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Abstract

In the present paper we study the generalized growth of entire monogenic functions having slow growth.
The characterizations of generalized order of entire monogenic functions have been obtained in terms of
their Taylor’s series coefficients.
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1. Introduction

Clifford analysis offers possibility of generalizing complex function theory to higher dimensions. It
considers Clifford algebra valued functions that are defined in open subsets of Rn for arbitrary finite n ∈ N
and that are solutions of higher dimensional Cauchy-Riemann systems. These are often called Clifford
holomorphic or monogenic functions.
In order to make calculations more concise we use the following notations, where m= (m1, ...,mn) ∈ Nn0
is the n− dimensional multi-index and x ∈ Rn :

xm = xm1
1 ...xmnn , m! = m1!...mn! , |m| = m1 + ...+mn.

Following Constales, Almeida and Krausshar (see [1] and [2]), we give some definitions and associated
properties.
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By {e1, e2, ..., en} we denote the canonical basis of the Euclidean vector space Rn. The associated real Clifford
algebra Cl0n is the free algebra generated by Rn modulo x2 = −||x||2e0, where e0 is the neutral element with
respect to multiplication of the Clifford algebra Cl0n. In the Clifford algebra Cl0n following multiplication
rule holds:

eiej + ejei = −2δije0 , i, j = 1, 2, ..., n ,

where δij is Kronecker symbol. A basis for Clifford algebra Cl0n is given by the set {eA : A ⊆ {1, 2, ..., n}}
with eA = el1el2 ...elr , where 1 ≤ l1 < l2 < ... < lr ≤ n, eφ = e0 = 1. Each a ∈ Cl0n can be written in the
form a =

∑
A aAeA with aA ∈ R. The conjugation in Clifford algebra Cl0n is defined by ā =

∑
A aA ēA , where

eA = ēlr ēlr−1 ...ēl1 and ēj = −ej for j = 1, 2, ... n, ē0 = e0 = 1. The linear subspace spanR{1, e1, ..., en} =
R ⊕ Rn ⊂ Cl0n is the so called space of paravectors z = x0 + x1e1 + x2e2 + ... + xnen which we simply
identify with Rn+1. Here x0 = Sc(z) is scalar part and x = x1e1 + x2e2 + ...+ xnen = Vec(z) is vector part
of paravector z. The Clifford norm of an arbitrary a =

∑
A aA eA is given by

||a|| =

(∑
A

|aA|2
)1/2

.

Each paravector z ∈ Rn+1\{0} has an inverse element in Rn+1 which can be represented in the form
z−1 = z/||z||2.
The generalized Cauchy-Riemann operator in Rn+1 is given by

D ≡ ∂

∂x0
+

n∑
i=1

ei
∂

∂xi
.

If U ⊆ Rn+1 is an open set, then a function g : U → Cl0n is called left (right) monogenic at a point z ∈ U if
Dg(z) = 0 (g D(z) = 0). The functions which are left (right) monogenic in the whole space are called left
(right) entire monogenic functions.
Let An+1 be the n-dimensional surface area of n+ 1-dimensional unit ball and q0(z) = z/||z||n+1 be Cauchy
kernel function. Then every function g which is monogenic in a neighborhood of closure G of domain G
satisfies the following equation (see [2], p. 766)

g(z) =
1

An+1

∫
∂G
q0(z − ζ) dτ(ζ) g(ζ) , for allz ∈ G,

where

dτ(ζ) =
n∑
j=0

(−1)jej d̂ζj

with

d̂ζj = dζ0 ∧ ... ∧ dζj−1 ∧ dζj+1 ∧ ... ∧ dζn
is the oriented outer normal surface measure. Following [1] and [2], we define the Fueter polynomials Vm(z)
as

Vm(z) =
m!

|m|!
∑

π∈perm(m)

zπ(m1)...zπ(mn),

where perm(m) is the set of all permutations of the sequence (m1,m2...,mn) and zi = xi−x0ei for i = 1, ..., n
and V0(z) = 1. If g is a left monogenic function in a ball ||z|| < R, then for all ||z|| < r with 0 < r < R , the
Taylor series expansion of g(z) is given by (see [1] and [2])
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g(z) =

∞∑
|m|=0

Vm(z) am . (1.1)

In (1.1), {am} are Clifford numbers which are defined by

am =
1

m!An+1

∫
||ζ||<r

qm(ζ) dτ(ζ) g(ζ)

and satisfy the inequality

||am|| ≤ c(n,m)
M(r, g)

r|m|
.

Here M(r, g) = max
||z||=r

{||g(z)||} denotes the maximum modulus of the function g in the closed ball of radius

r and

qm(z) =
∂m0+m1+...+mn

∂xm0
0 ∂xm1

1 ...∂xmnn
q0(z), c(n,m) =

n(n+ 1)...(n+ |m| − 1)

m!
.

