Jensen type inequalities for twice differentiable functions

Abdallah El Frissi, Benharrat Belaïdi*, Zinelaâbidine Lareuch
Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Mostaganem (UMAB), B. P. 227 Mostaganem-(Algeria)

Dedicated to George A Anastassiou on the occasion of his sixtieth birthday
Communicated by Professor C. Park

Abstract

In this paper, we give some Jensen-type inequalities for $\varphi: I \rightarrow \mathbb{R}, I=[\alpha, \beta] \subset \mathbb{R}$, where φ is a continuous function on I, twice differentiable on $\stackrel{I}{I}=(\alpha, \beta)$ and there exists $m=\inf _{x \in I} \varphi^{\prime \prime}(x)$ or $M=\sup _{x \in \dot{I}} \varphi^{\prime \prime}(x)$. Furthermore, if $\varphi^{\prime \prime}$ is bounded on \dot{I}, then we give an estimate, from below and from above of Jensen inequalities.©2012 NGA. All rights reserved.

Keywords: Jensen inequality, Convex functions, Twice differentiable functions.
2010 MSC: 26D15.

1. Introduction and main results

Throughout this note, we write I and \check{I} for the intervals $[\alpha, \beta]$ and (α, β) respectively $-\infty \leq \alpha<\beta \leq+\infty$. A function φ is said to be convex on I if $\lambda \varphi(x)+(1-\lambda) \varphi(y) \geq \varphi(\lambda x+(1-\lambda) y)$ for all $x, y \in I$ and $0 \leq \lambda \leq 1$. Conversely, if the inequality always holds in the opposite direction, the function is said to be concave on the interval. A function φ that is continuous function on I and twice differentiable on I is convex on I if $\varphi^{\prime \prime}(x) \geq 0$ for all $x \in I$ (concave if the inequality is flipped).

The famous inequality of Jensen states that:

[^0]Theorem 1.1. ([1], [3]) Let φ be a convex function on the interval $I \subset \mathbb{R}, x=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in I^{n}$ $(n \geq 2)$, let $p_{i} \geq 0, i=1,2, \cdots, n$ and $P_{n}=\sum_{i=1}^{n} p_{i}$. Then

$$
\begin{equation*}
\varphi\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \leq \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} \varphi\left(x_{i}\right) \tag{1.1}
\end{equation*}
$$

If φ is strictly convex, then inequality in (1.1) is strict except when $x_{1}=x_{2}=\cdots=x_{n}$. If φ is a concave function, then inequality in (1.1) is reverse.

Theorem 1.2. [3] Let φ be a convex function on $I \subset \mathbb{R}$, and let $f:[0,1] \longrightarrow I$ be a continuous function on $[0,1]$. Then

$$
\begin{equation*}
\varphi\left(\int_{0}^{1} f(x) d x\right) \leq \int_{0}^{1} \varphi(f(x)) d x \tag{1.2}
\end{equation*}
$$

If φ is strictly convex, then inequality in (1.2) is strict. If φ is a concave function, then inequality in (1.2) is reverse.

In [2], Malamud gave some complements to the Jensen and Chebyshev inequalities and in [4, Saluja gave some necessary and sufficient conditions for three-step iterative sequence with errors for asymptotically quasi-nonexpansive type mapping converging to a fixed point in convex metric spaces. In this paper, we give some inequalities of the above type for $\varphi: I \rightarrow \mathbb{R}$ such that φ is a continuous on I, twice differentiable on $\stackrel{\circ}{I}$ and there exists $m=\inf _{x \in I} \varphi^{\prime \prime}(x)$ or $M=\sup _{x \in \dot{I}} \varphi^{\prime \prime}(x)$. We obtain the following results:
Theorem 1.3. Let $\varphi: I \longrightarrow \mathbb{R}$ be a continuous function on I, twice differentiable on $\stackrel{\circ}{I}, x=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in$ $I^{n}(n \geq 2)$, let $p_{i} \geq 0, i=1,2, \cdots, n$ and $P_{n}=\sum_{i=1}^{n} p_{i}$.
(i) If there exists $m=\inf _{x \in \dot{I}} \varphi^{\prime \prime}(x)$, then

$$
\begin{align*}
& \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} \varphi\left(x_{i}\right)-\varphi\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \\
\geq & \frac{m}{2}\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}^{2}-\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right)^{2}\right) . \tag{1.3}
\end{align*}
$$

