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Abstract
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1. Introduction

Sectorial operators, that is, linear operators A defined in Banach spaces, whose spectrum lies in a sector

Sw =
{
λ ∈ C/{0} | |argλ| ≤ w

}
∪ {0} for some 0 ≤ w ≤ π

and whose resolvent satisfies an estimate

||(λ−A)−1|| ≤ M |λ|−1, ∀ λ ∈ C\Sw, (1.1)
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have been studied extensively during the last 40 years, both in abstract settings and for their applications to
partial differential equations. Many important elliptic differential operators belong to the class of sectorial
operators, especially when they are considered in the Lebesgue spaces or in spaces of continuous functions
(see [1] and [[2], chapter 3]). However, if we look at spaces of more regular functions such as the spaces of
Holder continuous functions, we find that these elliptic operators do no longer satisfy the estimate 1.1 and
therefore are not sectorial as was pointed out by Von Wahl (see [[3], Ex.3.1.33], see [4]).

Neverthless, for these operators estimates such as

||(λ−A)−1|| ≤ M

|λ|1−α
, λ ∈

∑
w,v

=
{
λ ∈ C : |arg(λ− w)| < v

}
(1.2)

where α ∈ (0, 1), w ∈ R and v ∈ (π2 , π), can be obtained, (see[4]) which allows to define an associated
”analytic semigroup” by means of the Dunford Integral

T (t) =
1

2πi

∫
Γθ

eλt(λ−A)−1dλ, t > 0 (1.3)

where Γθ =
{
teiθ : t ∈ R\{0}

}
, θ ∈ (v, π2 ).

In the literature, a linear operator A : D(A) ⊂ X → X which satisfy the condition 1.2 is called almost
sectorial and the operator family

{
T (t), T (0) = I, t ≥ 0

}
is said the ”semigroup of growth α” generated by

A. The operator family T (t)t≥0 has properties similar at those of analytic semigroup which allow to study
some classes of partial differential equations via the usual methods of semigroup theory. Concerning almost
sectorial operators, semigroups of growth α and applications to partial differential equations, we refer the
reader to [4, 5, 6, 7, 8] and the references there in.

Also, many evolution processes from fields as diverse as physics, population dynamics, aeronautics,
economics, telecommunications and engineering etc., are characterized by the fact that they undergo an
abrupt change of state at certain moments of time between intervals of continuous evolution. The duration
of these changes are often negligible compared to the total duration of the process acting instantaneously
in the form of impulses. The impulses may be deterministic or random. There are lot of papers which
investigate the qualitative properties of deterministic impulses see for example [9, 10, 11, 12, 13, 14] and the
references there in.

When the impulses exist at random points, solutions of the differential systems are stochastic process.
Random impulsive systems are more realistic than deterministic impulsive systems. The study of random
impulsive differential equations is a new area of research. So far there are few results have been discussed
in random impulsive systems. In [15, 16], the authors proved the existence and uniqueness of differential
system with random impulses. In [17], Wu and Duan discussed the oscillation, stability and boundedness of
second-order differential systems with random impulses, and in [18, 19], the authors studied the existence
and stability results of random impulsive semilinear differential systems.

To the best of our knowledge, the study of the existence of solutions of abstract system as 2.1 for which
the operator A is almost sectorial is an untreated topic in the literature. In [20], Hernandez proved the
existence of mild solutions for a class of abstract functional differential equations with almost sectorial op-
erators and in [19], A. Anguraj et al. proved the existence and exponential stability of semilinear functional
differential equations with random impulses under non-uniqueness. By the motivation of the above papers,
we present a new idea of research to prove the existence and uniqueness of mild solutions of functional
differential equations with random impulses involving almost sectorial operators.

