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1. Introduction

In 1961, Ky Fan proved the following famous result:

Theorem 1.1. Let C be a nonempty subset of a Hausdorff topological vector space X and let T : C → 2X

be such that

1. T is a KKM map, i.e,
conv{x1, x2, ..., xn} ⊂ ∪ni=1T (xi)

for every finite subset {x1, x2, ..., xn} ⊂ C;

2. T (x) is closed for all x ∈ C;

3. T (x0) is compact for some x0 ∈ C.
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Then
⋂
x∈C

T (x) 6= ∅.

This important result includes several fundamental mathematical problems, like, Ky Fan minimax in-
equality, optimization, variational inequality problems and fixed point theorems (see [2]).

In 1996, Horvath and Llinares Ciscar [6] proved topological semilattices version of KKM theorem and
gave some applications. Since then, KKM theory is continued in topological semilattices with some papers
of Luo [10, 11], Vinh [17, 17, 18].

In this paper, we will continue to study some further applications of KKM theorem in some aspects as
Sion-Neumann type set-valued minimax theorem, set-valued vector optimization problems.

The paper is organized as follows. After introduction and preliminaries, in section 3 we prove that
Browder-Fan theorem is equivalent to KKM theorem. Section 4 is devoted to a set-valued form of Ky Fan
minimax inequality and a set-valued form of Sion-Neumann type minimax theorem. In section 5 we prove
an existence result of Pareto equilibria of constrained multiobjective games. The last section is concerned
with a Kakutani-Ky Fan type fixed point theorem in topological semilattices with uniform structure.

2. Preliminaries

Definition 2.1. ([6]) A partially ordered set (X,6) is called a sup-semilattice if any two elements x, y of X
have a least upper bound, denoted by sup{x, y}. The partially ordered set (X,6) is a topological semilattice
if X is a sup-semilattice equipped with a topology such that the mapping

X ×X → X

(x, y) 7→ sup{x, y}

is continuous.

We have given the definition of a sup-semilattice, we could obviously also consider inf-semilattices. When
no confusion can arise we will simply use the word semilattice. It is also evident that each nonempty finite
set A of X will have a least upper bound, denoted by supA.

In a partially ordered set (X,≤), two arbitrary elements x and x′ do not have to be comparable but, in
the case where x ≤ x′, the set

[x, x′] = {y ∈ X : x ≤ y ≤ x′}

is called an order interval or simply, an interval. Now assume that (X,≤) is a semilattice and A is a
nonempty finite subset; then the set

∆(A) =
⋃
a∈A

[a, supA]

is well defined and it has the following properties:

1. A ⊆ ∆(A);

2. if A ⊂ A′, then ∆(A) ⊆ ∆(A′).

We say that a subset E ⊆ X is ∆-convex if for any nonempty finite subset A ⊆ E we have ∆(A) ⊆ E.

Example 2.2. We consider R2 with usual order defined by

(a, b), (c, d) ∈ R2, (a, b) ≤ (c, d)⇔ a ≤ c; b ≤ d.

Clearly, (R2,≤) is a topological semilattice.

1. The set
X = {(x, 1) : 0 ≤ x ≤ 1} ∪ {(1, y) : 0 ≤ y ≤ 1}

is ∆-convex but not convex in the usual sense.
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2. The set
X = {(x, y) : 0 ≤ x ≤ 1; y = 1− x}

is convex in the usual sense but not ∆-convex.

Definition 2.3. Let X be a topological semilattice or a ∆-convex subset of a topological semilattice, Y
be a topological vector space, C ⊂ Y be a closed, pointed and convex cone with intC 6= ∅. A mapping
F : X → 2Y \ {∅} is said to be a

1. type I C∆-quasiconvex mapping if, for any pair x1, x2 ∈ X and for any x ∈ ∆({x1, x2}), we have either

F (x) ⊂ F (x1)− C

or
F (x) ⊂ F (x2)− C;

2. type II C∆-quasiconvex mapping if, for any pair x1, x2 ∈ X and for any x ∈ ∆({x1, x2}), we have
either

F (x1) ⊂ F (x) + C

or
F (x2) ⊂ F (x) + C.

We use ∈ instead of ⊂ when F is single-valued.

Example 2.4. Let X = [0, 1] × [0, 1]. We set x1 ≤ x2 denoting that x2 ∈ x1 + R2
+,∀x1, x2 ∈ X, where

R2
+ = {(y1, y2) ∈ R2 : y1 ≥ 0, y2 ≥ 0}. It is obvious that (X,≤) is a topological semilattice, in which

x1 ∨ x2 = (max(x1
1, x

2
1),max(x1

2, x
2
2)), ∀xi = (xi1, x

i
2) ∈ X, i = 1, 2.

Let F,G : X → R and C = −R+ such that

F (x) = [(1− x1)(1− x2),+∞), ∀x = (x1, x2) ∈ X.

