Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 5 (2012), 412–417 Research Article

Journal of Nonlinear Science and Applications

Print: ISSN 2008-1898 Online: ISSN 2008-1901

Volterra composition operators from generally weighted Bloch spaces to Bloch-type spaces on the unit ball

Haiying Li*, Haixia Zhang

College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, P.R. China.

Dedicated to George A Anastassiou on the occasion of his sixtieth birthday

Communicated by Professor R. Saadati

Abstract

Let φ be a holomorphic self-map of the open unit ball \mathbb{B} , $g \in H(\mathbb{B})$. In this paper, the boundedness and compactness of the Volterra composition operator T_g^{φ} from generally weighted Bloch spaces to Bloch-type spaces are investigated. ©2012 NGA. All rights reserved.

Keywords: Volterra composition operator; generally weighted Bloch space; boundedness; compactness. 2010 MSC: Primary 47B38.

1. Introduction and preliminaries

Let \mathbb{B} be the unit ball in \mathbb{C}^n and $H(\mathbb{B})$ the class of all holomorphic functions on \mathbb{B} . Let $z = (z_1, z_2, \dots, z_n), w = (w_1, w_2, \dots, w_n)$ be points in \mathbb{C}^n and $\langle z, w \rangle = \sum_{j=1}^n z_j \overline{w_j}$. Let $\mathcal{R}f(z) = \sum_{j=1}^n z_j \frac{\partial f}{\partial z_j}(z)$ be the radial derivative of $f \in H(\mathbb{B})$, see for more details in [14].

For any $0 < \alpha < \infty$, we define the generally weighted Bloch space $\mathcal{B}^{\alpha}_{\log}$ of holomorphic functions such that

$$\|f\|_{\mathcal{B}^{\alpha}_{\log}} = |f(0)| + \sup_{z \in \mathbb{B}} (1 - |z|^2)^{\alpha} |\mathcal{R}f(z)| \log \frac{4}{1 - |z|^2} < \infty.$$

 * Corresponding author

Email address: tslhy2001@yahoo.com.cn (Haiying Li)

When $\alpha = 1$, for the case of the unit disk the logarithmic Bloch space has appeared for the first time in characterizing of the multipliers of the Bloch space in [1], for more details in [12] and [13]. In [3], [4] and [5], we studied composition operator on generally weighted Bloch spaces.

A positive continuous function μ on the interval [0,1) is called normal ([8]) if there are $\delta \in [0,1)$ and a and b, 0 < a < b such that

$$\frac{\mu(r)}{(1-r)^a} \text{ is decreasing on } [0,1) \text{ and } \lim_{r \to 1} \frac{\mu(r)}{(1-r)^a} = 0;$$
$$\frac{\mu(r)}{(1-r)^b} \text{ is increasing on } [0,1) \text{ and } \lim_{r \to 1} \frac{\mu(r)}{(1-r)^b} = 0.$$

If we say that a function $\mu : \mathbb{B} \to [0, \infty)$ is normal, then we will also assume that $\mu(z) = \mu(|z|), z \in \mathbb{B}$. The Bloch-type space $B_{\mu}(\mathbb{B})$ consists of analytic functions $f : \mathbb{B} \to C$ such that

$$||f||_{\mu} = \sup_{z \in \mathbb{B}} \mu(z) |\mathcal{R}f(z)| < \infty,$$

where μ is normal.

In [9] and [10], it was shown that $B_{\mu}(\mathbb{B})$ is a Banach space with the norm $||f||_{\mathcal{B}_{\mu}} = |f(0)| + ||f||_{\mu}$. The little Bloch-type space $B_{\mu,0}(\mathbb{B})$ consists of analytic functions $f: \mathbb{B} \to C$ such that

$$\lim_{|z|\to 1} \mu(z) |\mathcal{R}f(z)| = 0$$

Let φ be a holomorphic self-map of \mathbb{B} . The composition operator C_{φ} as usual is defined by

$$(C_{\varphi}f)(z) = (f \circ \varphi)(z), f \in H(\mathbb{B}), z \in \mathbb{B}.$$

For some results on composition operators, see [2] or [7].