2. Preliminaries

Here, we introduce some notations and technicalities. Let (Z, ||.||z) be a Banach space. In this paper,
L(Z,W ) represents the space of bounded linear operators from Z into W endowed with the norm of operators
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denoted ||.||L(Z,W ), and we write L(Z) and ||.||L(Z) when Z = W . In addition, Bl(z, Z) denotes the closed
ball with center at z ∈ Z and radius l > 0 in Z. As usual, C([c, d], Z) represents the space formed by
all the continuous functions from [c, d] into Z endowed with the sup-norm denoted by ||.||C([c,d],Z) and
Lp([c, d],X), p ≥ 1, denotes the space formed by all the classes of Lebesgue-integrable functions from [c, d]
into X endowed with the norm

||h||Lp([c,d],X) =
(∫

[c,d]
||h(s)||pds

) 1
p
.

Throughout this paper, (X, ||.||) is a Banach space, A : D(A) ⊂ X → X is an almost sectorial operator
and (T (t))t≥0 is the semigroup of growth α generated by A. For simplicity, next we assume w = 0. The
next lemma consider some properties of the operator family (T (t))t≥0.

Lemma 2.1. ([5, 8]). Under the above conditions, the followings properties are satisfied.

(a) The operator A is closed, T (t + s) = T (t)T (s) and AT (t)x = T (t)Ax for all t, s ∈ [0,∞) and each
x ∈ D(A).

(b) T (.) ∈ C((0,∞),X) ∩ C1((0,∞),X) and d
dtT (t) = AT (t) for all t > 0.

(c) For n ∈ N ∪ {0}, AnT (.) ∈ C((0,∞),X) and there exists Dn > 0 and a constant γ > 0, which is
independent of n, such that ||AnT (t)||L(X) ≤ Dne

γtt−(n+α) for all t > 0.

Let X be the Banach space and Ω a non - empty set. Assume that τk is a random variable defined from Ω

to Dk
def.
= (0, dk) for all k = 1, 2, ... where 0 < dk <∞. Furthermore, assume that τi and τj are independent

of each other as i 6= j for i, j = 1, 2, .... For the sake of simplicity, we denote R+ = [0,∞).
We consider the functional differential equations with random impulses of the form,

x′(t) = Ax(t) + f(t, xt), t ≥ 0, t 6= ξk

x(ξk) = bk(τk)x(ξ−k ), k = 1, 2, ...

x0 = φ

(2.1)

where A : D(A) ⊂ X→ X is an almost sectorial operator, the function f : R+×Ĉ → X, Ĉ = C([−r, 0],X)
is the set of piecewise continuous functions mapping [−r, 0] into X with some given r > 0; xt is a function
where t is fixed, defined by xt(s) = x(t + s) for all s ∈ [−r, 0]; ξ0 = t0 and ξk = ξk−1 + τk for k = 1, 2, ....
Here t0 = 0 = ξ0 < ξ1 < ξ2 < ... < ξk < ..., bk : Dk → X for each k = 1, 2, ..., x(ξ−k ) = limt→ξk x(t) with
the norm ||x||t = supt−r<s<t |x(s)| for each t satisfying 0 ≤ t ≤ T and T ∈ R+ is a given number, ||.|| is any
given norm in X; φ is a function defined from [−r, 0] to X.

Denote {Bt, t ≥ 0} the simple counting process generated by ξn, that is, {Bt ≥ n} = {ξn ≤ t}, and
denote Ft the σ - algebra generated by {Bt, t ≥ 0}. Then (Ω, P, {Ft}) is a probability space.

