Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 5 (2012), 403–411 Research Article

Journal of Nonlinear Science and Applications

Weak and strong convergence of an explicit iteration process for an asymptotically quasi-i-nonexpansive mapping in Banach spaces

Yunus Purtas^a, Hukmi Kiziltunc^{b,*}

Print: ISSN 2008-1898 Online: ISSN 2008-1901

^a Banking and Insurance Department, Ahmetli Vocational Higher School, Celal Bayar University, Manisa, Turkey. ^bDepartment of Mathematics, Faculty of Science, Ataturk University, Erzurum, Turkey.

Dedicated to George A Anastassiou on the occasion of his sixtieth birthday

Communicated by Professor D. Turkoglu

Abstract

In this paper, we prove the weak and strong convergence of an explicit iterative process to a common fixed point of an asymptotically quasi-I-nonexpansive mapping T and an asymptotically quasi-nonexpansive mapping I, defined on a nonempty closed convex subset of a Banach space.

Keywords: Asymptotically quasi-I-nonexpansive self-mappings, explicit iterations, common fixed point, uniformly convex Banach space. 2010 MSC: Primary 47H09; Secondary 47H10.

1. Introduction

Let K be a nonempty subset of a real normed linear space X and let $T: K \to K$ be a mapping. Denote by F(T) the set of fixed points of T, that is, $F(T) = \{x \in K : Tx = x\}$ and we denote by D(T) the domain of a mapping T. Throughout this paper, we assume that X is a real Banach space and $F(T) \neq \emptyset$. Now, we recall some well-known concepts and results.

Definition 1.1. A mapping $T: K \to K$ is said to be

1. nonexpansive, if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in K$;

*Corresponding author

Email addresses: yunus.purtas@cbu.edu.tr (Yunus Purtas), hukmu@atauni.edu.tr (Hukmi Kiziltunc)

- 2. asymptotically nonexpansive, if there exists a sequence $\{\lambda_n\} \subset [1,\infty)$ with $\lim_{n\to\infty} \lambda_n = 1$ such that $\|T^n x T^n y\| \leq \lambda_n \|x y\|$ for all $x, y \in K$ and $n \in N$;
- 3. quasi-nonexpansive, if $||Tx p|| \le ||x p||$ for all $x \in K$, $p \in F(T)$;
- 4. asymptotically quasi-nonexpansive, if there exists a sequence $\{\mu_n\} \subset [1,\infty)$ with $\lim_{n\to\infty} \mu_n = 1$ such that $||T^n x p|| \le \mu_n ||x p||$ for all $x \in K$, $p \in F(T)$ and $n \in N$.

The first nonlinear ergodic theorem was proved by Baillon [1] for general nonexpansive mappings in Hilbert space H: if K is a closed and convex subset of H and T has a fixed point, then every $x \in K$, $\{T^n x\}$ is weakly almost convergent, as $n \to \infty$, to a fixed point of T. It was also shown by Pazy [2] that if H is a real Hilbert space and $\left(\frac{1}{n}\right) \sum_{i=0}^{n-1} T^i x$ converges weakly, as $n \to \infty$, to $y \in K$, then $y \in F(T)$.

In [3], [4] Browder studied the iterative construction for fixed points of nonexpansive mappings on closed and convex subsets of a Hilbert space. The concept of a quasi-nonexpansive mapping was initiated by Tricomi in 1941 for real functions. Kiziltunc et al. [5] studied common fixed points of two nonself nonexpansive mappings in Banach Spaces. Khan [8] presented a two-step iterative process for two asymptotically quasi-nonexpansive mappings. Fukhar-ud-din and Khan [9] studied convergence of iterates with errors of asymptotically quasi-nonexpansive mappings and applications. Diaz and Metcalf [7] and Dotson [10] studied quasi-nonexpansive mappings in Banach spaces. Subsequently, the convergence of Ishikawa iterates of quasi-nonexpansive mappings in Banach spaces was discussed by Ghosh and Debnath [11]. The iterative approximation problems for nonexpansive mapping, were studied extensively by Goebel and Kirk [12], Liu [13], Wittmann [14], Reich [15], Gornicki [16], Schu [17], Shioji and Takahashi [18], and Tan and Xu [19] in the settings of Hilbert spaces and uniformly convex Banach spaces.

There are many concepts which generalize a notion of nonexpansive mapping. One of such concepts is I-nonexpansivity of a mapping T [20]. Let us recall some notions.

