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Abstract

The purpose of this paper is to modify Ishikawa iterative process to have strong convergence without any
compact assumptions for asymptotically quasi-pseudocontractive mappings in the framework of real Hilbert
spaces.
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1. Introduction and Preliminaries

Throughout this paper, we always assume that H is a real Hilbert space with inner product 〈·, ·〉, and
norm ‖ · ‖. Assume that C is a nonempty closed convex subset of H and T : C → C is a nonlinear mapping.
We use F (T ) to denote the set of fixed points of T .

T is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.
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T is said to be asymptotically nonexpansive [3] if there exists a sequence {kn} ⊂ [1,∞) with limn→∞ kn =
1 such that

‖Tnx− Tny‖ ≤ kn‖x− y‖, ∀x, y ∈ C, n ≥ 1. (1.1)

T is said to be asymptotically quasi-nonexpansive if F (T ) 6= ∅ and (1.1) holds for every x ∈ C but
y ∈ F (T ). We remark here that the class of asymptotically nonexpansive mappings was introduced by
Goebel and Kirk; see [3] for more details. They proved that, if C is a nonempty bounded closed convex
subset of a uniformly convex Banach space E, then every asymptotically nonexpansive self-mapping T on
C has a fixed point. Further, the set F (T ) of fixed points of T is closed and convex.

T is said to be pseudocontractive if

〈Tx− Ty, x− y〉 ≤ ‖x− y‖2, ∀x, y ∈ C.

T is said to be asymptotically pseudocontractive if there exists a sequence {kn} ⊂ [1,∞) with limn→∞ kn =
1 such that

〈Tnx− Tny, x− y〉 ≤ kn‖x− y‖2, ∀x, y ∈ C. (1.2)

We remark here that the class of asymptotically pseudocontractive mappings was introduced by Schu; see
[16] for more details.

It is clear that (1.2) is equivalent to

‖Tnx− Tny‖2 ≤ (2kn − 1)‖x− y‖2 + ‖(I − Tn)x− (I − Tn)y‖2, ∀x, y ∈ C. (1.3)

The class of asymptotically pseudocontractive mappings contains properly the class of asymptotically non-
expansive mappings as a subclass, which can be seen from the following example.

Example. ([15]) For x ∈ [0, 1], define a mapping T : [0, 1]→ [0, 1] by

Tx = (1− x
2
3 )

3
2 .

Then T is asymptotically pseudocontractive but it is not asymptotically nonexpansive.

T : C → C is said to be asymptotically quasi-pseudocontractive if F (T ) 6= ∅ and there exists a sequence
{kn} ⊂ [1,∞) with limn→∞ kn = 1 such that

〈Tnx− p, x− p〉 ≤ kn‖x− p‖2, ∀x ∈ C, p ∈ F (T ). (1.4)

It is clear that (1.4) is equivalent to

‖Tnx− p‖2 ≤ (2kn − 1)‖x− p‖2 + ‖x− Tnx‖2, ∀x ∈ C, p ∈ F (T ). (1.5)

In 1991, Schu [16] proved the following results for asymptotically pseudocontractive mappings in the
framework of Hilbert spaces.

Theorem Schu. Let C be a nonempty closed bounded convex subset of a Hilbert space H. Let L > 0
and T : C → C be completely continuous, uniformly L-Lipschitzian and asymptotically pseudo-contractive
with sequence {kn} ⊂ [1,∞), qn = 2kn − 1 for all n ≥ 1,

∑∞
n=1(q

2
n − 1) < ∞, {αn} and {βn} ⊂ [0, 1],

ε ≤ αn ≤ βn ≤ b for all n ≥ 1 and for some ε > 0 and some b ∈ (0, L−2[
√

1 + L2 − 1]). For given x1 ∈ K,
define a sequence {xn} in C by the following algorithm:{

yn = (1− βn)xn + βnT
nxn,

xn+1 = (1− αn)xn + αnT
nyn, ∀n ≥ 1.