Definition 2.2. For a given T ∈ (0,∞), a stochastic process {x(t),−r ≤ t ≤ T} is called a mild solution
to the equation 2.1 in (Ω, P, {Ft}) , if
(i) x(t) is Ft-adapted.
(ii)x(s) = φ(s) when s ∈ [−r, 0], and

x(t) =

∞∑
k=0

[ k∏
i=1

bi(τi)T (t)φ(0) +

k∑
i=1

k∏
j=i

bj(τj)

∫ ξi

ξi−1

T (t− s) f(s, xs)ds

+

∫ t

ξk

T (t− s) f(s, xs)ds
]
I[ξk,ξk+1)(t), t ∈ [0, T ]

where
∏n
j=m(.) = 1 as m > n,

∏k
j=i bj(τj) = bk(τk)bk−1(τk−1)...bi(τi), and IA(.) is the index function, i.e.,

IA(t) =

{
1, if t ∈ A
0, if t /∈ A
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3. Existence Results

In this section, we discuss the existence and uniqueness of the solution of the system 2.1.

Remark 3.1. In the remainder of this paper, φ : [−r, 0] → X is a given function and y : [−r, T ] → X is the

function defined by y(θ) = φ(θ) for θ ≤ 0 and y(t) =
∑∞

k=0

[∏k
i=1 bi(τi)T (t)φ(0)

]
I[ξk,ξk+1)(t) for t > 0.

In addition, Cn, n ∈ N , are positive constants such that

||AnT (t)||L(X) ≤ Cnt−(n+α),∀ t ∈ (0, T ],

and for a bounded set B ⊂ X, we use the notation DiamX(B) for

DiamX(B) = sup
a,b∈B

||a− b||.

To prove our results, we introduce the following hypotheses. In the next assumptions, q ∈
(

1
1−α ,∞

)
or

q =∞ and q′ = p
p−1 for q <∞ and q′ = 1 if q =∞.

(H1) The function f(. , ψ) is strongly measurable on [0, T ] for all ψ ∈ Ĉ and f(t , .) ∈ C(Ĉ,X) for each
t ∈ [0, T ]. There exists a non-decreasing function Wf ∈ C(R+, (0,∞)) and mf ∈ Lq([0, T ], R+) such
that

E||f(t, ψt)||2 ≤ mf (t)Wf (E||ψ||2t ), ∀ (t, ψ) ∈ [0, T ]× Ĉ

(H2) The function f is continuous and for all l > 0 with [0, l] × Bl(φ, Ĉ) ⊂ [0, T ] × Ĉ, there exists Lf,l ∈
Lq([0, T ], R+) such that

E||f(s, ψ1)− f(s, ψ2)||2 ≤ Lf,l(s) E||ψ1 − ψ2||2, ∀ (s, ψi) ∈ [0, l]×Bl(φ, Ĉ)

(H3) The condition max
i,k

{∏k
j=i ||bj(τj)||

}
is uniformly bounded if there is a constant B > 0 such that

max
i,k

{ k∏
j=i

||bj(τj)||
}
≤ B, ∀τj ∈ Dj , j = 1, 2, ...

Theorem 3.2. If the hypotheses (H1), (H3) are satisfied, T (.)φ(0) ∈ C([0, T ],X) and T (t) is compact for
all t > 0, then there exists a mild solution of 2.1 on [−r, T ].

Proof 1. Let T be an arbitrary number 0 < T < ∞ where T < b1 < ∞ and for C > 0 let Wf (||ψ||2) ≤ C,

for all ψ ∈ Bb1(φ, Ĉ).
Also, let

sup
s∈[0,T ]

||ys − φ||2 ≤
b21
4

and

CC2
0 ||mf ||Lq([0,T ]) max{1, B2} T

1
q′−2α+1

(1− 2q′α)
1
q′

≤ b21
4

For the simplification, on the space

B b1
2

(0, S(T )) =
{
u ∈ C([−r, T ],X) : u0 = 0, ||u||2C([0,T ],X) ≤

b21
4

}
we define the map
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Γ : B b1
2

(0, S(T ))→ C([−r, T ],X)

by (Γu)0 = 0 and

Γu(t) =


φ(t) t ∈ [−r, 0]∑∞

k=0

[∑k
i=1

∏k
j=i bj(τj)

∫ ξi
ξi−1

T (t− s) f(s, us + ys)ds

+
∫ t
ξk
T (t− s) f(s, us + ys)ds

]
I[ξk,ξk+1)(t), t ∈ [0, T ]

with the norm defined as

||χ||2Γ = sup
0≤t≤T

E||χ||2t

Now, we prove that Γ is completely continuous from B b1
2

(0, S(T )) into B b1
2

(0, S(T )).