Definition 1.2. Let $T : K \to K$, $I : K \to K$ be two mappings of nonempty subset K of a real normed linear space X. Then T is said to be

- 1. I-nonexpansive, if $||Tx Ty|| \le ||Ix Iy||$ for all $x, y \in K$;
- 2. asymptotically I-nonexpansive, if there exists a sequence $\{\lambda_n\} \subset [1,\infty)$ with $\lim_{n\to\infty} \lambda_n = 1$ such that $\|T^n x T^n y\| \leq \lambda_n \|I^n x I^n y\|$ for all $x, y \in K$ and $n \geq 1$;
- 3. quasi I-nonexpansive, if $||Tx p|| \le ||Ix p||$ for all $x \in K$, $p \in F(T) \cap F(I)$;
- 4. asymptotically quasi I-nonexpansive, if there exists a sequence $\{\mu_n\} \subset [1,\infty)$ with $\lim_{n\to\infty} \mu_n = 1$ such that $||T^n x - p|| \le \mu_n ||I^n x - p||$ for all $x \in K$, $p \in F(T) \cap F(I)$ and $n \ge 1$.

Remark 1.3. If $F(T) \cap F(I) \neq \emptyset$ then an asymptotically *I*-nonexpansive mapping is asymptotically quasi *I*-nonexpansive.

Best approximation properties of *I*-nonexpansive mappings were investigated in [20]. In [21] strong convergence of Mann iterations of *I*-nonexpansive mapping has been proved. In [22] the weak and strong convergence of implicit iteration process to a common fixed point of a finite family of *I*-asymptotically nonexpansive mappings were proved. In [23] the weak convergence theorems of three-step iterative scheme for an *I*-quasi-nonexpansive mappings in a Banach space has been studied. In [24] a weakly convergence theorem for *I*-asymptotically quasi-nonexpansive mapping defined in Hilbert space was proved. Mukhamedov and Saburov [27] studied weak and strong convergence of an implicit iteration process for an asymptotically quasi-*I*-nonexpansive mapping in Banach space. In [28] Mukhamedov and Saburov studied strong convergence of an explicit iteration process for a totally asymptotically *I*-nonexpansive mapping in Banach spaces. This iteration scheme is defined as follows.

Let K be a nonemty closed convex subset of a real Banach space X. Consider $T : K \to K$ an asymptotically quasi *I*-nonexpansive mapping, where $I : K \to K$ an asymptotically quasi-nonexpansive mapping. Then for two given sequences $\{\alpha_n\}, \{\beta_n\}$ in [0, 1] we shall consider the following iteration scheme:

$$\begin{cases} x_0 \in K, \\ x_{n+1} = (1 - \alpha_n) x_n + \alpha_n T^n y_n, \ n \ge 0, \\ y_n = (1 - \beta_n) x_n + \beta_n I^n x_n. \end{cases}$$
(1.1)

Inspired and motivated by these facts, we study the convergence of an explicit iterative involving an asymptotically quasi-*I*-nonexpansive mapping in nonempty closed convex subset of uniformly convex Banach spaces.

In this paper, we prove weak and strong convergences of an explicit iterative process (1.1) to a common fixed point of T and I.

2. Preliminaries

Recall that a Banach space X is said to satisfy *Opial condition* [25] if, for each sequence $\{x_n\}$ in X such that $\{x_n\}$ converges weakly to x implies that

$$\lim_{n \to \infty} \inf \|x_n - x\| < \lim_{n \to \infty} \inf \|x_n - y\|$$
(2.1)

for all $y \in X$ with $y \neq x$. It is well known that (see [26]) inequality (2.1) is equivalent to

$$\lim_{n \to \infty} \sup \|x_n - x\| < \lim_{n \to \infty} \sup \|x_n - y\|.$$
(2.2)

Definition 2.1. Let K be a closed subset of a real Banach space X and let $T: K \to K$ be a mapping.

- 1. A mapping T is said to be semiclosed (demiclosed) at zero, if for each bounded sequence $\{x_n\}$ in K, the conditions x_n converges weakly to $x \in K$ and Tx_n converges strongly to 0 imply Tx = 0.
- 2. A mapping T is said to be semicompact, if for any bounded sequence $\{x_n\}$ in K such that $||x_n Tx_n|| \to 0$, $n \to \infty$, then there exists a subsequence $\{x_{n_k}\} \subset \{x_n\}$ such that $x_{n_k} \to x^* \in K$ strongly.
- 3. T is called a uniformly L-Lipschitzian mapping, if there exists a constant L > 0 such that $||T^n x T^n y|| \le L ||x y||$ for all $x, y \in K$ and $n \ge 1$.