G(x) = (−∞, (1− x1)(1− x2)], ∀x = (x1, x2) ∈ X.

Then F is type II C∆-quasiconvex mapping and it is not type I C∆-quasiconvex, G is type I C∆-
quasiconvex mapping and it is not type II C∆-quasiconvex.

Remark 2.5. If Y = R = (−∞,+∞) and C = [0,+∞), and F = ϕ is a real function, then the C-∆-
quasiconvexity of ϕ is equivalent to the ∆-quasiconvexity of ϕ (see [10]).

Definition 2.6. ([8], Definition 2.2) Let X be a topological space, Y a topological vector space with a cone
C. Given a subset D ⊂ X, we consider a multi-valued mapping F : D → 2Y . The domain of F is defined
to be the set domF = {x ∈ D : F (x) 6= ∅}.

1. F is said to be upper (lower) C-continuous at x̄ ∈ domF if for any neighborhood V of the origin in Y
there is a neighborhood U of x̄ such that

F (x) ⊂ F (x̄) + V + C (F (x̄) ⊂ F (x) + V − C, respectively)

holds for all x ∈ domF ∩ U .

2. If F is upper C-continuous and lower C-continuous at x̄ simultaneously, we say that it is C-continuous
at x̄; and F is upper (respectively, lower) C-continuous on D if it is upper (respectively, lower) C-
continuous at every point of D.

3. If F is single-valued, then the upper C-continuity and the lower C-continuity of F at x̄ coincide and
we say that F is C-continuous at x̄.
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Remark 2.7. If Y = R and C = R+ = {x ∈ R : x ≥ 0} (or C = R− = {x ∈ R : x ≤ 0}) and F is
C-continuous at x̄, then F is lower semicontinuous (upper semicontinuous, respectively) at x̄ in the usual
sense.

Definition 2.8. (Luc [9]) Let Z be a real topological vector space, C ⊂ Z be a pointed closed convex cone
with intC 6= ∅, and A be a nonempty subset of Z.

1. For z1, z2 ∈ Z, denote z1 ≤ z2 if and only if z2 − z1 ∈ C, and z1 < z2 if and only if z2 − z1 ∈ intC.

2. A point z̄ ∈ A is said to be a vector minimal point (respectively, weakly vector minimal point) of A if
for any z ∈ A, z − z̄ 6∈ −C \ {0} (respectively, z − z̄ 6∈ −intC). Moreover, the set of vector minimal
points (respectively, weakly vector minimal points) of A is denoted by min

C
(A) (respectively, wmin

C
(A)).

Lemma 2.9. (Luc [9]) Let A be a nonempty compact subset of a real topological vector Z and C ⊂ Z be a
closed convex cone with C 6= Z. Then min

C
(A) 6= ∅.

Definition 2.10. Let X,Y be two topological spaces; F : X → 2Y is said to have open lower sections if
F−1(y) = {x ∈ X : y ∈ F (x)} is open for any y ∈ Y .

3. The equivalence of KKM theorem with Browder-Fan fixed point theorem

Let us recall two fundamental results of the KKM theory in topological semilattices.

Theorem 3.1. (Horvath and Ciscar [6]) Let X be a topological semilattice with path-connected intervals,
C ⊂ X a nonempty subset of X, and T : C → 2X be such that:

(1) T has closed values;
(2) T is a KKM mapping;
(3) There exists x0 ∈ C such that the set T (x0) is compact.

Then we have the set ∩x∈CT (x) is not empty.

Theorem 3.2. (Luo [10]) Let X be a topological semilattice with path-connected intervals and T : X → 2X

be such that:
(1) For each x ∈ X, the set T (x) is not empty and ∆-convex;
(2) For each y ∈ X, the set T−1(y) is open;
(3) There exists x0 ∈ C such that the set X \ T−1(x0) is compact.

Then there exists x∗ ∈ X such that x∗ ∈ T (x∗).

To prove the equivalence of these theorems we need some auxiliary results. In what follows, we denote
by 〈B〉 the family of all finite subsets of B.

Let C be the family of all convex subsets of a semilattice X and A is an arbitrary subset of X. We set
CO∆(A) = ∩{E ∈ C : A ⊆ E}.

One can see without difficulty that a subset E of X is ∆-convex if and only if CO∆(E) = E. The proof
of Lemma 2.1 in [14] can be modified accordingly to obtain its version in semilattices as follows:

Lemma 3.3. Let X be a semilattice and E be a nonempty subset of X. Then
(1) CO∆(E) is a ∆-convex subset of X;
(2) CO∆(E) is the smallest ∆-convex of X containing E;
(3) CO∆(E) = ∪{CO∆(A) : A ∈ 〈E〉}.

