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Abstract

In this paper, we investigate stability of the Pexiderized Cauchy functional equation in 2-Banach spaces and
pose an open problem.
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1. Introduction and preliminaries

In 1940, S.M. Ulam [34] asked the first question on the stability problem for mappings. In 1941, D.
H. Hyers [14] solved the problem of Ulam. This result was generalized by Aoki [1] for additive mappings
and by Th. M. Rassias [24] for linear mappings by considering an unbounded Cauchy difference. The paper
of Th. M. Rassias has provided a lot of influence in the development of what we now call Hyers-Ulam-
Rassias stability of functional equations. In 1994, a further generalization was obtained by P. Găvruta [13].
During the last two decades, a number of papers and research monographs have been published on various
generalizations and applications of the generalized Hyers-Ulam stability to a number of functional equations
and mappings (see [5]-[12],[16]-[20],[22]-[23], [25]-[29], [32],[33]). We also refer the readers to the books: P.
Czerwik [4] and D.H. Hyers, G. Isac and Th.M. Rassias [15].

In the 1960s, S. Gahler [8, 9] introduced the concept of linear 2-normed spaces.
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Definition 1.1. Let X be a linear space over R with dimX > 1 and let ‖., .‖ : X ×X −→ R be a function
satisfying the following properties:
(a) ‖x, y‖ = 0 if and only if x and y are linearly dependent,
(b) ‖x, y‖ = ‖y, x‖,
(c)‖λx, y‖ = |λ|‖x, y‖,
(d) ‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖
for all x, y, z ∈ X and λ ∈ R. Then the function ‖., .‖ is called a 2-norm on X and the pair (X, ‖., .‖) is
called a linear 2-normed space. Sometimes the condition (d) called the triangle inequality.

It follows from (d), that ‖x+y, z‖ ≤ ‖x, z‖+‖y, z‖ and
∣∣‖x, z‖−‖y, z‖∣∣ ≤ ‖x−y, z‖. Hence the functions

x −→ ‖x, y‖ are continuous functions of X into R for each fixed y ∈ X.

Lemma 1.2. ([21]) Let (X, ‖., .‖) be a linear 2-normed space. If x ∈ X and ‖x, y‖ = 0 for all y ∈ X, then
x = 0.

Definition 1.3. A sequence {xn} in a linear 2-normed space X is called a Cauchy sequence if there are two
points y, z ∈ X such that y and z are linearly independent,

lim
m,n→∞

‖xm − xn, y‖ = 0 and lim
m,n→∞

‖xm − xn, z‖ = 0.

Definition 1.4. A sequence {xn} in a linear 2-normed space X is called a convergent sequence if there is
an x ∈ X such that

lim
n→∞

‖xn − x, y‖ = 0,

for all y ∈ X. If {xn} converges to x, write xn −→ x as n −→ ∞ and call x the limit of {xn}. In this case,
we also write lim

n→∞
xn = x.

Definition 1.5. A linear 2-normed space in which every Cauchy sequence is a convergent sequence is called
a 2-Banach space.

Lemma 1.6. ([21]) For a convergent sequence {xn} in a linear 2-normed space X,

lim
n→∞

‖xn, y‖ = ‖ lim
n→∞

xn, y‖,

for all y ∈ X.

In [21] Won-Gil Park has investigated approximate additive mappings, approximate Jensen mappings
and approximate quadratic mappings in 2-Banach spaces. In this paper, we investigate stability of the
Pexiderized Cauchy functional equation in 2-Banach spaces and pose an open problem.

2. Stability of the Pexiderized Cauchy functional equation

Throughout this paper, let X be a normed linear space, Y be a 2-Banach space with dimY > 1 and k
is a fixed integer greater than 1.

Theorem 2.1. Let ϕ : X ×X ×X −→ [0,+∞) be a function such that

lim
n→∞

1

kn
ϕ(knx, kny, z) = 0, (2.1)

for all x, y, z ∈ X. Suppose that f, g, h : X −→ Y be mappings with f(0) = g(0) = h(0) = 0 and

‖f(x+ y)− g(x)− h(y), z‖ ≤ ϕ(x, y, z), (2.2)
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and

M̃k(x, z) :=
∞∑
n=0

k−1∑
i=1

M(knx, iknx, z)

kn
, (2.3)

exist for all x, y, z ∈ X, where M(x, y, z) := ϕ(x, y, z)+ϕ(0, y, z)+ϕ(x, 0, z). Then there is a unique additive
mapping Ak : X −→ Y such that

‖f(x)−Ak(x), z‖ ≤ 1

k
M̃k(x, z) (2.4)

for all x, z ∈ X.

Proof. Replacing y = 0 in (2.2), we get

‖f(x)− g(x), z‖ ≤ ϕ(x, 0, z), (2.5)

for all x, z ∈ X. Replacing x = 0 in (2.2), we get

‖f(y)− h(y), z‖ ≤ ϕ(0, y, z), (2.6)

for all y, z ∈ X. By using (2.5) and (2.6), we get

‖f(x+ y)− f(x)− f(y), z‖ ≤M(x, y, z), (2.7)

for all x, y, z ∈ X, where
M(x, y, z) := ϕ(x, y, z) + ϕ(x, 0, z) + ϕ(0, y, z).