Lemma 2.2. [17] Let X be a uniformly convex Banach space and let b, c be two constant with 0 < b < c < 1. Suppose that $\{t_n\}$ is a sequence in [b, c] and $\{x_n\}$, $\{y_n\}$ are two sequence in X such that

$$\lim_{n \to \infty} \|t_n x_n + (1 - t_n) y_n\| = d, \quad \lim_{n \to \infty} \sup \|x_n\| \le d, \quad \limsup \|y_n\| \le d,$$
(2.3)

holds some $d \ge 0$. Then $\lim_{n\to\infty} ||x_n - y_n|| = 0$.

Lemma 2.3. [19] Let $\{a_n\}$ and $\{b_n\}$ be two sequences of nonnegative real numbers with $\sum_{n=1}^{\infty} b_n < \infty$. If one of the following conditions is satisfied:

1. $a_{n+1} \le a_n + b_n, \quad n \ge 1,$ 2. $a_{n+1} \le (1+b_n) a_n, \quad n \ge 1,$

then the limit $\lim_{n\to\infty} a_n$ exists.

3. Main Results

In this section, we prove convergence theorems of an explicit iterative scheme (1.1) for an asymptotically quasi-*I*-nonexpansive mapping in Banach spaces. In order to prove our main results, the following lemmas are needed.

Lemma 3.1. Let X be a real Banach space and let K be a nonempty closed convex subset of X. Let $T: K \to K$ be an asymptotically quasi-I-nonexpansive mapping with a sequence $\{\lambda_n\} \subset [1,\infty)$ and $I: K \to K$ be an asymptotically quasi-nonexpansive mapping with a sequence $\{\mu_n\} \subset [1,\infty)$ such that $\mathcal{F} = F(T) \cap F(I) \neq \emptyset$. Suppose $N = \lim_{n \to \infty} \lambda_n \ge 1$, $M = \lim_{n \to \infty} \mu_n \ge 1$ and $\{\alpha_n\}$, $\{\beta_n\}$ are two sequences in [0,1] such that $\sum_{n=1}^{\infty} (\lambda_n \mu_n - 1) \alpha_n < \infty$. If $\{x_n\}$ is an explicit iterative sequence defined by (1.1), then for each $p \in \mathcal{F} = F(T) \cap F(I)$ the limit $\lim_{n \to \infty} \|x_n - p\|$ exists.

Proof. Since $p \in \mathcal{F} = F(T) \cap F(I)$, for any given $p \in F$, it follows (1.1) that

$$\begin{aligned} \|x_{n+1} - p\| &\leq (1 - \alpha_n) \|x_n - p\| + \alpha_n \|T^n y_n - p\| \\ &\leq (1 - \alpha_n) \|x_n - p\| + \alpha_n \lambda_n \|I^n y_n - p\| \\ &\leq (1 - \alpha_n) \|x_n - p\| + \alpha_n \lambda_n \mu_n \|y_n - p\|. \end{aligned}$$
(3.1)

Again from (1.1) we derive that

$$\begin{aligned} \|y_{n} - p\| &\leq (1 - \beta_{n}) \|x_{n} - p\| + \beta_{n} \|I^{n}x_{n} - p\| \\ &\leq (1 - \beta_{n}) \|x_{n} - p\| + \beta_{n}\mu_{n} \|x_{n} - p\| \\ &\leq (1 - \beta_{n}) \mu_{n} \|x_{n} - p\| + \beta_{n}\mu_{n} \|x_{n} - p\| \\ &\leq \mu_{n} \|x_{n} - p\|, \end{aligned}$$

$$(3.2)$$

which means

$$||y_n - p|| \le \mu_n ||x_n - p|| \le \lambda_n \mu_n ||x_n - p||.$$
(3.3)

Then from (3.3) we have

$$|x_{n+1} - p|| \le \left[1 + \alpha_n \left(\lambda_n^2 \mu_n^2 - 1\right)\right] ||x_n - p||.$$
(3.4)

By putting $b_n = \alpha_n \left(\lambda_n^2 \mu_n^2 - 1\right)$ the last inequality can be rewritten as follows:

$$||x_{n+1} - p|| \le (1 + b_n) ||x_n - p||.$$
(3.5)