(ii) If there exists $M=\sup _{x \in I} \varphi^{\prime \prime}(x)$, then

$$
\begin{align*}
& \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} \varphi\left(x_{i}\right)-\varphi\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \\
\leq & \frac{M}{2}\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}^{2}-\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right)^{2}\right) . \tag{1.4}
\end{align*}
$$

Equality in (1.3) and (1.4) hold if $x_{1}=x_{2}=\cdots=x_{n}$ or if $\varphi(x)=\alpha x^{2}+\beta x+\gamma, \alpha, \beta, \gamma \in \mathbb{R}$.
Theorem 1.4. Let $\varphi: I \longrightarrow \mathbb{R}$ be a continuous function on I, twice differentiable on $\stackrel{\circ}{I}$. Suppose that $f:[a, b] \longrightarrow I$ and $p:[a, b] \longrightarrow \mathbb{R}^{+}$are continuous functions on $[a, b]$.
(i) If there exists $m=\inf _{x \in I} \varphi^{\prime \prime}(x)$, then

$$
\frac{\int_{a}^{b} p(x) \varphi(f(x)) d x}{\int_{a}^{b} p(x) d x}-\varphi\left(\frac{\int_{a}^{b} p(x) f(x) d x}{\int_{a}^{b} p(x) d x}\right)
$$

$$
\begin{equation*}
\geq \frac{m}{2}\left(\frac{\int_{a}^{b} p(x)(f(x))^{2} d x}{\int_{a}^{b} p(x) d x}-\left(\frac{\int_{a}^{b} p(x) f(x) d x}{\int_{a}^{b} p(x) d x}\right)^{2}\right) \tag{1.5}
\end{equation*}
$$

(ii) If there exists $M=\sup _{x \in I} \varphi^{\prime \prime}(x)$, then

$$
\begin{align*}
& \frac{\int_{a}^{b} p(x) \varphi(f(x)) d x}{\int_{a}^{b} p(x) d x}-\varphi\left(\frac{\int_{a}^{b} p(x) f(x) d x}{\int_{a}^{b} p(x) d x}\right) \\
\leq & \frac{M}{2}\left(\frac{\int_{a}^{b} p(x)(f(x))^{2} d x}{\int_{a}^{b} p(x) d x}-\left(\frac{\int_{a}^{b} p(x) f(x) d x}{\int_{a}^{b} p(x) d x}\right)^{2}\right) . \tag{1.6}
\end{align*}
$$

Equality in (1.5) and (1.6) hold if $\varphi(x)=\alpha x^{2}+\beta x+\gamma, \alpha, \beta, \gamma \in \mathbb{R}$.
Corollary 1.5. Let $\varphi: I \longrightarrow \mathbb{R}$ be a continuous function on I, twice differentiable on $\stackrel{\circ}{I}$ and let $f:[a, b] \longrightarrow$ I be a continuous function on $[a, b]$.
(i) If there exists $m=\inf _{x \in \dot{I}} \varphi^{\prime \prime}(x)$, then

$$
\begin{align*}
& \frac{1}{b-a} \int_{a}^{b} \varphi(f(x)) d x-\varphi\left(\frac{1}{b-a} \int_{a}^{b} f(x) d x\right) \\
\geq & \frac{m}{2}\left(\frac{1}{b-a} \int_{a}^{b}(f(x))^{2} d x-\left(\frac{1}{b-a} \int_{a}^{b} f(x) d x\right)^{2}\right) . \tag{1.7}
\end{align*}
$$

(ii) If there exists $M=\sup _{x \in I} \varphi^{\prime \prime}(x)$, then

$$
\begin{align*}
& \frac{1}{b-a} \int_{a}^{b} \varphi(f(x)) d x-\varphi\left(\frac{1}{b-a} \int_{a}^{b} f(x) d x\right) \\
\leq & \frac{M}{2}\left(\frac{1}{b-a} \int_{a}^{b}(f(x))^{2} d x-\left(\frac{1}{b-a} \int_{a}^{b} f(x) d x\right)^{2}\right) . \tag{1.8}
\end{align*}
$$