Then {xn} converges strongly to some fixed point of T.
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Two classical iteration processes are often used to approximate a fixed point of a nonexpansive mapping
and its extensions. The first one was introduced by Mann [7], which is defined as follows:{

x0 ∈ C arbitrary choosen,

xn+1 = (1− αn)xn + αnTxn, ∀n ≥ 0,
(1.6)

where {αn} is a sequence in the interval (0, 1).
The second one was referred to as Ishikawa iteration process [4], which is defined recursively as follows:

x0 ∈ C arbitrary choosen,

yn = (1− βn)xn + βnTxn,

xn+1 = (1− αn)xn + αnTyn, ∀n ≥ 0,

(1.7)

where {αn} and {βn} are sequences in the interval (0, 1).
But both (1.6) and (1.7) have only weak convergence, in general; see [2] and [19]. Reich [14] shows

that, if E is a uniformly convex and has a Fréchet differentiable norm, and the sequence {αn} is such that∑∞
n=0 αn(1− αn) =∞, then the sequence {xn} generated by the process (1.6) converges weakly to a point

in F (T ) (an extension of the results to the process (1.7) can be found in [19]). Therefore, many authors
have attempted to modify (1.6) and (1.7) to have strong convergence.

In 2006, Martinez-Yanes and Xu [9] modified (1.7) to have strong convergence by hybrid projection
algorithms in Hilbert spaces. To be more precise, They proved the following result.

Theorem MYX. Let C be a closed convex subset of a Hilbert space H and T : C → C be a nonexpansive
mapping such that F (T ) 6= ∅. Assume that {αn} and {βn} are sequences in [0, 1] such that αn ≤ 1 − δ for
some δ ∈ (0, 1] and βn → 1. Define a sequence {xn} in C by the following algorithm:

x0 ∈ C chosen arbitrarily,

zn = βnxn + (1− βn)Txn,

yn = αnxn + (1− αn)Tzn,

Cn = {v ∈ C : ‖yn − v‖2 ≤ ‖xn − v‖2 + (1− αn)(‖zn‖2 − ‖xn‖2 + 2〈xn − zn, v〉)},
Qn = {v ∈ C : 〈x0 − xn, xn − v〉 ≥ 0},
xn+1 = PCn∩Qnx0.

Then {xn} converges in norm to PF (T )x0.

Recently, Qin, Su and Shang [13] improved the results of Martinez-Yanes and Xu [9] from nonexpansive
mappings to asymptotically nonexpansive mappings. More precisely, They proved the following theorem.

Theorem QSS. Let C be a bounded closed convex subset of a Hilbert space H and T : C → C be an
asymptotically nonexpansive mapping with a sequence {kn} such that kn → 1 as n→∞. Assume that {αn}
is a sequence in (0, 1) such that αn ≤ 1− δ for all n and for some δ ∈ (0, 1] and βn → 1. Define a sequence
{xn} in C by the following algorithm:

x0 ∈ C chosen arbitrarily,

zn = βnxn + (1− βn)Tnxn,

yn = αnxn + (1− αn)Tnzn,

Cn = {v ∈ C : ‖yn − v‖2 ≤ ‖xn − v‖2 + (1− αn)[k2n‖zn‖2 − ‖xn‖2

+(k2n − 1)M + 2〈xn − k2nzn, v〉]},
Qn = {v ∈ C : 〈x0 − xn, xn − v〉 ≥ 0},
xn+1 = PCn∩Qnx0,

where M is a appropriate constant such that M > ‖v‖2 for each v ∈ Cn, then {xn} converges to PF (T )x0.
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Very recently, Zhou [20] improved the results of Martinez-Yanes and Xu [9] from nonexpansive mappings
to Lipschitz pseudo-contractions. To be more precise, he proved the following theorem.

Theorem Zhou. Let C be a closed convex subset of a real Hilbert space H and T : C → C be a Lipschitz
pseudo-contraction such that F (T ) 6= ∅. Suppose that {αn} and {βn} are two real sequences in (0, 1)
satisfying the conditions:

(a) βn ≤ αn, ∀n ≥ 0;
(b) lim infn→∞ αn > 0;
(c) lim supn→∞ αn ≤ α ≤ 1√

1+L2+1
, ∀n ≥ 0, where L ≥ 1 is the Lipschitzian constant of T .