Proof. (1) Let A ∈ 〈CO∆(E)〉. Let D be any ∆-convex subset of X containing E. Then A ⊂ CO∆(E) ⊂ D,
so A ∈ 〈D〉 and hence ∆(A) ⊂ D. Thus

∆(A) ⊂ ∩{D : D is a ∆-convex subset of X containing E} = CO∆(E).
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Therefore CO∆(E) is ∆-convex.
(2) It is clear from the definition of CO∆(E) and (1).
(3) Let M = ∪{CO∆(A) : A ∈ 〈E〉}. By (1), M ⊂ CO∆(E). On the other hand, it is clear that E ⊂M .

Thus to complete the proof, it suffices to show that M is ∆-convex. Indeed, let B = {x1, x2, ..., xn} ∈ 〈M〉
be given. Then for each i = 1, 2, ..., n, there exists Ai ∈ 〈E〉 with xi ∈ ∆(Ai). Let A = ∪ni=1Ai, then A ∈ 〈E〉
and B ⊂ ∪ni=1∆(Ai). Since ∆(A) is ∆-convex, ∆(B) ⊂ ∆(A) ⊂M . Hence M is ∆-convex.

Lemma 3.4. Let X be a topological space and Y be a semilattice. Suppose the mapping φ : X → 2Y \ {∅}
is such that for each y ∈ Y , φ−1(y) is open in X. Define ψ : X → 2Y \ {∅} by ψ(x) = CO∆(φ(x)) for each
x ∈ X. Then for each y ∈ Y , ψ−1(y) is open in X.

Proof. Let y ∈ Y be given. By Lemma 3.1, if x ∈ ψ−1(y), then

y ∈ ψ(x) = CO∆(φ(x)) = ∪{∆(A) : A ∈ 〈φ(x)〉}.

Let A = {a1, a2, ..., an} ∈ 〈φ(x)〉 be such that y ∈ ∆(A). Then x ∈ ∩ni=1φ
−1(ai) which is an open neigh-

bourhood of x. Let U = ∩ni=1φ
−1(ai), then for each z ∈ U , ai ∈ φ(z) for each i = 1, 2, ..., n so that

y ∈ ∆(A) ⊂ CO∆(φ(z)) = ψ(z). Hence z ∈ ψ−1(y) for each z ∈ U and hence x ∈ U ⊂ ψ−1(y). Therefore
ψ−1(y) is open in X.

Now, we are in a position to state the first new result of this paper.

Theorem 3.5. Theorems 3.1 and 3.2 are equivalent.

Proof. Theorem 3.1 =⇒ Theorem 3.2: Let us assume that the conditions of Theorem 3.2 hold. We
define G : X → 2X by G(y) = X \ T−1(y) for each y ∈ X. We have⋂

y∈X
G(y) = X \

⋃
y∈X

T−1(y) = ∅,

Therefore, G is not a KKM mapping. Hence, there exists A = {x1, x2, ..., xn} ⊂ X such that ∆(A) 6⊂
∪x∈AG(x). We infer that there exists x∗ ∈ ∆(A) such that x∗ 6∈ G(xi) for all i = 1, 2, ..., n. Thus
x∗ ∈ T−1(xi) for all i = 1, 2, ..., n. It follows that xi ∈ T (x∗) for all i = 1, 2, ..., n. Then x∗ ∈ ∆(A) ⊂ T (x∗).

Theorem 3.2 =⇒ Theorem 3.1: We assume that the conditions of Theorem 3.1 hold. For a con-
tradiction, asumme that, ∩x∈CT (x) = ∅. Then we can define a set valued mapping φ : X → 2X by
φ(x) = {y ∈ C : x 6∈ T (y)}. Clearly φ(x) is a nonempty subset of X for each x ∈ X. It follows that for
each y ∈ X, φ−1(y) = X \ T (y) is open in X. Let ψ : X → 2X be the set-valued mapping defined by
ψ(x) = CO∆φ(x) for each x ∈ X. Thus for each x ∈ C, ψ(x) is a nonempty ∆-convex subset of X and by
Lemma 3.4, ψ−1(y) is open for each y ∈ X. Finally, X \ψ−1(x0) ⊂ X \ φ−1(x0) = T (x0) is compact. Hence
by Theorem 3.2 there exists a point x∗ ∈ X such that

x∗ ∈ ψ(x∗) = CO∆φ(x∗) = ∪{∆(A) : A ∈ 〈φ(x∗)〉}.

This implies that there exists A = {x1, x2, ..., xn} ∈ 〈φ(x∗)〉 such that x∗ ∈ ∆(A). Then x∗ ∈ φ−1(xi) =
X \ T (xi) for i = 1, 2, ..., n. This means that x∗ 6∈ T (xi) for i = 1, 2, ..., n, i.e, x∗ 6∈ ∪ni=1T (xi), which
contradicts the hypothesis (2) of Theorem 3.1. Hence ∩x∈CT (x) 6= ∅.

