and V. Popa, Well posedness of a fixed point problem using G-function, Sc. St. Res. Univ. "Vasile Alecsandri" Bacău. Ser. Math. Inform. 20 (2010), 5-12. 1
[5] M. Akkouchi and V. Popa, Well posedness of fixed point problem for mappings satisfying an implicit relation, Demonstratio Math. 43, 4 (2010), 923-929. 1
[6] R. Chung, T. Kadian, A. Rosie and B. E. Rhoades, Property (P) in G - metric spaces, Fixed Point Theory and Applications 2010(2010) Article ID 401684, 12 pages. 1
[7] L. B. Ciric, A generalization of Banach contractions, Proc. Amer. Math. 45 (1974), 267-273. 4.5
[8] F. S. De Blassi et J. Myjak, Sur la porosite de contractions sans point fixe, Comptes Rend. Acad. Sci. Paris 308 (1989), $51-54$. $1,5.1$
[9] B. C. Dhage, Generalized metric spaces and mappings with fixed point, Bull. Calcutta Math. Soc. 84(1992), 329 - 336. 1
[10] B. C. Dhage, Generalized metric spaces and topological structures I, Anal. St. Univ. Al. I. Cuza, Iasi Ser. Mat. 46, 1(2000), 3-24. 1
[11] G. Jungck, Common fixed points for noncontinuous, nonself maps on nonnumeric spaces, Far East J. Math. Sci. 4(2)(1996), 195-215. 1
[12] B. K. Lahiri and P. Das, Well posedness and porosity of certain classes of operators, Demonstratio Math. 38 (2005), 170-176. 1
[13] S. Manro, S. S. Bahtia and S. Kumar, Expansion mappings theorems in G - metric spaces, Intern. J. Contemp. Math. Sci. 5(2010), no. 51, 2529-2535. 1. 4.5
[14] Z. Mustafa and B. Sims, Some remarks concerning D - metric spaces, Intern. Conf. Fixed Point. Theory and Applications, Yokohama, 2004, 189-198. 1
[15] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Analysis 7(2006), 289-297. 1, 2.9
[16] Z. Mustafa, H. Obiedat and F. Awadeh, Some fixed point theorems for mappings on G - complete metric spaces, Fixed Point Theory and Applications 2008(2008) Article ID 189870, 12 pages. 1
[17] Z. Mustafa, W. Shatanawi and M. Bataineh, Fixed point theorem on uncomplete G - metric spaces, J. Math. Statistics 4(4)(2008), 196-201.
[18] Z. Mustafa and B. Sims, Fixed point theorems for contractive mappings in complete G - metric spaces, Fixed Point Theory and Applications, 2009(2009) Article ID 917175, 10 pages.
[19] Z. Mustafa, W. S. Shatanawi and M. Bataineh, Existence of fixed point results in G - metric spaces, Intern. J. Math. Math. Sci. 2009(2009) Article ID 283028, 10 pages.
[20] Z. Mustafa and H. Obiedat, A fixed point theorem of Reich in G - metric spaces, Cuba A. Math. J. 12(2010), 83 - 93.
[21] H. Obiedat and Z. Mustafa, Fixed results on a nonsymmetric G - metric spaces, Jordan. J. Math. Statistics 3(2)(2010), 65-79. 1
[22] R. P. Pant, Common fixed point for noncommuting mappings, J. Math. And Appl. 188(1994), 436-440. 1
[23] R. P. Pant, Common fixed point for four mappings, Bull. Calcutta Math. Soc. 9(1998), $281-286.1$
[24] A. Petruşel, I. A. Rus, J. C. Yao, Well-posedness in the generalized sense of the fixed point problems for multivalued operators, Taiwanese J.Math. 11, 3(2007), 903-912. 1
[25] V. Popa, Fixed point theorems for implicit contractive mappings, Stud. Cerc. St. Ser. Mat., Univ. Bacău 7(1997), 129-133. 1
[26] V. Popa, Some fixed point theorems for compatible mappings satisfying implicit relations, Demonstratio Math. 32, 1(1999), 157-163. 1
[27] V. Popa, Well posedness of fixed problem in orbitally complete metric spaces, Stud. Cerc. St. Ser. Math. Univ. Bacău 16 (2006), Suppl., 209 - 214. 1
[28] V. Popa, Well posedness of fixed point problem in compact metric spaces, Bull. Math. Inform. Physics Series, Petroleum - Gas Univ. Ploieşti 60, 1 (2008), 1-4.
[29] S. Reich and A. J. Zaslavski, Well posedness of fixed point problems, Far East J. Math. Sci. Special volume, Part. III (2001), 393-401. 1
[30] I. A. Rus, Generalized contractions and applications, Cluj University Press, Cluj-Napoca, 2008. 1
[31] I. A. Rus, Picard operators and well-posedness of fixed point problems, Studia Univ. "Babeş - Bolyai", Mathematica 52, 3(2007), 147-156. 1
[32] I. A. Rus, A. Petruşel, G. Petruşel, Fixed Point Theory, Cluj University Press, Cluj Napoca, 2008.
[33] W. Shatanawi, Fixed point theory for contractive mappings satisfying Φ - maps in G - metric spaces, Fixed Point Theory and Applications, 2010(2010) Article ID 181650, 9 pages.

[^0]: *Corresponding author
 Email addresses: vpopa@ub.ro (Valeriu Popa), alina.patriciu@ub.ro (Alina-Mihaela Patriciu)