By hypothesis we find

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \alpha_n \left(\lambda_n^2 \mu_n^2 - 1 \right)$$
$$= \sum_{n=1}^{\infty} \left(\lambda_n \mu_n + 1 \right) \left(\lambda_n \mu_n - 1 \right) \alpha_n$$
$$\leq (NM+1) \sum_{n=1}^{\infty} \left(\lambda_n \mu_n - 1 \right) \alpha_n < \infty.$$

Defining $a_n = ||x_n - p||$ in (3.5) we have

$$a_{n+1} \le (1+b_n)a_n,$$
 (3.6)

and Lemma 2.3 implies the existence of the limit $\lim_{n\to\infty} a_n$. The means the limit

$$\lim_{n \to \infty} \|x_n - p\| = d \tag{3.7}$$

exists, where $d \ge 0$ constant. This completes the proof.

Theorem 3.2. Let X be a real Banach space and let K be a nonempty closed convex subset of X. Let $T: K \to K$ be a uniformly L_1 -Lipschitzian asymptotically quasi-I-nonexpansive mapping with a sequence $\{\lambda_n\} \subset [1, \infty)$ and $I: K \to K$ be a uniformly L_2 -Lipschitzian asymptotically quasi-nonexpansive mapping with a sequence $\{\mu_n\} \subset [1, \infty)$ such that $\mathcal{F} = F(T) \cap F(I) \neq \emptyset$. Suppose $N = \lim_n \lambda_n \ge 1$, $M = \lim_n \mu_n \ge 1$ and $\{\alpha_n\}$, $\{\beta_n\}$ are two sequences in [0, 1] such that $\sum_{n=1}^{\infty} (\lambda_n \mu_n - 1) \alpha_n < \infty$. Then an explicit iterative sequence $\{x_n\}$ defined by (1.1) converges strongly to a common fixed point in $\mathcal{F} = F(T) \cap F(I)$ if and only if

$$\lim_{n \to \infty} \inf d(x_n, F) = 0. \tag{3.8}$$

Proof. The necessity of condition (3.7) is obvious. Let us prove the sufficiency part of theorem. Since $T, I: K \to K$ are uniformly *L*-Lipschitzian mappings, so *T* and *I* are continuous mappings. Therefore the sets F(T) and F(I) are closed. Hence $\mathcal{F} = F(T) \cap F(I)$ is a nonempty closed set.

For any given $p \in F$, we have

$$||x_{n+1} - p|| \le (1 + b_n) ||x_n - p||, \qquad (3.9)$$

as before where $b_n = \alpha_n \left(\lambda_n^2 \mu_n^2 - 1\right)$ with $\sum_{n=1}^{\infty} b_n < \infty$. Hence, we have

$$d(x_{n+1}, F) \le (1+b_n) d(x_n, F).$$
(3.10)

From (3.9) due to Lemma 2.3 we obtain the existence of the limit $\lim_{n\to\infty} d(x_n F)$. By condition (3.7), we get

$$\lim_{n \to \infty} d(x_n, F) = \lim_{n \to \infty} \inf d(x_n, F) = 0.$$
(3.11)

Let us prove that the sequence $\{x_n\}$ converges to a common fixed point of T and I. In fact, due to $1 + t \le \exp(t)$ for all t > 0, and from (3.8), we obtain

$$||x_{n+1} - p|| \le \exp(b_n) ||x_n - p||.$$
(3.12)

Hence, for any positive integers m, n from (3.11) with $\sum_{n=1}^{\infty} b_n < \infty$ we find

$$||x_{n+m} - p|| \leq \exp(b_{n+m-1}) ||x_{n+m-1} - p|| \\ \leq \exp\left(\sum_{i=n}^{n+m-1} b_i\right) ||x_n - p|| \\ \leq \exp\left(\sum_{i=1}^{\infty} b_i\right) ||x_n - p||,$$
(3.13)

which means that

$$|x_{n+m} - p|| \le W ||x_n - p|| \tag{3.14}$$

for all $p \in F$, where $W = \exp\left(\sum_{i=1}^{\infty} b_i\right) < \infty$.