4. Ky Fan inequality and Sion-Neumann minimax theorem for set-valued mappings

We shall denote by supA (resp. inf A), where A ⊂ Y , the set of all efficient points of the set Ā (the
closure of A) with respect to C (resp. with respect to −C), i.e.,

supA = {a ∈ Ā : (a+ C) ∩ Ā = {a}};
inf A = {a ∈ Ā : (a− C) ∩ Ā = {a}}.
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Recall that A is bounded with respect to C, if the set (a+C)∩A is bounded for every a ∈ A. A classical
lemma of R. Phelps [13], which we shall use in the sequel, states that if A is bounded with respect to C
(resp. with respect to −C), then supA 6= ∅ (resp. inf A 6= ∅) and

A ⊂ supA− C (resp. A ⊂ inf A+ C).

We shall say that a set-valued mapping F : X → 2Y , where X is a topological space, is bounded with
respect to C, if for every x ∈ X and every y ∈ F (x) the set (y + C) ∩ F (x) is bounded.

We have the following result (see [17, Theorem 3.5] for more general case).

Theorem 4.1. Let K be a nonempty compact ∆-convex subset of a semilattice X with path-connected
intervals, Y a topological vector space, C a closed convex pointed cone with intC 6= ∅ and F : K ×K → 2Y

a set-valued mapping. Assume that

1. For each x ∈ K, F (x, x) ⊂ −C;

2. For each y ∈ K, F (., y) is lower C-continuous;

3. For each x ∈ K, F (x, .) is type II −C∆-quasiconvex.

Then the solution set
S = {x ∈ K : F (x, y) ⊂ −C, for all y ∈ K}

is a nonempty compact subset of K.

Proof. We define T : K → 2K by

T (y) = {x ∈ K : F (x, y) ⊂ −C}, for each y ∈ K.

We show that T (y) is closed for each y ∈ K. Taking x̄ ∈ T (y), the closure of T (y), we shall deduce that
x̄ ∈ T (y). By (2), the lower C-continuity of F (., y) implies that for any neighborhood V of the origin in Y
there is a neighborhood U(x̄) of x̄ such that

F (x̄, y) ⊂ F (x, y) + V − C, for all x ∈ U(x̄).

Let {xα} be any net in T (y) converging to x̄, hence there exists β such that xα ∈ U(x̄), ∀α ≥ β and then

F (x̄, y) ⊂ F (xα, y) + V − C, ∀α ≥ β

and so
F (x̄, y) ⊂ F (xα, yi) + V − C ⊂ −C + V − C ⊂ −C + V for all V.

Since C is closed, the last inclusion shows F (x̄, y) ⊂ −C. Therefore, x̄ ∈ T (y) and T (y) is closed.
We shall show that for each x ∈ K, P (x) = {y ∈ K : F (x, y) 6⊂ −C} is ∆-convex. Suppose that there exists
an x′ ∈ X such that P (x′) is not ∆-convex; then there exist y1, y2 ∈ P (x′) such that ∆({y1, y2}) 6⊂ P (x′),
i.e., there exists a z ∈ ∆({y1, y2}) and z 6∈ P (x′); hence F (x′, z) ⊂ −C. By (3), we have either

F (x′, y1) ⊂ F (x′, z)− C

or
F (x′, y2) ⊂ F (x′, z)− C.

Consequently, we have either

F (x′, y1) ⊂ F (x′, z)− C ⊂ −C − C ⊂ −C

or
F (x′, y2) ⊂ F (x′, z)− C ⊂ −C − C ⊂ −C,



N. T. Vinh, J. Nonlinear Sci. Appl. 5 (2012), 161–173 167

which is a contradiction. Therefore, for any x ∈ X,P (x) is ∆-convex.
Finally, we prove that T is a KKM mapping. Suppose on the contrary that T is not KKM. Then there

exists A = {y1, y2, ..., yn} ⊂ K such that

∆(A) 6⊂
n⋃
i=1

T (yi).

Thus there exists z ∈ ∆(A) such that z 6∈
⋃n
i=1 T (yi). Hence z 6∈ T (yi) for all i = 1, 2, ..., n. It follows that

yi ∈ P (z) for all i = 1, 2, ..., n. Since P (z) is ∆-convex, we have z ∈ ∆(A) ⊂ P (z), i.e., F (z, z) 6⊂ −C, which
contradicts the hypothesis (1). Then T is a KKM mapping. By Theorem 3.1, we infer that⋂

y∈K
T (y) 6= ∅

and the solution set S = {x ∈ K : F (x, y) ⊂ −C, for all y ∈ K} is a nonempty compact subset of K.