By induction on k, we show that
‖f(kx)− kf(x), z‖ ≤Mk(x, z), (2.8)

for all x, z ∈ X, where Mk(x, z) :=

k−1∑
i=1

M(x, ix, z). Letting y = x in (2.7), we get

‖f(2x)− 2f(x), z‖ ≤M(x, x, z), (2.9)

for all x, z ∈ X. So we get (2.8) for k = 2.
Assume that (2.8) holds for k. Letting y = kx in (2.7), we get

‖f
(
(k + 1)x

)
− f(x)− f(kx), z‖ ≤M(x, kx, z) (2.10)

for all x, z ∈ X. It follows from (2.8) and (2.10) that

‖f
(
(k + 1)x

)
−(k + 1)f(x), z‖
≤ ‖f

(
(k + 1)x

)
− f(x)− f(kx), z‖+ ‖f(kx)− kf(x), z‖

≤Mk+1(x, z),

This completes the induction argument. Replacing x by knx in (2.8) and dividing both sides of (2.8) by
kn+1, we get ∥∥∥ 1

kn+1
f(kn+1x)− 1

kn
f(knx), z

∥∥∥ ≤ 1

kn+1
Mk(knx, z), (2.11)

for all x, y ∈ X and all non-negative integers n. Hence∥∥∥ 1

kn+1
f(kn+1x)− 1

km
f(kmx), z

∥∥∥ ≤ n∑
i=m

∥∥∥ 1

ki+1
f(ki+1x)− 1

ki
f(kix), z

∥∥∥
≤ 1

k

n∑
i=m

1

ki
Mk(kix, z),

(2.12)
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for all x, z ∈ X and all non-negative integers m and n with n ≥ m. Therefore, we conclude from (2.3) and

(2.12) that the sequence { 1

kn
f(knx)} is a Cauchy sequence in Y for all x ∈ X. Since Y is complete the

sequence { 1

kn
f(knx)} converges in Y for all x ∈ X. So one can define the mapping Ak : X → Y by:

Ak(x) := lim
n→∞

1

kn
f(knx), (2.13)

for all x ∈ X. That is

lim
n→∞

‖ 1

kn
f(knx)−Ak(x), y‖ = 0,

for all x, y ∈ X. Letting m = 0 and passing the limit n → ∞ in (2.12), we get (2.4). Now, we show that
Ak : X → Y is an additive mapping. It follows from (2.1), (2.7), (2.13) and Lemma 1.6 that

‖Ak(x+ y)−Ak(x)−Ak(y), z‖ = lim
n→∞

1

kn
‖f(knx+ kny)− f(knx)− f(kny), z‖

≤ lim
n→∞

1

kn
M(knx, kny, z) = 0,

for all x, y, z ∈ X. By Lemma 1.2, Ak(x + y) − Ak(x) − Ak(y) = 0 for all x, y ∈ X. So the mapping
Ak : X → Y is additive.

To prove the uniqueness of Ak, let T : X → Y be another additive mapping satisfying (2.4). Then

‖Ak(x)− T (x), z‖ = lim
n→∞

1

kn
∥∥Ak(knx)− T (knx), z

∥∥
≤ lim

n→∞

1

kn+1
M̃k(knx, z) = 0,

for all x, z ∈ X. By Lemma 1.2, Ak(x)− f(x) = 0 for all x, y ∈ X. So Ak = T.

Theorem 2.2. Let ψ : [0,∞)→ [0,∞) be a function such that ψ(0) = 0 and

1. ψ(ts) ≤ ψ(t)ψ(s),

2. ψ(t) < t for all t > 1.

Suppose that f, g, h : X −→ Y be mappings with f(0) = g(0) = h(0) = 0 and

‖f(x+ y)− g(x)− h(y), z‖ ≤ ψ(‖x‖X) + ψ(‖y‖X) + ψ(‖z‖X), (2.14)

for all x, y, z ∈ X. Then there is a unique additive mapping Ak : X → Y satisfying

‖f(x)−Ak(x), z‖ ≤
2

k−1∑
i=1

(1 + ψ(i))

k − ψ(k)
ψ(‖x‖X) + 3ψ(‖z‖X), (2.15)

for all x, z ∈ X. Moreover, Ak = A2 for all k ≥ 2.