Let a sequence {xn} generated by

x0 ∈ C,
yn = (1− αn)xn + αnTxn,

zn = (1− βn)xn + βnTyn,

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 − αnβn(1− 2αn − L2α2
n)‖xn − Tnxn‖2},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0.

Then {xn} converges strongly to a fixed point v of T , where v = PF (T )x0.

In this paper, motivated by Acedo and Xu [1], Kim and Xu [5, 6], Marino and Xu [8], Martinez-Yanes
and Xu [9], Nakajo and Takahashi [10], Qin et al. [11], Qin, Cho and Zhou [12], Qin, Su and Shang [13], Su
and Qin [17, 18] and Zhou [20, 21], we modify Ishikawa iterative process (1.7) to have strong convergence for
asymptotically quasi-pseudocontractive mappings in the framework of Hilbert spaces without any compact
assumption.

In order to prove our main results, we need the following lemmas.

Lemma 1.1. ([8]) Let H be a real Hilbert space. Then the following equations hold:
(a) ‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉 for all x, y ∈ H.
(b) ‖tx+ (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2 for all t ∈ [0, 1] and x, y ∈ H.

Lemma 1.2. Let C be a closed convex subset of real Hilbert space H and PC be the metric projection from
H onto C (i.e., for x ∈ H, PCx is the only point in C such that ‖x− PCx‖ = inf{‖x− z‖ : z ∈ C}). Given
x ∈ H and z ∈ C, z = PCx if and only if there holds the relations: 〈x− z, y − z〉 ≤ 0 for any y ∈ C.

The following lemma can be found in Zhou and Su [22], we still give the proof for the completeness of
the paper.

Lemma 1.3. Let C be a nonempty bounded closed convex subset of H and T : C → C be a uniformly
L-Lipschitzian and asymptotically quasi-pseudocontractive mapping. Then F (T ) is a closed convex subset
of C.

Proof. From the continuity of T , we can conclude that F (T ) is closed.
Next, we show that F (T ) is convex. If F (T ) = ∅, then the conclusion is always true. Let p1, p2 ∈ F (T ).

We prove p ∈ F (T ), where p = tp1+(1−t)p2, for t ∈ (0, 1). Put y(α,n) = (1−α)p+αTnp, where α ∈ (0, 1
1+L).
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For all w ∈ F (T ), we see that

‖p− Tnp‖2

= 〈p− Tnp, p− Tnp〉

=
1

α
〈p− y(α,n), p− Tnp〉

=
1

α
〈p− y(α,n), p− Tnp− (y(α,n) − Tny(α,n))〉+

1

α
〈p− y(α,n), y(α,n) − Tny(α,n)〉

=
1

α
〈p− y(α,n), p− Tnp− (y(α,n) − Tny(α,n))〉+

1

α
〈p− w + w − y(α,n), y(α,n) − Tny(α,n)〉

≤ 1 + L

α
‖p− y(α,n)‖2 +

1

α
〈p− w, y(α,n) − Tny(α,n)〉+

1

α
〈w − y(α,n), y(α,n) − Tny(α,n)〉

≤ (1 + L)α‖p− Tnp‖2 +
1

α
〈p− w, y(α,n) − Tny(α,n)〉+

1

α
(kn − 1)‖w − y(α,n)‖2.

This implies that

α[1− (1 + L)α]‖p− Tnp‖2 ≤ 〈p− w, y(α,n) − Tny(α,n)〉+ (kn − 1)‖w − y(α,n)‖2, ∀w ∈ F (T ). (1.8)

Taking w = pi, i = 1, 2 in (1.8), multiplying t and (1− t) on the both sides of (1.8), respectively and adding
up, we see that

α[1− (1 + L)α]‖p− Tnp‖2 ≤ (kn − 1)‖w − y(α,n)‖2.

This shows that Tnp − p → 0 as n → ∞. Note that T is uniformly L-Lipschitzian. It follows that
Tn+1p− Tp→ 0 as n→∞. This is, p ∈ F (T ). This completes the proof.