Theorem 4.2. Suppose that X,Y are compact topological semilattices with path-connected intervals, C is
a closed convex pointed cone with intC 6= ∅ in a topological vector space and F,G : X × Y → 2E are
two set-valued mappings such that the set ∪y∈Y sup∪x∈XF (x, y) is bounded with respect to −C and the set
∪x∈X inf ∪y∈YG(x, y) is bounded with respect to C. Suppose that F and G satisfy the following conditions:

1. F (x, y)−G(x, y) ⊂ −C for every x ∈ X, y ∈ Y ;

2. G(x, .) is C-∆-quasiconcave on Y for every x ∈ X and F (., y) is −C-∆-quasiconcave on X for every
y ∈ Y ;

3. G(., y) is lower −C-continuous for every y ∈ Y and F (x, .) is lower C-continuous for every x ∈ X.

Then there exist two points
z1 ∈ sup∪x∈X inf ∪y∈YG(x, y)

and
z2 ∈ inf ∪y∈K sup∪x∈XF (x, y)

such that z1 − z2 ∈ C.

Proof. Define the mapping H : X × Y ×X × Y → 2E by

H(x̂, ŷ, x, y) = F (x, ŷ)−G(x̂, y).

Applying Theorem 4.1 for H we obtain that there exist x0, y0 such that

H(x0, y0, x, y) ⊂ −C, ∀x ∈ X, ∀y ∈ Y,

whence

sup∪x∈XF (x, y0)− inf ∪y∈YG(x0, y) ⊂ −C. (4.1)

Using Phelps lemma stated at the beginning of this section, we have

sup∪x∈XF (x, y0) ⊂ inf ∪y∈Y sup∪x∈XF (x, y) + C

and
inf ∪y∈YG(x0, y) ⊂ sup∪x∈X inf ∪y∈YG(x, y)− C.

Therefore, by (4.1) there exist

z1 ∈ sup∪x∈X inf ∪y∈YG(x, y), c1 ∈ C
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and
z2 ∈ inf ∪y∈K sup∪x∈XF (x, y), c2 ∈ C

such that
z2 + c2 − (z1 − c1) ∈ −C,

which implies
z1 − z2 ∈ C1 + c1 + c2 ⊂ C.

Remark 4.3. Theorem 4.1 is a set-valued version of Ky Fan minimax inequality, while Theorem 4.2 is a
set-valued form of Sion-Neumann type minimax theorem in topological semilattices.

5. The existence of (weak) Pareto equilibria

The following theorem, the proof of which is contained in the proof of Theorem 3 of Horvath and Llinares
Ciscar in [6], will be the basic tool for our purpose.

Theorem 5.1. Let X be a compact topological space, Y be a topological semilattice with path-connected
intervals and T : X → 2Y have nonempty ∆-convex values and open lower sections. Then there is a
continuous selection f : X → Y of T such that f = g ◦h where g : ∆n → Y and h : X → ∆n are continuous
mappings and n is some positive integer.

Lemma 5.2. Let I be an index set and for each i ∈ I, let Xi be a nonempty, compact and ∆-convex subset
of a topological semilattice with path-connected intervals and X =

∏
i∈I Xi. For each i ∈ I, let Ti : X → 2Xi

be a set-valued mapping such that

1. Ti has nonempty ∆-convex values;

2. Ti has open lower sections.

Then there exists a point x ∈ X such that x ∈ T (x) :=
∏
i∈I Ti(x); that is, xi ∈ Ti(x) for each i ∈ I, where

xi = πi(x) is the projection of x onto Xi for each i ∈ I.

Proof. By Theorem 5.1, for each i ∈ I, there exists continuous mappings gi : ∆ni → Xi and hi : X → ∆ni

such that fi = gi◦hi is a continuous selection of Ti, where ni is some positive integer. Now let S =
∏
i∈I ∆ni .

For each i ∈ I, let Ei be the linear hull of the set {e0, e1, ..., eni}, then Ei is a locally convex topological
vector space as it is finite dimensional and ∆ni is a compact convex subset of Ei. Let E =

∏
i∈I Ei, then E

is also a locally convex topological vector space and S is also a compact convex subset of E.
Now define continuous mappings g : S → X and h : X → S by

g(t) =
∏
i∈I

gi(πi(t)), ∀t ∈ S and h(x) =
∏
i∈I

hi(x), ∀x ∈ X,

where πi : S → ∆ni is the projection of S on ∆ni for each i ∈ I. By Tychonoff fixed point theorem [15], the
continuous mapping h ◦ g : S → S has a fixed point t ∈ S, i.e., t = h ◦ g(t). Let x = g(t), then we have

x = g ◦ h(x) = g

(∏
i∈I

hi(x)

)
=
∏
i∈I

gi

(
πi

(∏
i∈I

hi(x)

))
=
∏
i∈I

gi ◦ hi(x).

It follows that xi = gi ◦ hi(x) ∈ Ti(x) for each i ∈ I. This completes the proof.