Suppose that $g: \mathbb{B} \to \mathbb{C}$ is a holomorphic map, define

$$T_g f(z) = \int_0^1 f(tz) \frac{dg(tz)}{dt} = \int_0^1 f(tz) \mathcal{R}g(tz) \frac{dt}{t}, \ f \in H(\mathbb{B}), z \in \mathbb{B}.$$
(1.1)

This operator is called the Riemann-Stieltjes operator or extended Cesàro operator, see for example [11].

The Volterra composition operator is defined by

$$T_g^{\varphi}f(z) = \int_0^1 f(\varphi(tz))\frac{dg(tz)}{dt} = \int_0^1 f(\varphi(tz))\mathcal{R}g(tz)\frac{dt}{t}, \ f \in H(\mathbb{B}), z \in \mathbb{B}.$$
(1.2)

When $\varphi(z) = z$, by (1.1) and (1.2), then $T_g^{\varphi} f(z) = T_g f(z)$. The Volterra composition operator is a natural extension of the Riemann-Stieltjes or extended Cesàro operator. The Volterra composition operator on the unit disk is considered in [6]. The Volterra composition operators on logarithmic Bloch spaces on \mathbb{B} are studied in [15].

In this paper, we give the characterization of the boundedness and compactness of Volterra composition operator T_g^{φ} from generally weighted Bloch spaces to Bloch-type spaces. Throughout the remainder of this paper C will denote a positive constant, the exact value of which will vary from one appearance to the next.

2. The boundedness and compactness of $T_q^{\varphi}: \mathcal{B}_{\log}^{\alpha} \to B_{\mu}$

In the beginning, we introduce some auxiliary results which will be needed in our proofs of the theorems.

Lemma 2.1. Let $f \in \mathcal{B}^{\alpha}_{\log}(\mathbb{B})$ and $z \in \mathbb{B}$, then we have

$$\begin{aligned} (a) \quad |f(z)| &\leq (1 + \frac{1}{(1-\alpha)\log 4}) \|f\|_{\mathcal{B}^{\alpha}_{\log}}, \ when \ 0 < \alpha < 1; \\ (b) \quad |f(z)| &\leq C \big(\log \log \frac{4}{1-|z|^2}\big) \|f\|_{\mathcal{B}^{1}_{\log}}, \ when \ \alpha = 1; \\ (c) \quad |f(z)| &\leq (1 + A(|z|)) \|f\|_{\mathcal{B}^{\alpha}_{\log}}, \ when \ \alpha > 1, \\ where \ A(|z|) &= \int_{0}^{|z|} \frac{dt}{(1-s^2)^{\alpha}\log \frac{4}{1-s^2}}. \end{aligned}$$

Proof. Using the integral representation for \mathcal{R} differential operator, we have

$$\begin{split} |f(z)| &= \left| f(0) + \int_0^1 \frac{\mathcal{R}f(tz)dt}{t} \right| \\ &\leq |f(0)| + \int_0^1 \frac{|z|dt}{(1 - |tz|^2)^\alpha \log \frac{4}{1 - |tz|^2}} \cdot \|f\|_{\mathcal{B}^{\alpha}_{\log}} \\ &\leq |f(0)| + \int_0^{|z|} \frac{ds}{(1 - s^2)^\alpha \log \frac{4}{1 - s^2}} \cdot \|f\|_{\mathcal{B}^{\alpha}_{\log}} \\ &\leq \|f\|_{\mathcal{B}^{\alpha}_{\log}} + \int_0^{|z|} \frac{ds}{(1 - s^2)^\alpha \log \frac{4}{1 - s^2}} \cdot \|f\|_{\mathcal{B}^{\alpha}_{\log}}. \end{split}$$