The concept of generalized order and generalized type for entire transcendental functions was given by
Seremeta [4], Kapoor and Nautiyal [3]. Hence, let L0 denote the class of functions h(x) satisfying the
following conditions:

(i) h(x) is defined on [a,∞) and is positive, strictly increasing, differentiable and tends to ∞ as x→∞,

(ii) lim
x→∞

h[{1+1/ψ(x)}x]
h(x) = 1 , for every function ψ(x) such that ψ(x) → ∞ as x → ∞. The functions of the

form f(x) = ax+ b, 0 < a <∞, 0 < b <∞ are in class L0.

Let Λ denote the class of functions h satisfying conditions (i) and

(iii) lim
x→∞

h(cx)
h(x) = 1 , for every c > 0 , that is h(x) is slowly increasing. The functions of the form f(x) =

log (ax) , 0 < a <∞, are in class Λ.

Let Ω be the class of functions h(x) satisfying conditions (i) and

(iv) there exist a function δ(x) ∈ Λ and constants x0 , K1 and K2 such that

0<K1 ≤
d{h(x)}

d{δ(log x)}
≤ K2<∞ ,

for all x>x0. The functions of the form f(x) = δ (log x) , δ ∈ Λ are in class Ω. (see [3])

Let Ω be the class of functions h(x) satisfying (i) and

(v) lim
x→∞

d{h(x)}
d(log x) = K , 0<K<∞. The functions of the form f(x) = log x + a (log log x)b , 0 < a < ∞, 0 <

b <∞ are in class Ω. (see [3])

Kapoor and Nautiyal [3] showed that classes Ω and Ω are contained in Λ and Ω
⋂

Ω = φ .
For an entire monogenic function g(z) and functions α(x) either belongs to Ω or to Ω , we define the
generalized order ρ(α, g) of g(z) as

ρ(α, g) = lim
r→∞

sup
α [logM(r, g)]

α (log r)
. (1.2)
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2. Main results

We now prove

Theorem 2.1. Let g : Rn+1 → Cl0n be an entire monogenic function whose Taylor’s series representation is
given by g(z) =

∑∞
|m|=0 Vm(z) am . If α(x) either belongs to Ω or to Ω , then the generalized order ρ(α, g)(1 <

ρ(α, g) <∞) of g(z) is given as

ρ(α, g)− 1 = lim
|m|→∞

sup
α(|m|)

α
{

log ||am/c(n,m)||−1/|m|
} . (2.1)

Proof. Write

θ = lim
|m|→∞

sup
α(|m|)

α
{

log ||am/c(n,m)||−1/|m|
} .

Now first we prove that ρ−1 ≥ θ. The coefficients of a monogenic Taylor’s series satisfy Cauchy’s inequality,
that is

||am/c(n,m)|| ≤ r−|m| M(r, g). (2.2)

Also from (1.2), for ε > 0 and all r > r0(ε), we have

M(r, g) ≤ exp
[
α−1 { ρα(log r)}

]
,

where ρ = ρ+ ε provided r is sufficiently large. So from (2.2), we get

||am/c(n,m)|| ≤ r−|m| exp
[
α−1 { ρα(log r)}

]
or

||am/c(n,m)|| ≤ exp[−|m| log r + α−1{ρα(log r)}] . (2.3)

Since α(x) is an increasing function of x, we define r = r(|m|) as the unique root of the equation

α

[
|m| log r

ρ

]
= ρα(log r). (2.4)

For large values of |m|, we have

α (c |m|) ' α (|m|)
⇒ α (c |m|) ' α (|m|) {1 + o(1)}
⇒ α (c |m|) ' α (|m|)

{
1 + α(c)

α(|m|)

}
⇒ α (c |m|) ' α (|m|) + α (c) .

Thus for large values of |m| from equation (2.4), we have

ρα (log r) ' α (|m|) + α (log r)− α (ρ)

or

α (log r) ' α (|m|)
(ρ − 1)

{
1− α (ρ)

α (|m|)

}
.

or

α (log r) ' α (|m|)
(ρ − 1)

{1 + o(1)}
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or

log r ' α−1
{

1

ρ− 1
α(|m|)

}
= F

(
|m|, 1

ρ− 1

)
. (2.5)

Using (2.4) and (2.5) in (2.3), we get

||am/c(n,m)|| ≤ exp[−|m|F + ( |m|/ρ) F ]

or

ρ

ρ− 1
log {||am/c(n,m)|| }−1/|m| ≥ α−1

{
1

ρ− 1
α(|m|)

}
or

α(|m|)

α
[

ρ
ρ−1 log {||am/c(n,m)|| }−1/|m|

] ≤ ρ− 1

or

α(|m|)
α[log{||am/c(n,m)|| }−1/|m|]

≤ (ρ− 1) ×

×
α
[

ρ
ρ−1

log{||am/c(n,m)|| }−1/|m|
]

α[log{||am/c(n,m)|| }−1/|m|]
.

Since α(cx) ' α(x) as x→∞, proceeding to limits as |m| → ∞ we get

θ ≤ ρ− 1.