For that, (s, u) ∈ [0, T ]×B b1
2

(0, S(T )),

||us + ys − φ||2 ≤ 2
[

sup
θ∈[0,s]

||u(θ)||2 + ||ys − φ||2
]

≤ 2
[b21

4
+
b21
4

]
≤ b21

which implies that us + ys ∈ Bb1(φ, Ĉ) and Wf (||us + ys||2) ≤ C.
Now, from the properties of (T (t))t≥0 and f , the Bochner’s criterion for integrable functions and the

inequality,

||T (t− s)f(s, us + ys)||2 ≤
C2

0 mf (s) Wf (||us + ys||2)

(t− s)2α

≤
C2

0Cmf (s)

(t− s)2α

Therefore, the function s → T (t − s)f(s, us + ys) is integrable on [0, t] for all t ∈ [0, T ], which implies
that Γu ∈ C([−r, T ], X) and Γ is well defined.

Next, we show that ΓB b1
2

(0, S(T )) ⊂ B b1
2

(0, S(T )).

Consider,

||Γu(t)||2 = ||
∞∑
k=0

[ k∑
i=1

k∏
j=i

bj(τj)

∫ ξi

ξi−1

T (t− s) f(s, us + ys)ds

+

∫ t

ξk

T (t− s) f(s, us + ys)ds
]
I[ξk,ξk+1)(t)||2

≤
[

max
i,k

{
1,

k∏
j=i

||bj(τj)||
}]2

(∫ t

0
||T (t− s)|| ||f(s, us + ys)||ds I[ξk,ξk+1)(t)

)2

E||Γu(t)||2 ≤ max
{

1, B2
}
t
(∫ t

0
||T (t− s)||2E||f(s, us + ys)||2ds

)
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Taking supremum over t, we get

sup
t∈[0,T ]

E||Γu(t)||2 ≤ max
{

1, B2
}
T C2

0

∫ t

0

mf (s)Wf (supt∈[0,T ]E||us + ys||2)

(t− s)2α
ds

≤ CC2
0T max

{
1, B2

}∫ t

0

mf (s)

(t− s)2α
ds

≤ CC2
0 max

{
1, B2

}
||mf ||Lq([0,T ])

T
1
q′−2α+1

(1− 2q′α)
1
q′

Thus,

||Γu(t)||2 ≤ b21
4

which implies that Γu ∈ B b1
2

(0, S(T )) and therefore ΓB b1
2

(0, S(T )) ⊂ B b1
2

(0, S(T )). Moreover, a stan-

dard application of the Lebesgue dominated convergence theorem proves that Γ is continuous.
Now, we prove the compactness of the operator Γ.

Step 1: The set ΓB b1
2

(0, S(T )) =
{

Γu(t) : u ∈ B b1
2

(0, S(T ))
}

is relatively compact for all t ∈ [−r, T ].

The case t ≤ 0 is trivial. Let 0 < t ≤ T be fixed and let ε be a real number with 0 < ε < t. For
u ∈ B b1

2

(0, S(T )), we define

Γεu(t) =
∞∑
k=0

[ k∑
i=1

k∏
j=i

bj(τj)

∫ ξi

ξi−1

T (t− s) f(s, us + ys)ds

+

∫ t−ε

ξk

T (t− s) f(s, us + ys)ds
]
I[ξk,ξk+1)(t)

Since, T (t) is compact, the set Γεu(t) =
{
u(t) : u ∈ B b1

2

(0, S(T ))
}

is relatively compact in X for every

ε ∈ (0, t).