For $0 < \alpha < 1$, $\alpha > 1$, then (a) and (c) hold. For $\alpha = 1$,

$$\begin{split} |f(z)| &\leq \|f\|_{\mathcal{B}^{1}_{\log}} + 2\int_{0}^{|z|} \frac{ds}{(1-s)^{\alpha}\log\frac{4}{1-s}} \cdot \|f\|_{\mathcal{B}^{1}_{\log}} \\ &\leq \left(2\log(2\log\frac{4}{1-|z|^{2}}) + 1 - 2\log\log 4\right) \|f\|_{\mathcal{B}^{1}_{\log}} \\ &\leq \left(2\log\log\frac{4}{1-|z|^{2}} + \log 4 + 1 - 2\log\log 4\right) \|f\|_{\mathcal{B}^{1}_{\log}} \\ &\leq C(\log\log\frac{4}{1-|z|^{2}}) \|f\|_{\mathcal{B}^{1}_{\log}}. \end{split}$$

Proposition 2.2. Let φ be a holomorphic self-map of the open unit ball \mathbb{B} , $g \in H(\mathbb{B})$, and $\alpha > 0$. Then $T_g^{\varphi} : \mathcal{B}_{\log}^{\alpha}(\mathbb{B}) \to B_{\mu}(\mathbb{B})$ is compact if and only if for any bounded sequence $(f_j)_{j \in N}$ in $\mathcal{B}_{\log}^{\alpha}(\mathbb{B})$ which converges to zero uniformly on compact subsets of \mathbb{B} as $j \to \infty$, $\|T_g^{\varphi}f_j\|_{\mathcal{B}_{\mu}} \to 0$ as $j \to \infty$.

Proof. Assume that T_g^{φ} is compact and that $(f_j)_{j \in N}$ is a bounded sequence in B_{\log}^{α} with $f_j \to 0$ uniformly on compact subsets of \mathbb{B} . By the compactness of T_g^{φ} , we have that the sequence $(T_g^{\varphi}f_j)_{j \in N}$ has a subsequence $(T_g^{\varphi}f_{j_m})_{m \in N}$ which converges to f in \mathcal{B}_{μ} . By Lemma 2.1 and $|f(0)| \leq ||f||_{B_{\log}^{\alpha}}$, then for any compact $K \subset \mathbb{B}$, there is a $C \geq 0$ such that

$$|T_g^{\varphi}f_{j_m}(z) - f(z)| \le C ||T_g^{\varphi}f_{j_m} - f||_{\mathcal{B}_{\mu}}, \ \forall z \in K.$$

This implies that $T_g^{\varphi} f_{j_m}(z) - f(z) \to 0$ uniformly on compact subsets of \mathbb{B} as $m \to \infty$. Since $f_{j_m} \to 0$ on compact subsets of \mathbb{B} , by the definition of the operator T_g^{φ} , it is easy to see that for each $z \in \mathbb{B}$, $\lim_{m\to\infty} T_g^{\varphi} f_{j_m}(z) = 0$. Hence f = 0. By the arbitrary of $(f_j)_{j\in N}$, we obtain that $T_g^{\varphi} f_j \to 0$ in \mathcal{B}_{μ} as $j \to \infty$.

Conversely, let $\{h_j\}$ be any sequence in the ball $K_M = B_{B_{\log}^{\alpha}}(0, M)$ (at the center of zero with the radius M) of the space B_{\log}^{α} . Since $\|h_j\|_{B_{\log}^{\alpha}} \leq M < \infty$, by Lemma 2.1, $\{h_j\}$ is uniformly bounded on compact subsets of \mathbb{B} and hence normal by Montel's theorem. Hence we may extract a subsequence $\{h_{j_m}\}$ which converges uniformly on compact subsets of \mathbb{B} to some $h \in B^{\alpha}_{\log}$, moreover $h \in B^{\alpha}_{\log}$ and $\|h\|_{B^{\alpha}_{\log}} \leq M$. It follows that $(h_{j_m} - h)$ is that $||h_{j_m} - h||_{B^{\alpha}_{\log}} \leq 2M < \infty$ and converges to zero on compact subsets of \mathbb{B} , by the hypothesis, we have that $T^{\varphi}_{g}h_{j_m} \to T^{\varphi}_{g}h$ in \mathcal{B}_{μ} . Thus the set $T^{\varphi}_{g}(K)$ is relatively compact. Hence $T_g^{\varphi}: B_{\log}^{\alpha} \to \mathcal{B}_{\mu}$ is compact.