Since $\lim_{n\to\infty} d(x_n F) = 0$, then for any given $\varepsilon > 0$, there exists a positive integer number n_0 such that

$$d(x_{n_0}, F) < \frac{\varepsilon}{W}.$$
(3.15)

Therefore there exists $p_1 \in F$ such that

$$\|x_{n_0} - p_1\| < \frac{\varepsilon}{W}.$$
(3.16)

Consequently, for all $n \ge n_0$ from (3.14) we derive

$$\begin{aligned} \|x_n - p_1\| &\leq W \|x_{n_0} - p_1\| \\ &< W \cdot \frac{\varepsilon}{W} \\ &= \varepsilon, \end{aligned}$$
(3.17)

which means that the strong convergence limit of the sequence $\{x_n\}$ is a common fixed point p_1 of T and I. This completes the proof.

Lemma 3.3. Let X be a real uniformly Banach space and let K be a nonempty closed convex subset of X. Let $T : K \to K$ be a uniformly L_1 -Lipschitzian asymptotically quasi-I-nonexpansive mapping with a sequence $\{\lambda_n\} \subset [1,\infty)$ and $I : K \to K$ be a uniformly L_2 -Lipschitzian asymptotically quasinonexpansive mapping with a sequence $\{\mu_n\} \subset [1,\infty)$ such that $\mathcal{F} = F(T) \cap F(I) \neq \emptyset$. Suppose N = $\lim_n \lambda_n \geq 1$, $M = \lim_n \mu_n \geq 1$ and $\{\alpha_n\}$, $\{\beta_n\}$ are sequences in [t, 1-t] for some $t \in (0,1)$ such that $\sum_{n=1}^{\infty} (\lambda_n \mu_n - 1) \alpha_n < \infty$. Then an explicit iterative sequence $\{x_n\}$ defined by (1.1) satisfies the following:

$$\lim_{n \to \infty} \|x_n - Tx_n\| = 0, \quad \lim_{n \to \infty} \|x_n - Ix_n\| = 0.$$
(3.18)

Proof. First, we will prove that

$$\lim_{n \to \infty} \|x_n - T^n x_n\| = 0, \quad \lim_{n \to \infty} \|x_n - I^n x_n\| = 0.$$
(3.19)

According to Lemma 3.1 for any $p \in \mathcal{F} = F(T) \cap F(I)$ we have $\lim_{n \to \infty} ||x_n - p|| = d$. It follows from (1.1) that

$$||x_{n+1} - p|| = ||(1 - \alpha_n) (x_n - p) + \alpha_n (T^n y_n - p)|| \to d, \quad n \to \infty.$$
(3.20)

By means of asymptotically quasi-I-nonexpansivity of T and asymptotically quasi-nonexpansivity of I from (3.3) we get

$$\lim_{n \to \infty} \sup \|T^n y_n - p\| \le \lim_{n \to \infty} \sup \lambda_n \mu_n \|y_n - p\| \le \lim_{n \to \infty} \sup \lambda_n^2 \mu_n^2 \|x_n - p\| = d.$$
(3.21)

Now using

$$\lim_{n \to \infty} \sup \|x_n - p\| = d, \tag{3.22}$$

with (3.21) and applying Lemma 2.2 to (3.20) we obtain

$$\lim_{n \to \infty} \|x_n - T^n y_n\| = 0.$$
 (3.23)

Now from (1.1) and (3.22) we infer that

$$\lim_{n \to \infty} \|x_{n+1} - x_n\| = \lim_{n \to \infty} \|\alpha_n \left(T^n y_n - x_n\right)\| = 0.$$
(3.24)

From (3.23) and (3.24) we get

$$\lim_{n \to \infty} \|x_{n+1} - T^n y_n\| \le \lim_{n \to \infty} \|x_{n+1} - x_n\| + \lim_{n \to \infty} \|x_n - T^n y_n\| = 0.$$
(3.25)

On the other hand, we have

$$\begin{aligned} \|x_n - p\| &\leq \|x_n - T^n y_n\| + \|T^n y_n - p\| \\ &\leq \|x_n - T^n y_n\| + \lambda_n \mu_n \|y_n - p\|, \end{aligned}$$
(3.26)

which implies

$$||x_n - p|| - ||x_n - T^n y_n|| \le \lambda_n \mu_n ||y_n - p||.$$
(3.27)

The last inequality with (3.3) yields that

$$\|x_n - p\| - \|x_n - T^n y_n\| \le \lambda_n \mu_n \|y_n - p\| \le \lambda_n^2 \mu_n^2 \|x_n - p\|.$$
(3.28)

Then (3.22) and (3.23) with the Squeeze Theorem imply that

$$\lim_{n \to \infty} \|y_n - p\| = d.$$
(3.29)

