Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 5 (2012), 345–349 Research Article

Journal of Nonlinear Science and Applications

Print: ISSN 2008-1898 Online: ISSN 2008-1901

Sequentially injective and complete acts over a semigroup

Gh. Moghaddasi^{a,*}

^aDepartment of Mathematics, Hakim Sabzevary University, Sabzevar, Iran.

Dedicated to George A Anastassiou on the occasion of his sixtieth birthday

Communicated by Professor G. Sadeghi

Abstract

In this paper using the notion of a sequentially dense monomorphism we consider sequential injectivity (s-injectivity) for acts over a semigroup S. We show that s-injectivity, s-absolutely retract, and sequential compactness are equivalent.

Keywords: sequential injective, completeness, absolute retract.

1. Introduction

One of the very useful notions in many branches of mathematics as well as in computer sciences is the notion of acts of a semigroup or a monoid on a set. Recall that a (right) *S*-act or *S*-system is a set *A* together with a function $\lambda : A \times S \to A$, called the *action* of *S* (or the *S*-action) on *A*, such that for $a \in A$ and $s, t \in S$ (denoting $\lambda(a, s)$ by as) a(st) = (as)t. If *S* is a monoid with identity *e*, we add the condition xe = x.

We call an S-act A separated if for each $a \neq b$ in A there exists $s \neq e \in S$ such that $as \neq bs$.

A morphism $f: X \to Y$ from an S-act A to an S-act B is called an S-map if, for each $a \in A$, $s \in S$, f(as) = f(a)s.

Since id_A and the composite of two S-maps are S-maps, we have the category Act-S of all S-acts and S-maps between them.

The class of S-acts is an equational class, and so the category **Act-S** is complete (has all products and equalizers) and cocomplete (has all coproducts and coequalizers). In fact, limits and colimits in this category

^{*}Corresponding author

Email address: moghaddasimath@yahoo.com (Gh. Moghaddasi)

are computed as in the category **Set** of sets and equipped with a natural action. Also, monomorphisms of this category are exactly one-one act maps.

An S-act B containing (an isomorphic copy of) an S-act A as a sub-act is called an *extension* of A.

The S-act A is said to be a *retract* of its extension B if there exists a homomorphism $f: B \to A$ such that $f \upharpoonright_A = id_A$:

in which case f is said to be a *retraction*.

The S-act A is called *absolute retract* if it is a retract of each of its extensions.

An S-act A is said to be *injective* if for every S-monomorphism $h: B \to C$ and every S-map $f: B \to A$ there exists an S-map $g: C \to A$ such that gh = f:

$$\begin{array}{ccccc} B & \stackrel{h}{\rightarrowtail} & C \\ f & \downarrow & \swarrow & g \\ A & & \end{array}$$

We have the following result from [3] or [1].

Theorem 1.1. The category Act-S has enough injectives, and for any S-act A the following conditions are equivalent:

(i) A is injective.

(ii) A is an absolute retract.

(iii) A has no proper essential extension.

2. Cauchy completeness

The notion of a Cauchy sequence is used in [7] and [6] for projection algebras. We generalize this notion to an arbitrary S-act to study s-injectivity.

To make the main notions and so the results about s-injectivity and s-completeness non trivial, from now on we take S to be a semigroup without identity. Of course one can always adjoin an identity e to Smaking it a monoid.

Definition 2.1. By a *Cauchy sequence* over an *S*-act *A* we mean a family $(a_s)_{s\in S}$ of elements of *A* with $a_st = a_{st}$ for all $s, t \in S$.

By a *limit* of a Cauchy sequence $(a_s)_{s \in S}$ over A in some extension B of A we mean an element $b \in B$ such that $bs = a_s$ for all $s \in S$.

Lemma 2.2. A sequence $(a_s)_{s \in S}$ over an S-act A has a limit in some extension B of A if and only if it is a Cauchy sequence.