2. Main Results

Theorem 2.1. Let C be a nonempty closed convex subset of a real Hilbert space H and T : C → C be a
uniformly L-Lipschitz and asymptotically quasi-pseudocontractive mapping such that F (T ) is nonempty and
bounded. Let {xn} be a sequence generated in the following algorithm:

x0 ∈ H chosen arbitrarily,

C1 = C,

x1 = PC1x0,

yn = (1− αn)xn + αnT
nxn,

zn = (1− βn)xn + βnT
nyn,

Cn+1 = {z ∈ Cn : ‖zn − z‖2 ≤ ‖xn − z‖2 + βnθn − αnβn(1− 2αn − L2α2
n)‖xn − Tnxn‖2},

xn+1 = PCn+1x0,

where

θn = 2(kn − 1)[2kn + 1 + (1 + L)2]

(
sup

z∈F (T )
‖xn − z‖

)2

→ 0.

Assume that the control sequences {αn} and {βn} in (0, 1) satisfy the restrictions:
(a) βn ≤ αn, ∀n ≥ 1;
(b) lim infn→∞ αn > 1;
(c) lim supn→∞ αn ≤ α < 1√

1+L2+1
, ∀n ≥ 0.

Then the sequence {xn} converges strongly to PF (T )x0.
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Proof. We divide the proof into five parts.

Step 1. Show that Cn is closed and convex for all n ≥ 1.

It is obvious that C1 is closed and convex. Assume that Cm is closed and convex. Next, we show that
Cm+1 is closed and convex for the same m. For all z ∈ Cm, we see that

‖zm − z‖2 ≤ ‖xm − z‖2 + βmθm − αmβm(1− 2αm − L2α2
m)‖xm − Tmxm‖2

is equivalent to the following inequality

2〈xm − zm, z〉 ≤ ‖xm‖2 − ‖zm‖2 + βmθm − αmβm(1− 2αm − L2α2
m)‖xm − Tmxm‖2.

This shows that Cm+1 is closed and convex. We, therefore, obtain that Cn is convex for every n ≥ 1.

Step 2. Show that F (T ) ⊂ Cn, ∀n ≥ 1.

It is obvious that F (T ) ⊂ C1. Assume that F (T ) ⊂ Cm for some m. Next, we show that F (T ) ⊂ Cm+1

for the same m. In view of Lemma 1.1, for all u ∈ F (T ) ⊂ Cm, we see from (1.3) that

‖zm − u‖2 = ‖(1− βm)(xm − u) + βm(Tmym − u)‖2

= (1− βm)‖xm − u‖2 + βm‖Tmym − u‖2 − βn(1− βm)‖xm − Tmym‖2

≤ (1− βm)‖xm − u‖2 + βm
(
(2km − 1)‖ym − u‖2 + ‖ym − Tmym‖2

)
− βm(1− βm)‖xm − Tmym‖2

(2.1)

and
‖ym − Tmym‖2

= ‖(1− αm)(xm − Tmym) + αm(Tmxm − Tmym)‖2

= (1− αm)‖xm − Tmym‖2 + αm‖Tmxn − Tmym‖2 − αm(1− αm)‖xm − Tmxm‖2

≤ (1− αm)‖xm − Tmym‖2 + L2αm‖xm − ym‖2 − αm(1− αm)‖xm − Tmxm‖2

≤ (1− αm)‖xm − Tmym‖2 + αm(L2α2
m + αm − 1)‖xm − Tmxm‖2.

(2.2)

Note that

‖ym − u‖2 = (1− αm)‖xm − u‖2 + αm‖Tmxm − u‖2 − αm(1− αm)‖xm − Tmxm‖2

≤ (1− αm)‖xm − u‖2 + αm(2km − 1)‖xm − u‖2 + αm‖xm − Tmxm‖2

− αm(1− αm)‖xm − Tmxm‖2

≤ [1 + 2αm(km − 1)]‖xm − u‖2 + α2
m‖xm − Tmxm‖2.