Again from (1.1) we can see that

$$||y_n - p|| = ||(1 - \beta_n) (x_n - p) + \beta_n (I^n x_n - p)|| \to \infty, \quad n \to \infty.$$
(3.30)

From (3.7) one finds

$$\lim_{n \to \infty} \sup \|I^n x_n - p\| \le \lim_{n \to \infty} \sup \mu_n \|x_n - p\| = d.$$
(3.31)

Now applying Lemma 2.2 to (3.29) we obtain

$$\lim_{n \to \infty} \|x_n - I^n x_n\| = 0.$$
 (3.32)

From (3.24) and (3.32) we have

 $\lim_{n \to \infty} \|x_{n+1} - I^n x_n\| \le \lim_{n \to \infty} \|x_{n+1} - x_n\| + \lim_{n \to \infty} \|x_n - I^n x_n\| = 0.$ (3.33)

It follows from (1.1) that

$$y_n - x_n \| = \beta_n \| x_n - I^n x_n \|.$$
(3.34)

Hence, from (3.32) and (3.34) we obtain

$$\lim_{n \to \infty} \|y_n - x_n\| = 0.$$
 (3.35)

Consider

$$||x_n - T^n x_n|| \le ||x_n - T^n y_n|| + L_1 ||y_n - x_n||.$$
(3.36)

Then from (3.23) and (3.35) we obtain

$$\lim_{n \to \infty} \|x_n - T^n x_n\| = 0.$$
(3.37)

From (3.24) and (3.35) we have

$$\lim_{n \to \infty} \|x_{n+1} - y_n\| \le \lim_{n \to \infty} \|x_{n+1} - x_n\| + \lim_{n \to \infty} \|y_n - x_n\| = 0.$$
(3.38)

Finally, from

$$x_n - Tx_n \| \le \|x_n - T^n x_n\| + L_1 \|x_n - y_{n-1}\| + L_1 \|T^{n-1} y_{n-1} - x_n\|, \qquad (3.39)$$

which with (3.25), (3.37) and (3.38) we get

$$\lim_{n \to \infty} \|x_n - Tx_n\| = 0.$$
(3.40)

Similarly, one has

$$\|x_n - Ix_n\| \le \|x_n - I^n x_n\| + L_2 \|x_n - x_{n-1}\| + L_2 \|I^{n-1} x_{n-1} - x_n\|, \qquad (3.41)$$

which with (3.24), (3.32) and (3.33) implies

$$\lim_{n \to \infty} \|x_n - Ix_n\| = 0.$$
(3.42)

This completes the proof.

Theorem 3.4. Let X be a real uniformly convex Banach space satisfying Opial condition and let K be a nonempty closed convex subset of X. Let $E : X \to X$ be an identity mapping, let $T : K \to K$ be a uniformly L_1 -Lipschitzian asymptotically quasi-I-nonexpansive mapping with a sequence $\{\lambda_n\} \subset [1, \infty)$, and $I : K \to K$ be a uniformly L_2 -Lipschitzian asymptotically quasi-nonexpansive mapping with a sequence $\{\mu_n\} \subset [1, \infty)$ such that $\mathcal{F} = F(T) \cap F(I) \neq \emptyset$. Suppose $N = \lim_n \lambda_n \ge 1$, $M = \lim_n \mu_n \ge 1$ and $\{\alpha_n\}$, $\{\beta_n\}$ are sequences in [t, 1-t] for some $t \in (0, 1)$ such that $\sum_{n=1}^{\infty} (\lambda_n \mu_n - 1) \alpha_n < \infty$. If the mappings E - Tand E - I are semiclosed at zero, then an explicit iterative sequence $\{x_n\}$ defined by (1.1) converges weakly to a common fixed point of T and I.

Proof. Let $p \in F$, then according to Lemma 3.1 the sequence $\{||x_n - p||\}$ converges. This provides that $\{x_n\}$ is a bounded sequence. Since X is uniformly convex, then every bounded subset of X is weakly compact. Since $\{x_n\}$ is a bounded sequence in K, then there exists a subsequence $\{x_{n_k}\} \subset \{x_n\}$ such that $\{x_{n_k}\}$ converges weakly to $q \in K$. Hence, from (3.40) and (3.42) it follows that

$$\lim_{n_k \to \infty} \|x_{n_k} - Tx_{n_k}\| = 0, \quad \lim_{n_k \to \infty} \|x_{n_k} - Ix_{n_k}\| = 0.$$
(3.43)

Since the mappings E - T and E - I are semiclosed at zero, therefore, we find Tq = q and Iq = q, which means $q \in \mathcal{F} = F(T) \cap F(I)$.