Proof. Let
ϕ(x, y, z) = ψ(‖x‖X) + ψ(‖y‖X) + ψ(‖z‖X),

for all x, y, z ∈ X. It follows from (1) that ψ(kn) ≤
(
ψ(k)

)n
and

ϕ(knx, kny, z) ≤ (ψ(k)
)n(

ψ(‖x‖X) + ψ(‖y‖X)
)

+ ψ(‖z‖X)
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By using Theorem 2.1, we can get (2.15). Now, we show that Ak = A2. It follows from Theorem 2.1 that
Ak(x) = limn→∞

1
kn f(knx). Replacing x by 2nx in (2.15) and dividing both sides of (2.15) by 2n, we get

‖f(2nx)

2n
−Ak(x), z‖ ≤

2
k−1∑
i=1

(1 + ψ(i))

k − ψ(k)

ψ(‖2nx‖X)

2n
+

3ψ(‖z‖X)

2n

≤
2
k−1∑
i=1

(1 + ψ(i))

k − ψ(k)
ψ(‖x‖X)

ψ(2n)

2n
+

3ψ(‖z‖X)

2n

(2.16)

for all x, z ∈ X. By passing the limit n −→∞ in (2.16), we get Ak = A2.

Theorem 2.3. Let p, q be non-negative real numbers such that p > 0, q < 1 and H : [0,∞)× [0,∞)→ [0,∞)
be a homogeneous function of degree q. Suppose that f, g, h : X −→ Y be mappings with f(0) = g(0) =
h(0) = 0 and

‖f(x+ y)− g(x)− h(y), z‖ ≤ H(‖x‖X , ‖y‖X) + ‖z‖pX ,

for all x, y, z ∈ X. Then thereis a unique additive mapping Ak : X → Y such that

‖f(x)−Ak(x), z‖ ≤ σk(H)

k − kq
‖x‖qX + 3‖z‖pX (2.17)

for all x ∈ X, where σk(H) := (k − 1)H(1, 0) +

k−1∑
i=1

H(1, i) +H(0, i). Moreover, Ak = A2 for all k ≥ 2.

Proof. Let
ϕ(x, y, z) = H(‖x‖X , ‖y‖X) + ‖z‖pX

for all x, y, z ∈ X. By using Theorem 2.1, we can get (2.17). Now, we show that Ak = A2. It follows from
Theorem 2.1 that Ak(x) = limn→∞

1
kn f(knx). Replacing x by 2nx in (2.17) and dividing both sides of (2.17)

by 2n, we get

‖f(2nx)

2n
−Ak(x), z‖ ≤ σk(H)

k − kq
‖2nx‖qX

2n
+

3‖z‖pX
2n

(2.18)

for all x ∈ X. By passing the limit n −→∞ in (2.18), we get

lim
n→∞

‖f(2nx)

2n
−Ak(x), z‖ = 0,

‖ lim
n→∞

f(2nx)

2n
−Ak(x), z‖ = 0,

for all x, z ∈ X. By Lemma 1.2, limn→∞
f(2nx)

2n
−Ak(x) = 0, so Ak = A2.

Theorem 2.4. Let p, q be non-negative real numbers such that p > 0, q < 1 and H : [0,∞)× [0,∞)→ [0,∞)
be a homogeneous function of degree q. Suppose that f, g, h : X −→ Y be mappings with f(0) = g(0) =
h(0) = 0 and

‖f(x+ y)− g(x)− h(y), z‖ ≤ H(‖x‖X , ‖y‖X)‖z‖pX ,

for all x, y, z ∈ X. Then there is a unique additive mapping Ak : X → Y such that

‖f(x)−Ak(x), z‖ ≤ σk(H)

k − kq
‖x‖qX‖z‖

p
X (2.19)

for all x, z ∈ X, where σk(H) := (k − 1)H(1, 0) +

k−1∑
i=1

H(1, i) +H(0, i). Moreover, Ak = A2 for all k ≥ 2.
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Corollary 2.5. Let p be real number such that 0 < p < 1 . Suppose that f, g, h : X −→ Y be mappings with
f(0) = g(0) = h(0) = 0 and

‖f(x+ y)− g(x)− h(y), z‖ ≤ ‖x‖pX + ‖y‖pX + ‖z‖pX ,

for all x, y, z ∈ X. Then there is a unique additive mapping Ak : X → Y such that

‖f(x)−Ak(x), z‖ ≤ 2(k − 1) + 2(1p + 2p + ...+ (k − 1)p)

k − kp
‖x‖pX + 3‖z‖pX

for all x, z ∈ X, Moreover, Ak = A2 for all k ≥ 2.

Corollary 2.6. Let r, s, p be real numbers such that p > 0, r + s < 1 . Suppose that f, g, h : X −→ Y be
mappings with f(0) = g(0) = h(0) = 0 and

‖f(x+ y)− g(x)− h(y), z‖ ≤ ‖x‖rX‖y‖sX‖z‖
p
X

for all x, y, z ∈ X. Then there is a unique additive mapping Ak : X → Y such that

‖f(x)−Ak(x), z‖ ≤ 1s + 2s + ...+ (k − 1)s

k − kr+s
‖x‖r+s

X ‖z‖pX

for all x, z ∈ X, Moreover, Ak = A2 for all k ≥ 2 and

f(x) = g(x) = h(x),

for all x ∈ X.

Open problem: What is the best possible value of k in Corollaries 2.5 and 2.6?
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