Proof. Take b as a limit of $(a_s)_{s \in S}$. Then for $s, t \in S$, $bs = a_s$ implies $a_{st} = b(st) = (bs)t = a_st$.

Conversely, let $(a_s)_{s \in S}$ be a Cauchy sequence over A. Then $B = A \cup \{(a_s)_{s \in S}\}$ with the action $(a_s)_{s \in S}$. $t = a_t$ for $t \in S$ is an extension of A, and $b = (a_s)_{s \in S}$ is a limit of $(a_s)_{s \in S}$ in B.

Note that limits of a Cauchy sequences over A is not necessarily unique, unless A is separated. Denoting the set of all Cauchy sequences over A by $\mathcal{C}(A)$, we have

Theorem 2.3. For an S-act A, the set C(A) of all Cauchy sequences over A is an S-act with the action of S on it given by $(a_s)_{s\in S}$. $t = (a_{ts})_{s\in S}$, for $t \in S$. Also, it is separated if S is idempotent.

Proof. Take $t, t' \in S$, and a Cauchy sequence $(a_s)_{s \in S}$. Then we have

 $((a_s)_{s\in S}.t).t' = (a_{ts})_{s\in S}.t' = (a_{t(t's)})_{s\in S} = (a_{(tt')s})_{s\in S} = (a_s)_{s\in S}.(tt').$

To see that $\mathcal{C}(A)$ is separated, take Cauchy sequences $\gamma = (a_s)_{s \in S}$ and $\gamma' = (a'_s)_{s \in S}$ with $\gamma . t = \gamma' . t$ for all $t \in S$. This means that $a_{ts} = a'_{ts}$ for all $t, s \in S$, and in particular $a_s = a_{ss} = a'_{ss} = a'_s$ which means $\gamma = \gamma'$.

Definition 2.4. An S-act A is said to be Cauchy complete or sequentially complete or simply s-complete if any Cauchy sequence over A has a limit in A.

Theorem 2.5. If S is idempotent, then for each S-act A, C(A) is an s-complete S-act.

Proof. Take a Cauchy sequence $(\gamma_s)_{s \in S}$ over $\mathcal{C}(A)$ with $\gamma_s = (a_t^s)_{t \in S}$ for $s \in S$. Then since it is Cauchy, $\gamma_s t' = \gamma_{st'}$ and hence

$$a_{t't}^s = a_t^{st'}, \quad \forall s, t, t' \in S \quad (1)$$

On the other hand, since γ_s is a Cauchy sequence over A,

$$a_t^s t' = a_{tt'}^s \tag{2}$$

Now, the sequence $\gamma = (a_s^s)_{s \in S}$ is in $\mathcal{C}(A)$. Since using (2), repeatedly (1), and that S is idempotent, we get

$$a_s^s t = a_{st}^s = a_{stst}^s = a_{tst}^{ss} = a_{tst}^s = a_{st}^{st}.$$
 (3)

The sequence γ is a limit of $(\gamma_s)_{s\in S}$. This is because $\gamma \cdot s = (a_t^t)_{t\in S} \cdot s = (a_{st}^{st})_{t\in S}$ and using (1) and (3), the *t*th component of γ_s is $a_t^s = a_{st}^{ss} = a_{st}^{st} = a_{st}^{st}$.

Remark 2.6. For an S-act A and $a \in A$ the convergent Cauchy sequence $(as)_{s\in S}$ is denoted by $\lambda(a)$, and the set of all $\lambda(a)$ for $a \in A$ is denoted by $\lambda(A)$. It is clear that $\lambda(A)$ is a subact of $\mathcal{C}(A)$ and the assignment $\lambda : a \mapsto \lambda(a)$ is an S-map. Further, λ is one-one if and only if A is separated, and in this case $A \cong \lambda(A)$. Moreover, it is clear that A is s-complete if and only if $\mathcal{C}(A) = \lambda(A)$.

3. s-injectivity verses s-completeness

Here, as in [4], we define a closure operator C_s , and then discuss injectivity with respect to C_s -dense monomorphisms. Then, we show that the notions of s-injectivity, s-absolutely retract, and s-completeness coincide.