Here we only consider respectively the following two cases: $0 < \alpha < 1$; $\alpha > 1$. Obviously, $\mathcal{R}(T_a^{\varphi}f)(z) =$ $f(\varphi(z))\mathcal{R}g(z).$

Theorem 2.3. Let φ be a holomorphic self-map of the open unit ball \mathbb{B} , $q \in H(\mathbb{B}), 0 < \alpha < 1$. Then the following statements are equivalent.

(i) $T_g^{\varphi} : \mathcal{B}_{\log}^{\alpha}(\mathbb{B}) \to \mathcal{B}_{\mu}(\mathbb{B})$ is bounded; (ii) $T_g^{\varphi} : \mathcal{B}_{\log}^{\alpha}(\mathbb{B}) \to \mathcal{B}_{\mu}(\mathbb{B})$ is compact; (*iii*) $g \in \mathcal{B}_{\mu}$.

Proof. (ii) \Rightarrow (i) By (ii) and the compactness of $T_g^{\varphi} : \mathcal{B}_{log}^{\alpha}(\mathbb{B}) \to \mathcal{B}_{\mu}(\mathbb{B})$, then (i) holds.

(i) \Rightarrow (iii) By (i), then there exists a positive constant C such that $\|T_g^{\varphi}f\|_{\mathcal{B}_{\mu}} \leq C\|f\|_{\mathcal{B}_{hor}^{\alpha}}$. By taking the test function f = 1 which is in $\mathcal{B}_{\log}^{\alpha}$, then

$$\sup_{z\in\mathbb{B}}\mu(z)|\mathcal{R}g(z)|\leq C$$

Then (iii) holds.

(iii) \Rightarrow (i) For any bounded sequence $(f_k)_{k\in\mathbb{N}}$ in B_{\log}^{α} and $f_k \rightarrow 0$ uniformly on compact subsets of \mathbb{B} ,

$$\begin{split} \|T_g^{\varphi}f_k\| &= \sup_{z\in\mathbb{B}} \mu(z) |\mathcal{R}(T_g^{\varphi}f_k)(z)| \\ &= \sup_{z\in\mathbb{B}} \mu(z) |f_k(\varphi(z))| |\mathcal{R}g(z)| \\ &\leq \sup_{z\in\mathbb{B}} \mu(z) (1+\frac{1}{(1-\alpha)\log 4}) |\mathcal{R}g(z)| \|f_k\|_{\mathcal{B}^{\alpha}_{\log}} \\ &= \sup_{z\in\mathbb{B}} \mu(z) |\mathcal{R}g(z)| \cdot \{(1+\frac{1}{(1-\alpha)\log 4}) \|f_k\|_{\mathcal{B}^{\alpha}_{\log}} \}. \end{split}$$

By (iii), $g \in \mathcal{B}_{\mu}$, moreover, $f_k \in B_{\log}^{\alpha}$, then (i) holds.

Theorem 2.4. Let φ be a holomorphic self-map of the open unit ball \mathbb{B} , $g \in H(\mathbb{B})$, $\alpha > 1$. Then the following statements are equivalent.