From Lemma 5.2, we have the following fixed component theorem in topological semilattices.
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Theorem 5.3 ([18]). Let {Xi}i∈I be a family of compact ∆-convex sets each in a topological semilattice
with path-connected intervals, X =

∏
i∈I Xi, and {Ti : X → 2Xi}i∈I a family of mappings satisfying the

following conditions:

1. each Ti has ∆-convex values;

2. each Ti has open lower sections.

3. for each x ∈ X, there exists i ∈ I such that Ti(x) 6= ∅.

Then there exists x = (xi)i∈I ∈ X and i ∈ I such that xi ∈ Ti(x).

It is easy to see that Theorem 5.3 is equivalent to the following maximal element theorem for a family
of mappings.

Theorem 5.4. Let {Xi}i∈I be a family of compact ∆-convex sets each in a topological semilattice with
path-connected intervals, X =

∏
i∈I Xi, and {Ti : X → 2Xi}i∈I a family of maps satisfying the following

conditions:

1. each Ti has ∆-convex values;

2. each Ti has open lower sections.

3. for each x = (xi)i∈I ∈ X and i ∈ I, xi 6∈ Ti(x).

Then there exists x̄ ∈ X such that Ti(x̄) = ∅ for all i ∈ I.

The above theorem will be used in the main result of this section.
Let (Xi,6i), i ∈ I, be a family of topological semilattices, and let X and X−i be the product spaces with
the product topology, i.e.,

X :=
∏
i∈I

Xi, X−i :=
∏

j∈I\{i}

Xj ,

For x, x′ ∈ X :=
∏
i∈I Xi, define x ≤ x′ if and only if xi ≤i x′i, then (X,6) is a topological semilattice with

[sup{x, x′}]i = sup{xi, x′i} for each i ∈ I (see [6]). For any x ∈ X, x = (x−i, xi), where xi ∈ Xi, x−i ∈ X−i.
Let Y be a Hausdorff topological vector space. For each i ∈ I, let Ai : X → 2Xi be the ith constraint

correspondence and Fi : X → 2Y the ith pay-off mapping. The following result is Theorem 4.1 in [18].

Theorem 5.5. Let I be any index set and for each i ∈ I, Xi be a nonempty compact ∆-convex subset of a
topological semilattice with path-connected intervals,

X :=
∏
i∈I

Xi, X−i :=
∏

j∈I\{i}

Xj .

For each i ∈ I, let Yi be a locally convex topological vector space and Ai : X → 2Xi, Fi : X → 2Yi, Ci a
closed, pointed and convex cone in Yi with intCi 6= ∅. Assume that

1. ∀i ∈ I, Ai has open lower sections and nonempty ∆-convex values;

2. ∀i ∈ I, the set Bi = {x ∈ X : xi ∈ Ai(x)} is closed;

3. ∀i ∈ I, Fi is upper Ci-continuous with closed values;

4. ∀i ∈ I, Fi(x−i, ui) is lower −Ci-continuous in x−i;

5. ∀i ∈ I, for any x−i ∈ X−i, the function Fi(x−i, .) is type II Ci∆-quasiconvex.

Then there exists x∗ ∈ X such that for each i ∈ I,

x∗i ∈ Ai(x∗), Fi(x
∗
−i, ui) ⊂ Fi(x∗−i, x∗i ) + Ci, ∀ui ∈ Ai(x∗).



N. T. Vinh, J. Nonlinear Sci. Appl. 5 (2012), 161–173 170

Let I be any (finite or infinite) index set and for each i ∈ I, Xi be topological semilattices. We still use
the following notations X, X−i as in Theorem 5.5. For each x ∈ X, xi and x−i denote the projection of x
on Xi and X−i respectively. Write x = (x−i, xi).

Let I be any set of players. Each player i ∈ I has a strategy set Xi, a constrained correspondence Ai :
X → 2Xi , a payoff Fi : X×Xi → 2Yi , where Yi is a Hausdorff topological vector space, Ci is a pointed closed
convex cone in Yi with intCi 6= ∅ and Ci 6= Yi. A generalized constrained multiobjective game (GCMOG)
Γ = (Xi, Ai, Fi, Ci)i∈I is a family of ordered quadruples (Xi, Ai, Fi, Ci). A point x∗ = (x∗−i, x

∗
i ) ∈ X is said to

be a Pareto (resp., weak Pareto) equilibrium point of Γ if for each i ∈ I, there exists a point z∗i ∈ F (x∗−i, x
∗
i )

such that
x∗i ∈ Ai(x∗), zi − z∗i 6∈ −Ci \ {0}, ∀zi ∈ Fi(x∗−i, ui), ui ∈ Ai(x∗)

(resp., x∗i ∈ Ai(x∗), zi − z∗i 6∈ −intCi, ∀zi ∈ Fi(x∗−i, ui), ui ∈ Ai(x∗))

Since −intCi ⊂ −Ci \ {0}, it is easy to see that each Pareto equilibrium point of the GCMOG must be
a weak Pareto equilibrium point of the GCMOG.