Moreover, for every u ∈ B b1
2

(0, S(T )), we have

Γu(t)− Γεu(t) =
∞∑
k=0

[ k∑
i=1

k∏
j=i

bj(τj)

∫ ξi

ξi−1

T (t− s) f(s, us + ys)ds

+

∫ t

ξk

T (t− s) f(s, us + ys)ds
]
I[ξk,ξk+1)(t)

−
∞∑
k=0

[ k∑
i=1

k∏
j=i

bj(τj)

∫ ξi

ξi−1

T (t− s) f(s, us + ys)ds

+

∫ t−ε

ξk

T (t− s) f(s, us + ys)ds
]
I[ξk,ξk+1)(t)

||Γu(t)− Γεu(t)||2 ≤ max
{

1, B2
}
t

∫ t

t−ε
||T (t− s)||2E||f(s, us + ys)||2ds

E||Γu(t)− Γεu(t)||2 ≤ max
{

1, B2
}
T C2

0

∫ t

t−ε

mf (s)Wf (E||us + ys||2)

(t− s)2α
ds

sup
t∈[0,T ]

E||Γu(t)− Γεu(t)||2 ≤ CC2
0T max

{
1, B2

}∫ t

t−ε

mf (s)

(t− s)2α
ds



A. Anguraj, M.C. Ranjini, J. Nonlinear Sci. Appl. 5 (2012), 174–185 180

Thus,

||Γu(t)− Γεu(t)||2 ≤ CC2
0T max

{
1, B2

}∫ t

t−ε

mf (s)

(t− s)2α
ds

Therefore, letting ε→ 0, we see that there are relatively compact sets arbitrary close to the set
{

Γu(t) : u ∈

B b1
2

(0, S(T ))
}

. Hence, the set
{

Γu(t) : u ∈ B b1
2

(0, S(T ))
}

is relatively compact in X.

Step 2: Γ is equicontinuous.

For any 0 ≤ t1 < t2 ≤ T and for u ∈ B b1
2

(0, S(T )), we have

Γu(t2)− Γu(t1) =
∞∑
k=0

[ k∑
i=1

k∏
j=i

bj(τj)

∫ ξi

ξi−1

T (t2 − s) f(s, us + ys)ds

+

∫ t2

ξk

T (t2 − s) f(s, us + ys)ds
]
I[ξk,ξk+1)(t2)

−
∞∑
k=0

[ k∑
i=1

k∏
j=i

bj(τj)

∫ ξi

ξi−1

T (t1 − s) f(s, us + ys)ds

+

∫ t1

ξk

T (t1 − s) f(s, us + ys)ds
]
I[ξk,ξk+1)(t1)

=
∞∑
k=0

[ k∑
i=1

k∏
j=i

bj(τj)

∫ ξi

ξi−1

T (t2 − s) f(s, us + ys)ds

+

∫ t2

ξk

T (t2 − s) f(s, us + ys)ds
](
I[ξk,ξk+1)(t2)− I[ξk,ξk+1)(t1)

)
+
∞∑
k=0

[ k∑
i=1

k∏
j=i

bj(τj)

∫ ξi

ξi−1

[T (t2 − s)− T (t1 − s)] f(s, us + ys)ds

+

∫ t1

ξk

[T (t2 − s)− T (t1 − s)] f(s, us + ys)ds+

∫ t2

t1

T (t2 − s) f(s, us + ys)ds
]
I[ξk,ξk+1)(t1)

Then

E‖Γu(t2)− Γu(t1)‖2 ≤ 2E‖I1‖2 + 2E‖I2‖2 (3.1)

where,

I1 =

∞∑
k=0

[ k∑
i=1

k∏
j=i

bj(τj)

∫ ξi

ξi−1

T (t2 − s) f(s, us + ys)ds

+

∫ t2

ξk

T (t2 − s) f(s, us + ys)ds
](
I[ξk,ξk+1)(t2)− I[ξk,ξk+1)(t1)