Since ε > 0 is arbitrarily small, we finally get

θ ≤ ρ− 1. (2.6)

Now we will prove that θ ≥ ρ− 1. If θ =∞, then there is nothing to prove. So let us assume that 0 ≤ θ<∞.
Therefore, for all ε >0 there exist n0 ∈ N such that for all multi-indices m with |m|>n0 , we have

0 ≤ α(|m|)

α
[
log {||am/c(n,m)|| }−1/|m|

] < θ + ε =θ

or

||am/c(n,m)|| ≤ exp
[
−|m|α−1

{
α(|m|)/ θ

}]
.

Now from the property of maximum modulus, we have

M(r, g) ≤
∞∑
|m|=0

||am||r|m|

or

M(r, g) ≤
∑n0

|m|=0 ||am||r
|m|+

+
∑∞
|m|=n0+1 c(n,m) r|m| exp

[
−|m|α−1

{
α(|m|)/ θ

}]
.

Now for r = max
{

1, exp
(
α−1

(
α(n0+1)

θ

)
/(n+ 1)

)}
, we have

M(r, g) ≤ A1r
n0+

+
∑∞
|m|=n0+1 c(n,m) r|m| exp

[
−|m|α−1

{
α(|m|)/ θ

}]
,

(2.7)
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where A1 is a positive real constant. We take

N(r) =
[
α−1

{
θ α[log{(n+ 1)r}]

}]
,

where [x] denotes the integer part of x ≥ 0. Since α(x) either belongs to Ω or to Ω , the integer N(r) is well
defined. Now if r is sufficiently large, then from (2.7) we have

M(r, g) ≤ A1r
n0 + rN(r)×
×
∑

n0+1≤|m|≤N(r) c(n,m) exp
[
−|m|α−1

{
α(|m|)/ θ

}]
+
∑
|m|>N(r) c(n,m) r|m| exp

[
−|m|α−1

{
α(|m|)/ θ

}]
or

M(r, g) ≤ A1r
n0 + rN(r)×
×
∑∞
|m|=1 c(n,m) exp

[
−|m|α−1

{
α(|m|)/ θ

}]
+
∑
|m|>N(r) c(n,m) r|m| exp

[
−|m|α−1

{
α(|m|)/ θ

}]
.

(2.8)

Now the first series in (2.8) can be rewritten as

∞∑
p=1

 ∑
|m|=p

c(n,m)

 exp
[
−pα−1

{
α(p)/ θ

}]
. (2.9)

Now from ([2], Lemma 1), we have

lim
p→∞

sup

 ∑
|m|=p

c(n,m)

1/p

= n.

Hence we have

lim
p→∞

sup
[(∑

|m|=p c(n,m)
)

exp
[
−pα−1

{
α(p)/ θ

}]]1/p
= n lim

p→∞
sup exp

[
−α−1

{
α(p)/θ

}]
= 0.

Hence the series (2.9) converges to a positive real constant A2. So from (2.8), we get

M(r, g) ≤ A1r
n0 +A2r

N(r)+

+
∑
|m|>N(r) c(n,m) r|m| exp

[
−|m|α−1

{
α(|m|)/ θ

}]
or

M(r, g) ≤ A1r
n0 +A2r

N(r)+

+
∑
|m|>N(r) c(n,m) r|m| exp [−|m| log{(n+ 1)r}]

or

M(r, g) ≤ A1r
n0 +A2r

N(r) +
∑

|m|>N(r)

c(n,m)

(
1

n+ 1

)|m|
or

M(r, g) ≤ A1r
n0 +A2r

N(r) +

∞∑
|m|=1

c(n,m)

(
1

n+ 1

)|m|
. (2.10)

The series in (2.10) can we rewritten as
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∞∑
p=1

 ∑
|m|=p

c(n,m)

( 1

n+ 1

)p
. (2.11)

So we have

lim
p→∞

sup

 ∑
|m|=p

c(n,m)

{ 1

n+ 1

}p1/p

=
n

n+ 1
<1.

Hence the series (2.11) converges to a positive real constant A3. Therefore from (2.10), we get

M(r, g) ≤ A1r
n0 +A2r

N(r) +A3.

Since N(r)→∞ as r →∞ so we can write above inequality as

logM(r, g) ≤ [1 + o(1)] N(r) log r

or

logM(r, g) ≤ [1 + o(1)]
[
α−1

{
θ α[log{(n+ 1)r}]

}]
log r

≤ [1 + o(1)]
[
α−1

{
θ α[log{(n+ 1)r}]

}]
×

×
[
α−1 {α[log{(n+ 1)r}]}

]
≤ [1 + o(1)]

[
α−1

{(
θ + 1

)
α[log{(n+ 1)r}]

}]
or

α[logM(r, g)] ≤
(
θ + 1

)
α[log{(n+ 1)r}]

or

α[logM(r, g)]

α(log r)
≤
(
θ + 1

) α[{1 + o(1)} log r]

α(log r)
.

Proceeding to limits as r →∞ and using properties of α(x), we get

ρ ≤ θ + 1.

Since ε > 0 is arbitrarily small, we finally get

ρ− 1 ≤ θ. (2.12)

Combining (2.6) and (2.12), we get (2.1). Hence Theorem 2.1 is proved.
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