Theorem 5.6. Let I be any index set and for each i ∈ I, Xi be a nonempty compact ∆-convex subset of a
topological semilattice with path-connected intervals, Yi be a locally convex topological vector space, Ci be a
closed, pointed and convex cone in Yi with intCi 6= ∅ and Ci 6= Yi. Let Γ = (Xi, Ai, Fi, Ci) be a generalized
constrained multiobjective game. For each i ∈ I, let Ai : X → 2Xi, Fi : X → 2Yi satisfying the following
conditions:

1. ∀i ∈ I, Ai has open lower sections and nonempty ∆-convex values;

2. ∀i ∈ I, the set Bi = {x ∈ X : xi ∈ Ai(x)} is closed;

3. ∀i ∈ I, Fi is upper Ci-continuous with compact values;

4. ∀i ∈ I, Fi(x−i, ui) is lower −Ci-continuous in x−i;

5. ∀i ∈ I, for any x−i ∈ X−i, the function Fi(x−i, .) is type II Ci∆-quasiconvex.

Then there exists x∗ ∈ X such that for each i ∈ I, there exists a point z∗i ∈ F (x∗) satisfying

x∗i ∈ Ai(x∗), zi − z∗i 6∈ −Ci \ {0}, ∀zi ∈ Fi(x∗−i, ui), ui ∈ Ai(x∗)

i.e., x∗ ∈ X is a Pareto equilibrium point of the GCMOG and so x∗ ∈ X is also a weak Pareto equilibrium
point of the GCMOG.

Proof. First, we prove that there exists x∗ = (x∗−i, x
∗
i ) ∈

∏
i∈I Xi such that for each i ∈ I,

x∗i ∈ Ai(x∗), Fi(x
∗
−i, x

∗
i ) ∩min

Ci

Fi(x
∗
−i, Ai(x

∗)) 6= ∅. (5.1)

If it is false, then for each x ∈
∏
i∈I Xi, there exists i ∈ I such that either

xi 6∈ Ai(x)

or
Fi(x−i, xi) ∩min

Ci

Fi(x−i, Ai(x)) = ∅.

But, by Theorem 5.5, there exists x∗ = (x∗−i, x
∗
i ) ∈

∏
i∈I Xi such that for each i ∈ I,

x∗i ∈ Ai(x∗) and Fi(x
∗
−i, ui) ⊂ Fi(x∗−i, x∗i ) + Ci, ∀ui ∈ Ai(x∗). (5.2)

Hence we have

Fi(x
∗
−i, x

∗
i ) ∩min

Ci

Fi(x
∗
−i, Ai(x

∗)) = ∅. (5.3)
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By the condition (3), Fi(x
∗
−i, x

∗
i ) is compact in Yi, it follows from Lemma 2.2, min

Ci

Fi(x
∗
−i, x

∗
i ) 6= ∅. Let

z0
i ∈ minCi Fi(x

∗
−i, x

∗
i ) ⊂ Fi(x∗−i, x∗i ). It follows from (5.3) that

z0
i 6∈ min

Ci

Fi(x
∗
−i, Ai(x

∗)).

Hence, there exist u∗i ∈ Ai(x∗−i) and z∗i ∈ Fi(x∗−i, u∗i ) such that

z0
i ∈ z∗i + Ci \ {0}. (5.4)

By (5.5), there exists zi ∈ Fi(x∗−i, x∗i ) such that

z∗i ∈ zi + Ci. (5.5)

By (5.4) and (5.5), we have

z0
i − zi = z0

i − z∗i + z∗i − zi ∈ Ci \ {0}+ Ci = Ci \ {0}.

which contradicts the fact that z0
i ∈ min

Ci

Fi(x
∗
−i, x

∗
i ). Therefore (5.1) is true. It follows from Definition

2.8 and (5.1) that there exists x∗ = (x∗−i, x
∗
i ) ∈ X such that for each i ∈ I, there exists z∗i ∈ Fi(x∗−i, x∗i )

satisfying
x∗i ∈ Ai(x∗), zi − z∗i 6∈ −Ci \ {0}, ∀zi ∈ Fi(x∗−i, ui), ui ∈ Ai(x∗),

i.e., x∗ ∈ X is a Pareto equilibrium point of the GCMOG and so x∗ ∈ X is also a weak Pareto equilibrium
point of the GCMOG.

6. Ky Fan-Kakutani type fixed point theorem in topological semilattices

This section is concerned with a Kakutani-Ky Fan type fixed point theorem in topological semilattices
with uniform structure.