)
and

I2 =
∞∑
k=0

[ k∑
i=1

k∏
j=i

bj(τj)

∫ ξi

ξi−1

[T (t2 − s)− T (t1 − s)] f(s, us + ys)ds

+

∫ t1

ξk

[T (t2 − s)− T (t1 − s)] f(s, us + ys)ds

+

∫ t2

t1

T (t2 − s) f(s, us + ys)ds
]
I[ξk,ξk+1)(t1)
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Consider,

E||I1||2 ≤
[

max
{

1, ||
k∏
j=i

||bj(τj)||
}]2

E
[ ∫ t2

0
||T (t2 − s)|| ||f(s, us + ys)||dsI[ξk,ξk+1)(t2)− I[ξk,ξk+1)(t1)

]2

≤ max
{

1, B2
}
T
[ ∫ t2

0
||T (t2 − s)||2 E||f(s, us + ys)||2ds

]
E
(
I[ξk,ξk+1)(t2)− I[ξk,ξk+1)(t1)

)
≤ max

{
1, B2

}
T C2

0

[ ∫ t2

0

mf (s)Wf (E||us + ys||2)

(t− s)2α
ds
]

E
(
I[ξk,ξk+1)(t2)− I[ξk,ξk+1)(t1)

)
≤ CC2

0T max
{

1, B2
}[∫ t2

0

mf (s)

(t− s)2α
ds
]
E
(
I[ξk,ξk+1)(t2)− I[ξk,ξk+1)(t1)

)
→ 0 as t2 → t1 (3.2)

E||I2||2 ≤
[ ∞∑
k=0

[ k∑
i=1

k∏
j=i

bj(τj)

∫ ξi

ξi−1

[T (t2 − s)− T (t1 − s)] f(s, us + ys)ds

+

∫ t1

ξk

[T (t2 − s)− T (t1 − s)] f(s, us + ys)ds

+

∫ t2

t1

T (t2 − s) f(s, us + ys)ds
]
I[ξk,ξk+1)(t1)

]2

≤ 2 max
{

1, B2
}
t1

∫ t1

0
||T (t2 − s)− T (t1 − s)||2 E||f(s, us + ys)||2ds

+2(t2 − t1)

∫ t2

t1

||T (t2 − s)||2 E||f(s, us + ys)||2ds

≤ 2 max
{

1, B2
}
T

∫ t1

0
||T (t2 − s)− T (t1 − s)||2 mf (s) Wf (E||f(s, us + ys)||2)ds

+2(t2 − t1)

∫ t2

t1

||T (t2 − s)||2 mf (s) Wf (E||f(s, us + ys)||2)ds

≤ 2 max
{

1, B2
}
T C

∫ t1

0
||T (t2 − s)− T (t1 − s)||2 mf (s)ds

+2(t2 − t1) C

∫ t2

t1

||T (t2 − s)||2 mf (s)ds

→ 0 as t2 → t1 (3.3)

From the equations (3.2) and (3.3), it follows that the right hand side of 3.1 tends to zero as t2 → t1.
Thus Γ maps B b1

2

(0, S(T )) into an equicontinuous family of functions.

Finally, from the Schauder’s fixed point theorem, Γ has a fixed point x = u+ y which is a mild solution
of the problem 2.1.
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Theorem 3.3. Let the hypothesis (H2) and (H3) hold. If the following inequality

C2
0 ||Lf,b1 ||Lq([0,T ]) max{1, B2} T

1
q′−2α+1

(1− 2q′α)
1
q′
< 1

is satisfied, then the system 2.1 has a unique mild solution on [−r, T ].