(2.3)

Substituting (2.2) and (2.3) into (2.1), we arrive at

‖zm − u‖2 ≤ (1− βm)‖xm − u‖2 + βm(2km − 1)[1 + 2αm(km − 1)]‖xm − u‖2

+ (2km − 1)α2
mβm‖xm − Tmxm‖2 + αmβm(L2α2

m + αm − 1)‖xm − Tmxm‖2

+ βm(βm − αm)‖xm − Tmym‖2

≤ (1− βm)‖xm − u‖2 + βm(2km − 1)[1 + 2αm(km − 1)]‖xm − u‖2

+ 2(km − 1)α2
mβm‖xm − Tmxm‖2 + αmβm(L2α2

m + 2αm − 1)‖xm − Tmxm‖2

+ βm(βm − αm)‖xm − Tmym‖2

≤ ‖xm − u‖2 + 2(km − 1)βm[2αmkm + 1− αm + α2
m(1 + L)2]‖xm − u‖2

+ αmβm(L2α2
m + 2αm − 1)‖xm − Tmxm‖2 + βm(βm − αm)‖xm − Tmym‖2

≤ ‖xm − u‖2 + 2(km − 1)βm[2km + 1 + (1 + L)2]‖xm − u‖2

+ αmβm(L2α2
m + 2αm − 1)‖xm − Tmxm‖2 + βm(βm − αm)‖xm − Tmym‖2.
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From the condition (a), we obtain that

‖zm − u‖2 ≤ ‖xm − u‖2 + βmθm − αmβm(1− 2αm − L2α2
m)‖xm − Tmxm‖2.

Therefore, we obtain that u ∈ Cm+1. This concludes that F (T ) ⊂ Cn, ∀n ≥ 1.

Step 3. Show that {xn} is a Cauchy sequence in C.

In view of xn = PCnx0 and PF (T )x0 ∈ F (T ) ⊂ Cn for each n ≥ 1, we see that

‖x0 − xn‖ ≤ ‖x0 − PF (T )x0‖.

This proves that the sequence {xn} is bounded. From xn = PCnx0, we see that

〈x0 − xn, xn − y〉 ≥ 0, ∀y ∈ Cn. (2.4)

In view of xn+1 ∈ Cn+1 ⊂ Cn, we see that

0 ≤ 〈x0 − xn, xn − xn+1〉
= 〈x0 − xn, xn − x0 + x0 − xn+1〉
≤ −‖x0 − xn‖2 + ‖x0 − xn‖‖x0 − xn+1‖,

that is, ‖x0−xn‖ ≤ ‖x0−xn+1‖. This together with the boundedness of {xn} implies that limn→∞ ‖x0−xn‖
exists. By the construction of Cn, we see that Cm ⊂ Cn and xm = PCmx0 ∈ Cn for any positive integer
m ≥ n. From xn = PCnx0, we see that

〈x0 − xn, xn − xm〉 ≥ 0. (2.5)

It follows that
‖xm − xn‖2 = ‖xm − x0 + x0 − xn‖2

= ‖xm − x0‖2 + ‖x0 − xn‖2 − 2〈x0 − xn, x0 − xm〉
≤ ‖xm − x0‖2 − ‖x0 − xn‖2 − 2〈x0 − xn, xn − xm〉
≤ ‖xm − x0‖2 − ‖x0 − xn‖2.

(2.6)

Letting m,n→∞ in (2.6), we have limm,n→∞ ‖xn − xm‖ = 0. Hence, {xn} is a Cauchy sequence.

Step 4. Show that Txn − xn → 0 as n→∞.
Since H is a Hilbert space and C is closed and convex, we may assume that

xn → q ∈ C as n→∞. (2.7)

Next, we show that q = PF (T )x0. To end this, we first show that q ∈ F (T ). By taking m = n + 1 in (2.6),
we arrive at

lim
n→∞

‖xn − xn+1‖ = 0, (2.8)

In view of xn+1 = PCn+1x0 ∈ Cn+1, we obtain that

‖zn − xn+1‖2 ≤ ‖xn − xn+1‖2 + βnθn − αnβn(1− 2αn − L2α2
n)‖xn − Tnxn‖2. (2.9)

On the other hand, we have

‖zn − xn+1‖2 = ‖zn − xn + xn − xn+1‖2

= ‖zn − xn‖2 + 2〈xn − zn, xn+1 − xn〉+ ‖xn − xn+1‖2.
(2.10)

Combining (2.9) with (2.10) and noting that zn = (1− βn)xn + βnT
nyn, we see that

β2n‖xn − Tnyn‖2 + 2βn〈xn − Tnyn, xn+1 − xn〉 ≤ βnθn − αnβn(1− 2αn − L2α2
n)‖xn − Tnxn‖2.
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That is,

βn‖xn − Tnyn‖2 + 2〈xn − Tnyn, xn+1 − xn〉 ≤ θn − αn(1− 2αn − L2α2
n)‖xn − Tnxn‖2.