Finally, let us prove that $\{x_n\}$ converges weakly to q. In fact, suppose the contrary, that is, there exists some subsequence $\{x_{n_j}\} \subset \{x_n\}$ such that $\{x_{n_j}\}$ converges weakly to $q_1 \in K$ and $q_1 \neq q$. Then by the same method as given above, we can also prove that $q_1 \in \mathcal{F} = F(T) \cap F(I)$.

Taking p = q and $p = q_1$ and using the same argument given in the proof of (3.7), we can prove that the limits $\lim_{n\to\infty} ||x_n - q||$ and $\lim_{n\to\infty} ||x_n - q_1||$ exist, and we have

$$\lim_{n \to \infty} \|x_n - q\| = d, \quad \lim_{n \to \infty} \|x_n - q_1\| = d_1, \tag{3.44}$$

where d and d_1 are two nonnegative numbers. By virtue of the Opial condition of X, we obtain

$$d = \lim_{n_k \to \infty} \sup \|x_{n_j} - q\| < \lim_{n_k \to \infty} \sup \|x_{n_k} - q_1\| = d_1$$

$$= \lim_{n_j \to \infty} \sup \|x_{n_j} - q_1\| < \lim_{n_j \to \infty} \sup \|x_{n_j} - q\|.$$
(3.45)

This is a contradiction. Hence $q_1 = q$. This implies that $\{x_n\}$ converges weakly to q. This completes the proof.

Theorem 3.5. Let X be a real uniformly convex Banach space and let K be a nonempty closed convex subset of X. Let $T: K \to K$ be a uniformly L_1 -Lipschitzian asymptotically quasi-I-nonexpansive mapping with a sequence $\{\lambda_n\} \subset [1,\infty)$, and $I: K \to K$ be a uniformly L_2 -Lipschitzian asymptotically quasinonexpansive mapping with a sequence $\{\mu_n\} \subset [1,\infty)$ such that $\mathcal{F} = F(T) \cap F(I) \neq \emptyset$. Suppose N = $\lim_n \lambda_n \geq 1$, $M = \lim_n \mu_n \geq 1$ and $\{\alpha_n\}$, $\{\beta_n\}$ are sequences in [t, 1-t] for some $t \in (0,1)$ such that $\sum_{n=1}^{\infty} (\lambda_n \mu_n - 1) \alpha_n < \infty$. If at least one mapping of the mappings T and I is semicompact, then an explicit iterative sequence $\{x_n\}$ defined by (1.1) converges strongly to a common fixed point of T and I.

Proof. Without any loss of generality, we may assume that T is semicompact. This with (3.40) means that there exists a subsequence $\{x_{n_k}\} \subset \{x_n\}$ such that $x_{n_k} \to x^*$ strongly and $x^* \in K$. Since T, I are continuous, then from (3.40) and (3.42) we find

$$\|x^* - Tx^*\| = \lim_{n_k \to \infty} \|x_{n_k} - Tx_{n_k}\| = 0, \quad \|x^* - Ix^*\| = \lim_{n_k \to \infty} \|x_{n_k} - Ix_{n_k}\| = 0.$$
(3.46)

This shows taht $x^* \in \mathcal{F} = F(T) \cap F(I)$. According to Lemma 3.1 the limit $\lim_{n \to \infty} ||x_n - x^*||$ exists. Then

$$\lim_{n \to \infty} \|x_n - x^*\| = \lim_{n_k \to \infty} \|x_{n_k} - x^*\| = 0,$$

which means taht $\{x_n\}$ converges to $x^* \in F$. This completes the proof.

References

- [1] J. B. Baillon, Un theoreme de type ergodique pour les contractions non lineaires dans un espace de Hilbert, Comptes Rendus de l'Academie des Sciences de Paris, Serie A 280 no. **22** (1975), 1511-1514. 1
- [2] A. Pazy, On the asymptotic behavior of iterates of nonexpasive mappings in Hilbert space, Israel Journal of Mathematics, 26 (1977), 197-204.
- [3] F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proceedings of the National Academy of Sciences of the United States of America, vol. 54 (1965), 1041-1044.
- [4] F. E. Browder, Convergence of apporximants to fixed points of nonexpansive non-linear mappings in Banach spaces, Archive for Rational Mechanics and Analysis, vol. 24 (1967), 82-90. 1
- [5] H. Kiziltunc, M. Ozdemir and S. Akbulut, On common fixed points of two nonself nonexpansive mappings in Banach Spaces, Chiang Mai J. Sci., 34 (2007), 281-288. 1
- [6] C. Chidume, Geometric Properties of Banach Spaces and Nonlinear Iterations, vol. 1965 of Lecture Notes in Mathematics, Springer, London, 2009.
- [7] J. B. Diaz and F. T. Metcalf, On the structure of the set of subsequential limit points of seccessive approximations, Bulletin of the American Mathematical Society, vol. 73 (1967), 516-519.