Equality in (1.7) and (1.8) hold if $\varphi(x)=\alpha x^{2}+\beta x+\gamma, \alpha, \beta, \gamma \in \mathbb{R}$.
Corollary 1.6. Let $\varphi: I \longrightarrow \mathbb{R}$ be a continuous function on I, twice differentiable on $\dot{I}, x=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in$ $I^{n}(n \geq 2)$, let $p_{i} \geq 0, i=1,2, \cdots, n$ and $P_{n}=\sum_{i=1}^{n} p_{i}$. If there exist $m=\inf _{x \in \dot{I}} \varphi^{\prime \prime}(x)$ and $M=\sup _{x \in \dot{I}} \varphi^{\prime \prime}(x)$, then we have

$$
\begin{align*}
& \frac{m}{2}\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}^{2}-\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right)^{2}\right) \\
\leq & \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} \varphi\left(x_{i}\right)-\varphi\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \\
\leq & \frac{M}{2}\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}^{2}-\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right)^{2}\right) . \tag{1.9}
\end{align*}
$$

Equality in (1.9) occurs, if $\varphi(x)=\alpha x^{2}+\beta x+\gamma, \alpha, \beta, \gamma \in \mathbb{R}$.

Corollary 1.7. Let $\varphi: I \longrightarrow \mathbb{R}$ be a continuous function on I, twice differentiable on $\stackrel{\circ}{I}$, and let $f:[0,1] \longrightarrow$ I be a continuous function on $[0,1]$. If there exist $m=\inf _{x \in \dot{I}} \varphi^{\prime \prime}(x)$ and $M=\sup _{x \in I} \varphi^{\prime \prime}(x)$, then we have

$$
\begin{gather*}
\frac{m}{2}\left(\int_{0}^{1}(f(x))^{2} d x-\left(\int_{0}^{1} f(x) d x\right)^{2}\right) \\
\leq \int_{0}^{1} \varphi(f(x)) d x-\varphi\left(\int_{0}^{1} f(x) d x\right) \\
\leq \frac{M}{2}\left(\int_{0}^{1}(f(x))^{2} d x-\left(\int_{0}^{1} f(x) d x\right)^{2}\right) \tag{1.10}
\end{gather*}
$$

Equality in 1.10) holds if $\varphi(x)=\alpha x^{2}+\beta x+\gamma \quad \alpha, \beta, \gamma \in \mathbb{R}$.
Corollary 1.8. Let $\varphi: I \longrightarrow \mathbb{R}$ be a convex function on I, twice differentiable on $\stackrel{\circ}{I}$, and let $f:[a, b] \longrightarrow I$ be a continuous function on $[a, b]$. If there exists $m=\inf _{x \in I} \varphi^{\prime \prime}(x)$, then

$$
\begin{gather*}
\frac{1}{b-a} \int_{a}^{b} \varphi(f(x)) d x-\varphi\left(\frac{1}{b-a} \int_{a}^{b} f(x) d x\right) \\
\geq \frac{m}{2}\left(\frac{1}{b-a} \int_{a}^{b}(f(x))^{2} d x-\left(\frac{1}{b-a} \int_{a}^{b} f(x) d x\right)^{2}\right) \geq 0 \tag{1.11}
\end{gather*}
$$

and

$$
\begin{gather*}
\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} \varphi\left(x_{i}\right)-\varphi\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \\
\geq \frac{m}{2}\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}^{2}-\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right)^{2}\right) \geq 0 \tag{1.12}
\end{gather*}
$$

Corollary 1.9. Let $\varphi: I \longrightarrow \mathbb{R}$ be a concave function on I, twice differentiable on $\stackrel{\circ}{I}$, and let $f:[a, b] \longrightarrow I$ be a continuous function on $[a, b]$. If there exists $M=\sup _{x \in \dot{I}} \varphi^{\prime \prime}(x)$, then

$$
\begin{align*}
& \frac{1}{b-a} \int_{a}^{b} \varphi(f(x)) d x-\varphi\left(\frac{1}{b-a} \int_{a}^{b} f(x) d x\right) \\
\leq & \frac{M}{2}\left(\frac{1}{b-a} \int_{a}^{b}(f(x))^{2} d x-\left(\frac{1}{b-a} \int_{a}^{b} f(x) d x\right)^{2}\right) \leq 0 \tag{1.13}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} \varphi\left(x_{i}\right)-\varphi\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \\
\leq & \frac{M}{2}\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}^{2}-\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right)^{2}\right) \leq 0 . \tag{1.14}
\end{align*}
$$

Remark 1.10. In the above if $\varphi \in C^{2}([\alpha, \beta])$, then we can replace inf and sup by min and max respectively.