Definition 6.1. (Kelly [7]) A uniformity for a set X is a non-void family U of subsets of X × X (called
entourages) such that

1. each member of U contains the diagonal Ω = {(x, x) ∈ X},
2. if U ∈ U , then U−1 ∈ U , where U−1 = {(y, x) ∈ X ×X : (x, y ∈ U)},
3. if U ∈ U , then V ◦ V ⊂ U for some V ∈ U , where

V ◦ V = {(x, z) : ∃y ∈ X such that (x, y) ∈ V, (y, z) ∈ V },

4. if U and V are members of U , then U ∩ V ∈ U , and

5. if U ∈ U and U ⊂ V ⊂ X ×X, then V ∈ U .

The pair (X,U) is called a uniform space. For each V ∈ U , we define a neighborhood of x as V [x] :=
{y ∈ X : (x, y) ∈ V }. An entourages V is called symmetric if V = V −1. In this case, we have

y ∈ V [x]⇔ x ∈ V [y].

Let
O = {G ⊂ X : for each x ∈ G there exists V ∈ U such that V [x] ⊂ G}.

Then O is a topology on X, and it called the topology induced by the uniformity U . Moreover, (X,O) is
called a uniform topological space.
The uniform space (X,U) is said to be separated if⋂

{V : V ∈ U} = Ω,

in this case (X,O) becomes a Hausdorff space.
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Definition 6.2. A topological semilattice X is said to be a locally ∆-convex space if X is a uniform
topological space with uniformity U which has an open base β := {Vi : i ∈ I} of symmetric entourages such
that for each V ∈ β, the set V [x] is a ∆-convex for each x ∈ X.

We shall assume that locally ∆-convex spaces also satisfy the following condition:
Condition (H): {x ∈ X : K ∩ V [x] 6= ∅} is ∆-convex for any ∆-convex subset K of X and V ∈ β (see,
Horvath [5, Definition 2, p. 345]).

Definition 6.3. (Berge [1]) Let X and Y be two Hausdorff topological spaces and F : X → 2Y be a set-
valued mapping, then F is upper semicontinuous at x0 ∈ X if for each open set U in Y with U ⊃ F (x0), there
exists an open neighborhood O(x0) of x0 such that U ⊃ F (x) for any x ∈ O(x0); F is upper semicontinuous
on X if F is upper semicontinuous at every point in X.

We need the following result.

Theorem 6.4. (Horvath and Ciscar [6]) Let X be a topological semilattice with path-connected intervals,
C ⊂ X a nonempty subset of X, and T : C → 2X be such that:

1. T has closed [resp., open] values;

2. T is a KKM mapping, i.e., for each A ∈ 〈X〉,

∆(A) ⊂
⋃
x∈A

T (x).

Then the family {T (x) : x ∈ C} has the finite intersection property.

Theorem 6.5. Let X be a separated compact locally ∆-convex space with path-connected intervals satisfying
the condition (H) and T : X → 2X be an upper semicontinuous set-valued mappings with nonempty closed
∆-convex values. Then T has a fixed point, i.e, there exists x0 ∈ X such that x0 ∈ T (x0).

Proof. Fix an element V of the base β, then for each x ∈ X, V [x] is an open neighborhood of x. Since T (X)
is compact, there exists an M = {y1, y2, ..., yn} ⊂ X such that T (X) ⊂ ∪y∈MV [y].

For each yi ∈M , let G(yi) := {x ∈ X : T (x) ∩ V [yi] = ∅}. Since T is upper semicontinuous and V [yi] is
closed, by a standard argument, we can prove that each G(yi) is open. Moreover, since T (X) ⊂ ∪ni=1V [yi],
we have

n⋂
i=1

G(yi) =

{
x ∈ X : T (x) ∩

n⋃
i=1

V [yi] = ∅
}

= ∅.

Therefore, by Theorem 6.4, G : M → 2X cannot be a KKM map; that is, there exist an N ∈ 〈M〉 and an
xV ∈ ∆(N) such that xV 6∈ G(N) = ∪y∈NG(y). Hence T (xV ) ∩ V [y] 6= ∅ for all y ∈ N , and

N ⊂ L := {y ∈ X : T (xV ) ∩ V [y] 6= ∅}.

Since T (xV ) is ∆-convex set and X satisfies the condition (H), L is ∆-convex. Therefore, xV ∈ ∆(N) ⊂ L
and hence T (xV ) ∩ V [xV ] 6= ∅.

So, for each basis element V , there exist xV , yV ∈ X such that yV ∈ T (xV ) and yV ∈ V [xV ]. Since T (X)
is compact and β forms a directed set ordered by inclusion, we may assume that the net {yV } converges to
some x0 ∈ K. Since X is Hausdorff, xV also converges to x0. Since T is upper semicontinuous with closed
values, the graph of T is closed in X × T (X), and hence we have x0 ∈ Tx0. This completes our proof.
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