It follows that
αn(1− 2αn − L2α2

n)‖xn − Tnxn‖2 ≤ θn − 2〈xn − Tnyn, xn+1 − xn〉.

From the assumptions on {αn}, we can choose a ∈ (α, 1√
1+L2+1

). For such chosen a, there exists a positive

integer N ≥ 1 such that αn < a for all n ≥ N . It follows that 1 − 2a − L2a2 > 0. On the other hand, one
can choose b ∈ (0, c), where c = lim infn→∞ αn. we obtain that αn > b for n large enough. It follows that

b(1− 2a− L2a2)‖xn − Tnxn‖2 ≤ θn +M‖xn+1 − xn‖

for n ≥ 0 large enough, where M = 2 supn≥0{‖xn − Tnyn‖}. From (2.8), we obtain that

lim
n→∞

‖xn − Tnxn‖ = 0. (2.11)

On the other hand, we have

‖xn − Txn‖ = ‖xn − xn+1‖+ ‖xn+1 − Tn+1xn+1‖+ ‖Tn+1xn+1 − Tn+1xn‖
+ ‖Tn+1xn − Txn‖
≤ ‖xn − xn+1‖+ ‖xn+1 − Tn+1xn+1‖+ L‖xn+1 − xn‖+ L‖Tnxn − xn‖.

From (2.8) and (2.11), we arrive at
lim
n→∞

‖xn − Txn‖ = 0. (2.12)

Step 5. Show that xn → q = PF (T )x0 as n→∞.
Notice that

‖q − Tq‖ ≤ ‖q − xn‖+ ‖xn − Txn‖+ ‖Txn − Tq‖
≤ (1 + L)‖q − xn‖+ ‖xn − Txn‖.

It follows from (2.7) and (2.12) that q ∈ F (T ). From (2.4), we see that

〈x0 − xn, xn − y〉 ≥ 0, ∀y ∈ F (T ) ⊂ Cn. (2.13)

Taking the limit in (2.13), we obtain that 〈x0− q, q− y〉 ≥ 0, ∀y ∈ F (T ). In view of Lemma 1.2, we see that
q = PF (T )x0. This completes the proof.

Remark 2.2. Theorem 2.1 includes Theorem 4.1 of Kim and Xu [6] a as special case. It also improves
the results of Kim and Xu [5] and Qin, Su and Shang [13] from asymptotically nonexpansive mappings to
asymptotically quasi-pseudocontractive mappings.

For the class of Lipschitz quasi-pseudocontractive mappings, we have from Theorem 2.1 the following
result.

Corollary 2.3. Let C be a nonempty closed convex subset of a real Hilbert space H and T : C → C be a
L-Lipschitz and quasi-pseudocontractive mapping such that F (T ) 6= ∅. Let {xn} be a sequence generated in
the following algorithm:

x0 ∈ H chosen arbitrarily,

C1 = C,

x1 = PC1x0,

yn = (1− αn)xn + αnTxn,

zn = (1− βn)xn + βnTyn,

Cn = {z ∈ Cn : ‖zn − z‖2 ≤ ‖xn − z‖2 − αnβn(1− 2αn − L2α2
n)‖xn − Txn‖2},

xn+1 = PCn+1x0.
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Assume that the control sequences {αn} and {βn} in (0, 1) satisfy the restrictions:
(a) βn ≤ αn, ∀n ≥ 1;
(b) lim infn→∞ αn > 1;
(c) lim supn→∞ αn ≤ α < 1√

1+L2+1
, ∀n ≥ 0.

Then the sequence {xn} converges strongly to PF (T )x0.

Remark 2.4. Comparing Corollary 2.3 with Theorem 3.6 of Zhou [20], we do not require that the mapping
I − T is demi-closed at zero. From the computation point of view, we remove the iterative step Qn, see [20]
for more details.

Remark 2.5. Corollary 2.3 also gives an affirmative answer to the problem proposed by Marino and Xu [8].
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