2. Lemma

Our proofs depend mainly upon the following lemma.
Lemma 2.1. Let φ be a convex function on $I \subset \mathbb{R}$ and differentiable on $\stackrel{\circ}{I}$. Suppose that $f:[a, b] \longrightarrow I$ and $p:[a, b] \longrightarrow \mathbb{R}^{+}$are continuous functions on $[a, b]$. Then

$$
\begin{equation*}
\varphi\left(\frac{\int_{a}^{b} p(x) f(x) d x}{\int_{a}^{b} p(x) d x}\right) \leq \frac{\int_{a}^{b} p(x) \varphi(f(x)) d x}{\int_{a}^{b} p(x) d x} \tag{2.1}
\end{equation*}
$$

If φ is strictly convex, then inequality in (2.1) is strict. If φ is a concave function, then inequality in (2.1) is reverse.

Proof. Suppose that φ is a convex function on $I \subset \mathbb{R}$ and differentiable on $\stackrel{\circ}{I}$. Then for each $x, y \in \stackrel{\circ}{I}$, we have

$$
\begin{equation*}
\varphi(x)-\varphi(y) \geq(x-y) \varphi^{\prime}(y) \tag{2.2}
\end{equation*}
$$

Replace x by $f(x)$ and set $y=\frac{\int_{a}^{b} p(x) f(x) d x}{\int_{a}^{b} p(x) d x}$ in 2.2 , we obtain

$$
\begin{gather*}
\varphi(f(x))-\varphi\left(\frac{\int_{a}^{b} p(x) f(x) d x}{\int_{a}^{b} p(x) d x}\right) \\
\geq\left(f(x)-\frac{\int_{a}^{b} p(x) f(x) d x}{\int_{a}^{b} p(x) d x}\right) \varphi^{\prime}\left(\frac{\int_{a}^{b} p(x) f(x) d x}{\int_{a}^{b} p(x) d x}\right) \tag{2.3}
\end{gather*}
$$

Multiplying both sides of inequality 2.3 by $p(x)$ we obtain

$$
\begin{gather*}
p(x) \varphi(f(x))-p(x) \varphi\left(\frac{\int_{a}^{b} p(x) f(x) d x}{\int_{a}^{b} p(x) d x}\right) \\
\geq\left(p(x) f(x)-p(x) \frac{\int_{a}^{b} p(x) f(x) d x}{\int_{a}^{b} p(x) d x}\right) \varphi^{\prime}\left(\frac{\int_{a}^{b} p(x) f(x) d x}{\int_{a}^{b} p(x) d x}\right) \tag{2.4}
\end{gather*}
$$

By integration in (2.4) we obtain (2.1).

3. Proof of the Theorems

Proof of Theorem 1.3. Suppose that $\varphi: I \rightarrow \mathbb{R}$ is a continuous function on I and twice differentiable on $\stackrel{\circ}{I}$. Set $g(x)=\varphi(x)-\frac{m}{2} x^{2}$. Differentiating twice times both sides of g we get $g^{\prime \prime}(x)=\varphi^{\prime \prime}(x)-m \geq 0$. Then g is a convex function on I. By formula (1.1), we have

$$
\begin{equation*}
g\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \leq \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} g\left(x_{i}\right) \tag{3.1}
\end{equation*}
$$

which implies that

$$
\begin{gather*}
\varphi\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right)-\frac{m}{2}\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right)^{2} \\
\leq \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} \varphi\left(x_{i}\right)-\frac{m}{2} \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}^{2} \tag{3.2}
\end{gather*}
$$

Then, by (3.2) we can write

$$
\begin{align*}
& \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} \varphi\left(x_{i}\right)-\varphi\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \\
\geq & \frac{m}{2}\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}^{2}-\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right)^{2}\right) . \tag{3.3}
\end{align*}
$$

If we put $g(x)=-\varphi(x)+\frac{M}{2} x^{2}$, then by differentiating both sides of g we get $g^{\prime \prime}(x)=-\varphi^{\prime \prime}(x)+M \geq 0$. Hence g is a convex function on I and by similar proof as above, we obtain

$$
\begin{align*}
& \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} \varphi\left(x_{i}\right)-\varphi\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \\
\leq & \frac{M}{2}\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}^{2}-\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right)^{2}\right) . \tag{3.4}
\end{align*}
$$