Definition 3.1. For an S-act B, and a subact A of B, by the s-closure of A in B we mean $C_s(A) = \{b \in B : bs \in A, \forall s \in S\}$.

We say that A is s-closed in B if $C_s(A) = A$, and A is s-dense in B if $C_s(A) = B$.

An S-map $f : A \to B$ is said to be s-dense (s-closed) if f(A) is an s-dense (C-closed) subact of B.

Note that, Some properties of s-closure are as follows: (Extensive) $A \leq C_s(A)$, (Monotonicity) $A_1 \subseteq A_2$ implies $C_s(A_1) \subseteq C_s(A_2)$, (Continuity) $f(C_s(A)) \leq C_s(f(A))$, for all S-maps f from B. Also, it has the following property if S is idempotent: (idempotency) $C_s(C_s(A)) = C_s(A)$.

Lemma 3.2. If S is idempotent, then the composition of s-dense act maps is s-dense. Moreover, each S-map $f: A \to B$ has an s-dense-s-closed factorization.

Proof. Consider the following factorization: $A \to C_s(f(A)) \hookrightarrow B$.

Definition 3.3. An S-act A is called:

- (1) Sequentially injective or s-injective if it is injective with respect to s-dense monomorphisms.
- (2) Sequentially absolute retract or s-absolute retract if it is a retract of each of its s-dense extensions.

Remark 3.4. If A is an injective S-act then it is s-injective, but the converse is not necessarily true. For example, let S be a group then it is s-injective as an S-act (see the following theorem) but it is not injective, since it does not have a zero element.

Lemma 3.5. (1) A retract of an s-injective act is s-injective. (2) The product of s-injective acts is s-injective.

Proof. (1) Let the S-act A be a retract of the S-act D with retraction $l: D \to A$, and D be s-injective. Let $h: B \to C$ be an s-dense monomorphism, and $f: B \to A$ be an S-map. Then considering the diagram

since D is s-injective we get an S-map $g: C \to D$ such that gh = if, and so $lg: C \to A$ satisfies (lg)h = f.

(2) Let $\{A_i : i \in I\}$ be a family of s-injective acts, $h : B \to C$ be an s-dense monomorphism, and $f : B \to \prod A_i$ be an S-map. Consider the diagram

$$\begin{array}{cccc} B & \stackrel{h}{\rightarrowtail} & C \\ f & \downarrow & \\ \prod A_i & \stackrel{p_i}{\rightarrow} & A_i \end{array}$$

for $i \in I$, where p_i is the ith projection map. Since each A_i is s-injective there exist $g_i : C \to A_i$ for $i \in I$ such that $g_i h = p_i f$. Then the map $g : C \to \prod A_i$ which exists by the universal property of products, that is, $p_i g = g_i$ for each $i \in I$, satisfies gh = f.

Proposition 3.6. The following are equivalent:

- (i) All right S-acts are s-injective.
- (ii) S as an S-act is s-injective.
- (iii) The identity map on S belongs to $\lambda(S)$.
- (iv) S has a left identity element.
- (v) S is generated by an idempotent element.

Proof. (i) \Rightarrow (ii) \Rightarrow (iii), and (iv) \Rightarrow (v) are clear. To get (iii) \Rightarrow (iv), assuming $id_S = \lambda_e$, e would be a left identity of S. Finally, to see (v) \Rightarrow (i), taking $e \in S$ idempotent and $eS^1 = S$, for any Cauchy sequence $(a_s)_{s\in S}$ over an S-act A, we have $(a_s)_{s\in S} = \lambda(a_e)$.

It is very interesting that the notion of s-completeness defined in the last section is the same as sinjectivity.

Theorem 3.7. For any S-act A, the following are equivalent:

- (i) A is s-complete.
- (ii) A is s-injective.
- (iii) A is s-absolute retract.