- [8] S. H. Khan, A two-step iterative process for two asymptotically quasi-nonexpansive mappings, World Academy of Science, Engineering and Technology, 75 (2011), http://www.waset.org/journals/waset/1
- H. Fukhar-ud-din, S. H. Khan, Convergence of iterates with errors of asymptotically quasi-nonexpansive mappings and applications, J.Math.Anal.Appl., 328 (2007) 821-829.
- [10] J. W. G. Dotson, On the Mann iterative process, Transactions of the American Mathematical Society, 149, no. 1 (1970), 65-73. 1
- [11] M. K. Ghosh and L. Debnath, Convergence of Ishikawa iterates of quasi-nonexpansive mappings, Journal of Mathematical Analysis and Applications, 2007, no. 1 (1997) 96-103. 1
- [12] K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proceeding of American Mathematical Society, vol. 35 (1972), 171-174. 1
- [13] Q. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings, Journal of Mathematical Analysis and Applications, vol. 259, no. 1 (2001), 1-7. 1
- [14] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Archiv der Mathematik, vol. 58, no. 5 (1992), 486-491. 1
- [15] S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, Journal of Mathematical Analysis and Applications, vol. 75, no. 1 (1980), 287-292. 1
- [16] J. Gornicki, Weak convergence theorems for asymptotically nonexpansive mappings in uniformly convex Banach spaces, Commentations Mathematicae Universitatis Carolinae, vol. 30, no. 2 (1989), 249-252. 1
- [17] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bulletin of the Australian Mathematical Society, 43 (1991), 153-159. 1, 2.2
- [18] N. Shioji and W. Takahashi, Strong convergence theorems for asymptotically nonexpansive semigroups in Hilbert spaces, Nonlinear Analysis: Theory, Methods & Applications, vol. 178 (1998), 87-99.
- [19] K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, Journal of Mathematical Analysis and Applications, vol. 178 (1993), 301-308. 1, 2.3
- [20] N. Shahzad, Generalized I-nonexpansive maps and best approximations in Banach spaces, Demonstratio Mathematica, vol. 37 (2004), 597-600. 1, 1
- [21] B. H. Rohades and S. Temir, Convergence theorems for I-nonexpansive mapping, International Journal of Mathematics and Mathematical Sciences, vol. 2006 (2006), Article ID 63435, 4 pages. 1
- [22] S. Temir, On the convergence theorems of implicit iteration process for a finite family of I-asymptotically nonexpansive mappings, Journal of Computational and Applied Mathematics, vol. 225, no. 2 (2009), 398-405. 1
- [23] P. Kumman, W. Kumethong and N. Jewwaiworn, Weak convergence theorems of three-step Noor iterative scheme for I-quasi-nonexpansive mappings in Banach spaces, Applied Mathematical Sciences, vol. 2 (2008), 2915-2920.
- [24] S.Temir and O. Gul, Convergence theorem for I-asymptotically quasi-nonexpansive mapping in Hilbert space, Journal of Mathematical Analysis and Applications, vol. 329 (2007), 759-765.
- [25] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bulletin of American Mathematical Society, vol. 73 (1967), 591-597. 2
- [26] E. Lami Dozo, Multivalued nonexpansive mappings and Opial's condition, Proceedings of the American Mathematical Society, vol. 38 (1973), 286-292. 2
- [27] F. Mukhamedov and M. Saburov, Weak and and Strong Convergence of an Implicit Iteration Process for an Asymptotically Quasi-I-Nonexpansive Mapping in Banach Space, Fixed Point Theory and Applications, (2009), 1-13. 1
- [28] F. Mukhamedov and M. Saburov, Strong Convergence of an Explicit Iteration Process for a Totally Asymptotically I-Nonexpansive Mapping in Banach Spaces, Applied Mathematics Letters, 124 (2010), 1473-1478.