Proof of Theorem 1.4. Suppose that $\varphi: I \rightarrow \mathbb{R}$ is a continuous function on I and twice differentiable on $\stackrel{\circ}{I}$. Set $g(x)=\varphi(x)-\frac{m}{2} x^{2}$. Differentiating both sides of g we get $g^{\prime \prime}(x)=\varphi^{\prime \prime}(x)-m \geq 0$. Hence g is a convex function on I and by formula (2.1) we have

$$
\begin{equation*}
g\left(\frac{\int_{a}^{b} p(x) f(x) d x}{\int_{a}^{b} p(x) d x}\right) \leq \frac{\int_{a}^{b} p(x) g(f(x)) d x}{\int_{a}^{b} p(x) d x} \tag{3.5}
\end{equation*}
$$

which implies that

$$
\begin{align*}
& \varphi\left(\frac{\int_{a}^{b} p(x) f(x) d x}{\int_{a}^{b} p(x) d x}\right)-\frac{m}{2}\left(\frac{\int_{a}^{b} p(x) f(x) d x}{\int_{a}^{b} p(x) d x}\right)^{2} \\
& \leq \frac{\int_{a}^{b} p(x) \varphi(f(x)) d x}{\int_{a}^{b} p(x) d x}-\frac{m}{2} \frac{\int_{a}^{b} p(x)(f(x))^{2} d x}{\int_{a}^{b} p(x) d x} \tag{3.6}
\end{align*}
$$

Then by (3.6), we can write

$$
\begin{gather*}
\frac{\int_{a}^{b} p(x) \varphi(f(x)) d x}{\int_{a}^{b} p(x) d x}-\varphi\left(\frac{\int_{a}^{b} p(x) f(x) d x}{\int_{a}^{b} p(x) d x}\right) \\
\geq \frac{m}{2}\left(\frac{\int_{a}^{b} p(x)(f(x))^{2} d x}{\int_{a}^{b} p(x) d x}-\left(\frac{\int_{a}^{b} p(x) f(x) d x}{\int_{a}^{b} p(x) d x}\right)^{2}\right) \tag{3.7}
\end{gather*}
$$

If we put $g(x)=\varphi(x)-\frac{M}{2} x^{2}$, then by differentiating both sides of g, we get $g^{\prime \prime}(x)=\varphi^{\prime \prime}(x)-M \leq 0$. Thus, g is a concave function on I and by a similar proof as above, we obtain

$$
\begin{align*}
& \frac{\int_{a}^{b} p(x) \varphi(f(x)) d x}{\int_{a}^{b} p(x) d x}-\varphi\left(\frac{\int_{a}^{b} p(x) f(x) d x}{\int_{a}^{b} p(x) d x}\right) \\
\leq & \frac{M}{2}\left(\frac{\int_{a}^{b} p(x)(f(x))^{2} d x}{\int_{a}^{b} p(x) d x}-\left(\frac{\int_{a}^{b} p(x) f(x) d x}{\int_{a}^{b} p(x) d x}\right)^{2}\right) \tag{3.8}
\end{align*}
$$

References

[1] I. Budimir, S. S. Dragomir and J. Pečarić, Further reverse results for Jensen's discrete inequality and applications in information theory, J. Inequal. Pure Appl. Math. 2 (2001), no. 1, Article 5, 1-14. 1.1
[2] S. M. Malamud, Some complements to the Jensen and Chebyshev inequalities and a problem of W. Walter, Proc. Amer. Math. Soc. 129 (2001), no. 9, 2671-2678. 1
[3] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and new inequalities in analysis. Mathematics and its Applications (East European Series), 61. Kluwer Academic Publishers Group, Dordrecht, 1993. $1.1,1.2$
[4] G. S. Saluja, Convergence of fixed point of asymptoticaly quasi-nonexpansive type mappings in convex metric spaces, J. Nonlinear Sci. Appl. 1 (2008), no. 3, 132-144. 1

[^0]: *Corresponding author
 Email addresses: elfarissi.abdallah@yahoo.fr (Abdallah El Frissi), belaidi@univ-mosta.dz (Benharrat Belaïdi), z.latreuch@gmail.com (Zinelaâbidine Lareuch)