Proof. (i) \Rightarrow (ii) Let $f: B \to C$ be an s-dense monomorphism, taking it as an inclusion, and let $g: B \to A$ be an S-map. Then, since f is s-dense, for every $c \in C$, $cs = b_s$ for some $b_s \in B$. Since for every $t \in S$ we have $g(b_s)t = g(cst), (g(cs))_{s \in S}$ is a Cauchy sequence over A. But A is s-complete and therefore there

exists $a_c \in A$ such that $a_c s = g(cs)$. Define $h : C \to A$ with $h \upharpoonright_B = g$ and $h(c) = a_c$ for $c \in C - B$. To see that h is an S-map, let $c \in C - B$, $t \in S$. Then $h(ct) = g(ct) = a_c t = h(c)t$.

 $(ii) \Rightarrow (iii)$ is clear.

(iii) \Rightarrow (i) Let A be an s-absolute retract S-act and $(a_s)_{s\in S}$ be a Cauchy sequence over A. Consider the S-act $B = A \cup \{b\}$ with $bs = a_s, \forall s \in S$. Then the inclusion map $f : A \to B$ is an s-dense monomorphism. So there exists an S-map $g : B \to A$ such that $g \upharpoonright_A = f$. Now g(b) is a limit point of the Cauchy sequence $(a_s)_{s\in S}$.

Now, applying the above theorem and Remark 2.6, we have

Corollary 3.8. An S-act A is s-injective if and only if every Cauchy sequence is of the form $\lambda(a)$ for some $a \in A$.

To close the paper we see how close is s-injectivity to ideal injectivity. Recall that

Definition 3.9. An S-act A is said to be

(i) *ideal injective*, if every S-map $f: I \to A$ from a right ideal I of S can be represented as $\lambda_a: s \mapsto as$, for some $a \in A$.

(ii) weakly injective, if every S-map $f: I \to A$ from a right ideal I of S can be extended to an S-map $\overline{f}: S \to A$.

Theorem 3.10. An S-act A is ideal injective if and only if it is s-injective and weakly injective.

Proof. It follows using Corollary 3.8 that ideal injectivity implies s-injectivity. This is because, every Cauchy sequence $(a_s)_{s\in S}$ represents an S-map $f: S \to A$ with $s \mapsto a_s$. Also, ideal injectivity gives weak injectivity, because any S-map of the form $\lambda_a: I \to A$ can be clearly extended to S.

Conversely, let $f : I \to A$ be an S-map. Then f can be extended to S assuming that A is weakly injective. Now, $(f(s))_{s\in S}$ is a Cauchy sequence. Assuming that A is s-injective, it is also s-complete by Theorem 3.7. So the above sequence is of the form $\lambda(a)$, for some $a \in A$. This means that $f = \lambda_a$.

References

- B. Banaschewski, Injectivity and essential extensions in equational classes of algebras. Queen's Papers in Pure and Applied Mathematics 25 (1970), 131-147.
- [2] P. Berthiaume, The injective envelope of S-Sets, Canad. Math. Bull. 10 (2) (1967), 261-273.
- [3] M.M. Ebrahimi, Algebra in a topos of sheaves: injectivity in quasi-equational classes, J. Pure and Appl. Alg. 26 (1982), 269-280. 1
- [4] M.M. Ebrahimi, On ideal closure operators of M-sets, to appear in Southeast Asian Bulletin of mathematics. 3
- [5] M.M. Ebrahimi, M. Mahmoudi, and Gh. Moghaddasi Angizan, Injective hulls of acts over left zero semigroups, Semigroup Forum, 75, (2007), 212-220.
- [6] M.M. Ebrahimi and M. Mahmoudi, Baer criterion and injectivity of projection algebras, to appear in Semigroup Forum. 2
- [7] E. Giuli, On m-separated projection spaces, Applied Categorical Structures, 2 (1994), 91-99. 2
- [8] M. Kilp, U. Knauer and A. Mikhalev. Monoids, acts and categories, Walter de Gruyter, Berlin, New York, 2000.