(i)
$$T_g^{\varphi} : \mathcal{B}_{\log}^{\alpha}(\mathbb{B}) \to \mathcal{B}_{\mu}(\mathbb{B})$$
 is bounded;
(ii) $g \in \mathcal{B}_{\mu}(\mathbb{B})$ and

$$\sup_{z \in \mathbb{B}} \mu(z) A(|\varphi(z)|) |\mathcal{R}g(z)| < \infty.$$
(2.1)

Proof. (ii) \Rightarrow (i) Assume that (ii) holds. Then for $f \in \mathcal{B}_{log}^{\alpha}$

$$\begin{split} |T_g^{\varphi}f|| &= \sup_{z \in \mathbb{B}} \mu(z) |\mathcal{R}(T_g^{\varphi}f)(z)| \\ &= \sup_{z \in \mathbb{B}} \mu(z) |f(\varphi(z))| |\mathcal{R}g(z)| \\ &\leq \sup_{z \in \mathbb{B}} \mu(z) (1 + A(|\varphi(z)|)) |\mathcal{R}g(z)| ||f||_{\mathcal{B}_{\log}^{\alpha}} < \infty. \end{split}$$

By (ii), then we have $T_g^{\varphi} : \mathcal{B}_{\log}^{\alpha}(\mathbb{B}) \to \mathcal{B}_{\mu}(\mathbb{B})$ is bounded. Conversely, let

$$f_k(z) = \int_0^{\langle z, \varphi(z_k) \rangle} \frac{dt}{(1-t)^\alpha \log \frac{4}{1-t}}, \ k \in \mathbb{N}, \text{ then } f_k \in \mathcal{B}_{\log}^\alpha.$$

$$\infty > \|T_g^{\varphi} f_k\| = \sup_{z \in \mathbb{B}} \mu(z) |f_k(\varphi(z))| |\mathcal{R}g(z)|$$

$$\geq \mu(z_k) |f_k(\varphi(z_k))| |\mathcal{R}g(z_k)|$$

$$\geq C \mu(z_k) A(|\varphi(z_k)|) |\mathcal{R}g(z_k)|.$$

Then (2.1) holds. By taking the test function f = 1 which is in $\mathcal{B}_{\log}^{\alpha}$, then $g \in \mathcal{B}_{\mu}$.

Theorem 2.5. Let φ be a holomorphic self-map of the open unit ball \mathbb{B} , $g \in H(\mathbb{B})$, $\alpha > 1$. Then the following statements are equivalent.

(i) $T_g^{\varphi} : \mathcal{B}_{\log}^{\alpha}(\mathbb{B}) \to \mathcal{B}_{\mu}(\mathbb{B})$ is compact; (ii) $g \in \mathcal{B}_{\mu}(\mathbb{B})$ and

$$\lim_{|\varphi(z)| \to 1} \mu(z) A(|\varphi(z)|) |\mathcal{R}g(z)| = 0.$$

$$(2.2)$$

Proof. Assume that $T_g^{\varphi} : \mathcal{B}_{\log}^{\alpha} \to B_{\mu}$ is compact. Let $(\varphi(z_k))_{k \in \mathbb{N}}$ be a sequence in \mathbb{B} such that $|\varphi(z_k)| \to 1$ as $k \to \infty$. Let

$$f_k(z) = \left(\int_0^{\langle z, \varphi(z_k) \rangle} \frac{dt}{(1-t)^{\alpha} \log \frac{4}{1-t}}\right)^2 \left(\int_0^{|\varphi(z_k)|^2} \frac{dt}{(1-t)^{\alpha} \log \frac{4}{1-t}}\right)^{-1}, z \in \mathbb{B}$$

Then $(f_k)_{k\in\mathbb{N}}$ is a bounded sequence in $\mathcal{B}^{\alpha}_{\log}$ and $f_k \to 0$ uniformly on compact subsets of \mathbb{B} ,

$$||T_g^{\varphi}f_k|| \ge \mu(z_k)|f_k(\varphi(z_k))||\mathcal{R}g(z_k)| \ge C\mu(z_k)A(|\varphi(z_k)|)|\mathcal{R}g(z_k)|$$

Then (2.2) holds by letting $k \to \infty$. By taking the test function f = 1 which is in $\mathcal{B}_{\log}^{\alpha}$, then $g \in \mathcal{B}_{\mu}$. Conversely, by (2.2), for any given $\varepsilon > 0$ there exists a positive number δ ($\delta < 1$) such that

$$\mu(z)A(|\varphi(z)|)|\mathcal{R}g(z_k)| < \varepsilon \text{ whenever}\delta < |\varphi(z)| < 1.$$