Proof 2. Let T < b1 <∞ and C > 0 such that ||f(t, ψ)|| ≤ C, ∀(t, ψ) ∈ [0, b1]×Bb1(φ, Ĉ).
Also, let

sup
s∈[0,T ]

||ys − φ||2 ≤
b21
4

and

2C2
0 max{1, B2}

[
b21 ||Lf,b1 ||Lq([0,T ])

T
1
q′−2α+1

(1− 2q′α)
1
q′

+ ||f(s, φ)||2 T 2(1−α)

1− 2α

]
≤ b21

4

Let Γ : B b1
2

(0, S(T )) → C([−r, T ],X) be the operator introduced as in the Theorem 3.2. Proceeding as

in the proof of the previous theorem, we can prove that Γ is well-defined.

Next, we have to prove that Γ is a contraction mapping.

Before that, for (s, u) ∈ [0, T ]×B b1
2

(0, S(T )),

||us + ys − φ||2 ≤ 2
[

sup
θ∈[0,s]

||u(θ)||2 + ||ys − φ||2
]

≤ 2
[b21

4
+
b21
4

]
≤ b21

which implies that us + ys ∈ Bb1(φ, Ĉ) and therefore ||f(s, us + ys)|| ≤ C.

Using this fact, for u ∈ B b1
2

(0, S(T )),

||Γu(t)||2 = ||
∞∑
k=0

[ k∑
i=1

k∏
j=i

bj(τj)

∫ ξi

ξi−1

T (t− s) f(s, us + ys)ds

+

∫ t

ξk

T (t− s) f(s, us + ys)ds
]
I[ξk,ξk+1)(t)||2

≤
[

max
i,k

{
1,

k∏
j=i

||bj(τj)||
}]2

(∫ t

0
||T (t− s)|| ||f(s, us + ys)||ds I[ξk,ξk+1)(t)

)2

≤ max
{

1, B2
}
t
(∫ t

0
||T (t− s)||2 ||f(s, us + ys)− f(s, φ) + f(s, φ)||2ds

)
E||Γu(t)||2 ≤ 2 max

{
1, B2

}
T C2

0

[ ∫ t

0

E||f(s, us + ys)− f(s, φ)||2

(t− s)2α
ds

+

∫ t

0

E||f(s, φ)||2

(t− s)2α
ds
]
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Taking supremum, we get

||Γu(t)||2 ≤ 2C2
0 max{1, B2}

[
b21 ||Lf,b1 ||Lq([0,T ])

T
1
q′−2α+1

(1− 2q′α)
1
q′

+ ||f(s, φ)||2 T 2(1−α)

1− 2α

]
≤ b21

4

which implies that Γu ∈ B b1
2

(0, S(T )) and ΓB b1
2

(0, S(T )) ⊂ B b1
2

(0, S(T )).

Moreover,

‖Γu(t)− Γv(t)‖2 ≤
[ ∞∑
k=0

[ k∑
i=1

k∏
j=i

||bj(τj)||
∫ ξi

ξi−1

||T (t− s)|| ||f(s, us + ys)− f(s, vs + ys)||ds

+

∫ t

ξk

||T (t− s)|| ||f(s, us + ys)ds− f(s, vs + ys)||ds
]
I[ξk,ξk+1)(t)

]2

E‖Γu(t)− Γv(t)‖2 ≤ max
{

1, B2
}
T

∫ t

0

C2
0

(t− s)2α
E||f(s, us + ys)− f(s, vs + ys)||2ds

≤ max
{

1, B2
}
T C2

0

∫ t

0

Lf,b1 E||us − vs||2

(t− s)2α
ds

Taking supremum over t,

‖Γu(t)− Γv(t)‖2 ≤ C2
0 ||Lf,b1 ||Lq([0,T ]) max{1, B2} T

1
q′−2α+1

(1− 2q′α)
1
q′
||u− v||C([0,T ],X)

It follows that Γ is contraction on B b1
2

(0, S(T )) and there exists a unique fixed point x of Γ which is defined

as x = u+ y and is a mild solution of 2.1.

This completes the proof.

4. Application

In this section, we apply our abstract results to random impulsive partial differential equation. To apply
our results, we need to introduce the required technical tools. Let U ⊂ Rn is a open bounded set with
smooth boundary ∂U , η ∈ (0, 1) and X = Cη(U ,Rn) is the space formed by all the η - Hlder continuous
functions from U into Rn endowed with the norm

||ξ||Cη(U ,Rn) = ||ξ||C(U ,Rn) + [|ξ|]Cη(U ,Rn)

where ||.||C(U ,Rn) is the sup-norm on U ,

[|ξ|]Cη(U ,Rn) = sup
x,y∈U ,x 6=y

|ξ(x)− ξ(y)|
|x− y|η

and |.| is the Euclidean norm in Rn.
On the space X, we consider the operator A : D(A) ⊂ X→ X given Au = ∆u with domain

D(A) =
{
u ∈ C2+η(U ,Rn) : u|∂U = 0

}
From[4], we know that A is an almost sectorial operator which verifies 1.2 with α = η

2 and A is not secto-
rial. In the remainder of this section, (T (t))t≥0 represents the analytic semigroup of growth α generated by A.
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Let Ω ⊂ X be a bounded domain with smooth boundary ∂Ω.
∂
∂tu(t, ξ) = ∆u(t, ξ) + a1u(x, t− r)u3(x, t), t 6= ξk, t ≥ 0,
u(t, ξk) = q(k)τku(t, ξ−k ) a.s. x ∈ Ω,
u(t, ξ) = Φ(t, ξ) a.s. ξ ∈ Ω, − r ≤ t ≤ 0,
u(t, ξ) = 0 a.s. ξ ∈ ∂Ω.

(4.1)

Let τk be a random variable defined in Dk ≡ (0, dk) for all k = 1, 2, ... where 0 < dk <∞. Furthermore,
assume that τi and τj be independent with each other as i 6= j for i, j = 1, 2, ... and

E
[

max
i,k

{
k∏
j=i
‖q(j)(τj)‖2

}]
<∞.

(H1) The function f(. , ψ) is strongly measurable on [0, T ] for all ψ ∈ Ĉ and f(t , .) ∈ C(Ĉ,X) for each
t ∈ [0, T ]. There exists a non-decreasing function W1f ∈ C(R+, (0,∞)) and m1f ∈ Lq([0, T ], R+) such
that

E||f(t, ψt)||2 ≤ m1f (t)W1f (E||ψ||2t ),∀ (t, ψ) ∈ [0, T ]× Ĉ

(H2) The function f is continuous and for all l > 0 with [0, l] × Bl(φ, Ĉ) ⊂ [0, T ] × Ĉ, there exists L1f,l ∈
Lq([0, T ], R+) such that

E||f(s, ψ1)− f(s, ψ2)||2 ≤ L1f,l(s) E||ψ1 − ψ2||2, ∀ (s, ψi) ∈ [0, l]×Bl(φ, Ĉ)

(H3) The condition max
i,k

{∏k
j=i ||bj(τj)||

}
is uniformly bounded if there is a constant B1 > 0 such that

max
i,k

{ k∏
j=i

||bj(τj)||
}
≤ B1,∀τj ∈ Dj , j = 1, 2, ...

If the inequality,

C C2
0 ||m1f ||Lq([0,T ]) max{1, B1

2} T
1
q′−2α+1

(1− 2q′α)
1
q′

≤ b21
4

holds, then it is easy to check that all the hypotheses of the Theorem 3.2are satisfied and therefore,
Theorem 3.2 guarantees the existence of mild solution of the partial differential equation 4.1.

Furthermore, if the following condition holds

C2
0 ||L1f,b1 ||Lq([0,T ]) max{1, B1

2} T
1
q′−2α+1

(1− 2q′α)
1
q′
< 1

then by Theorem 3.3 we know that the solution to 4.1 is unique.
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