For any bounded sequence $(f_k)_{k\in\mathbb{N}}$ in $\mathcal{B}^{\alpha}_{\log}$ and $f_k \to 0$ uniformly on compact subsets of \mathbb{B} ,

$$\begin{split} \|T_{g}^{\varphi}f_{k}\|_{\mathcal{B}_{\mu}} &= \sup_{z\in\mathbb{B}}\mu(z)|f_{k}(\varphi(z))||\mathcal{R}g(z)|\\ &\leq \sup_{|\varphi(z)|\leq\delta}\mu(z)|f_{k}(\varphi(z))||\mathcal{R}g(z)|\\ &+ \sup_{|\varphi(z)|>\delta}\mu(z)|f_{k}(\varphi(z))||\mathcal{R}g(z)|\\ &\leq \sup_{|\varphi(z)|\leq\delta}\mu(z)|\mathcal{R}g(z)|\cdot \sup_{|\varphi(z)|\leq\delta}|f_{k}(\varphi(z))|\\ &+ C\|f_{k}\|_{\mathcal{B}^{\alpha}_{\log}}\sup_{|\varphi(z)|>\delta}\mu(z)|\mathcal{R}g(z)|(1+A(|\varphi(z)|)). \end{split}$$

Then $||T_g^{\varphi} f_k||_{\mathcal{B}_{\mu}} \to 0$ as $k \to \infty$.

Acknowledgements

This work is supported by the Young Core Teachers Program of Henan Province (No.2011GGJS-062) and the Natural Science Foundation of Henan Province(No.122300410110; 2010A110009).

References

- L. Brown, A. L. Shields. Multipliers and cyclic vectors in the Bloch space, Michigan Math. J. 38(1991), 141-146.
- [2] C. C. Cowen and B. D. MacCluer. Composition operators on spaces of analytic functions, CRC Press, Boca Roton, 1995. 1
- [3] H. Li, P. Liu. Weighted compositioin operators between H[∞] and generally weighted Bloch spaces of polydisk. International Journal of Mathematics, 21(5) (2010), 687-699.
- [4] H. Li, P. Liu. Composition operators between generally weighted Bloch space and Q^q_{log} space, Banach Journal of Mathematical Analysis, 3(1) (2009), 99-110.
- [5] H. Li and X. Yang. Products of integral-type and composition operators from generally weighted Bloch space to F(p,q,s) space, Filomat, **23(3)** (2009), 231-241. 1
- S. Li. Volterra composition operators between weighted Bergman spaces and Bloch type spaces. J. Korean Math. Soc. 45(1)(2008), 229-248.
- [7] J. H. Shapiro. Composition operators and classical function theory, Springer-Verlag, New York, 1993. 1
- [8] A. L. Shields, D. L. Williams. Bounded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287-302.
- [9] S. Stević. Norm of weighted composition operators from Bloch space to H^{∞}_{μ} on the unit ball, Ars. Combin. 88 (2008), 125-127. 1
- [10] X. Tang. Extended Cesàro operators between Bloch-type spaces in the unit ball of Cⁿ, J. Math. Anal. Appl. 326(2) (2007), 1199-1211.
- [11] J. Xiao. Riemann-Stieltjes operators between weighted Bloch and Bergman spaces of the unit ball, J. London. Math. Soc. 70(2) (2004), 199-214. 1
- [12] S. Ye. Weighted composition operators between different weighted Bloch-type spaces, Acta Mathematica Sinica, Chinese Series, 50(4) (2007), 927-942. 1
- [13] R. Yoneda. The composition operator on weighted Bloch space, Arch. Math., 78 (2002), 310-317. 1
- [14] K. Zhu. Spaces of Holomorphic functions in the unit ball, Springer, New York, 2005. 1
- [15] X. Zhu. Volterra composition operators on logarithmic Bloch spaces. Banach J. Math. Anal. 3(1) (2009), 122-130.
 1