Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 5 (2012), 466–474 Research Article

Journal of Nonlinear Science and Applications

Print: ISSN 2008-1898 Online: ISSN 2008-1901

Hybrid projection algorithms for approximating fixed points of asymptotically quasi-pseudocontractive mappings

Shin Min Kang^a, Sun Young Cho^{b,*}, Xiaolong Qin^c

^aDepartment of Mathematics and RINS, Gyeongsang National University, Jinju 660-701, Korea.

^bDepartment of Mathematics, Gyeongsang National University, Jinju 660-701, Korea.

^cDepartment of Mathematics, Hangzhou Normal University, Hangzhou 310036, China.

Dedicated to George A Anastassiou on the occasion of his sixtieth birthday

Communicated by Professor R. Saadati

Abstract

The purpose of this paper is to modify Ishikawa iterative process to have strong convergence without any compact assumptions for asymptotically quasi-pseudocontractive mappings in the framework of real Hilbert spaces.

Keywords: Asymptotically pseudocontractive mapping; asymptotically nonexpansive mapping; fixed point; hybrid projection algorithm. *2010 MSC:* 47H09, 47J25.

1. Introduction and Preliminaries

Throughout this paper, we always assume that H is a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$, and norm $\|\cdot\|$. Assume that C is a nonempty closed convex subset of H and $T: C \to C$ is a nonlinear mapping. We use F(T) to denote the set of fixed points of T.

T is said to be *nonexpansive* if

 $\|Tx - Ty\| \le \|x - y\|, \quad \forall x, y \in C.$

 * Corresponding author

Received 2011-9-11

Email addresses: smkang@gnu.ac.kr (Shin Min Kang), ooly61@yahoo.co.kr (Sun Young Cho), qxlxajh@163.com (Xiaolong Qin)

T is said to be asymptotically nonexpansive [3] if there exists a sequence $\{k_n\} \subset [1, \infty)$ with $\lim_{n\to\infty} k_n = 1$ such that

$$||T^{n}x - T^{n}y|| \le k_{n}||x - y||, \quad \forall x, y \in C, n \ge 1.$$
(1.1)

T is said to be asymptotically quasi-nonexpansive if $F(T) \neq \emptyset$ and (1.1) holds for every $x \in C$ but $y \in F(T)$. We remark here that the class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk; see [3] for more details. They proved that, if C is a nonempty bounded closed convex subset of a uniformly convex Banach space E, then every asymptotically nonexpansive self-mapping T on C has a fixed point. Further, the set F(T) of fixed points of T is closed and convex.

T is said to be *pseudocontractive* if

$$\langle Tx - Ty, x - y \rangle \le ||x - y||^2, \quad \forall x, y \in C.$$

T is said to be asymptotically pseudocontractive if there exists a sequence $\{k_n\} \subset [1, \infty)$ with $\lim_{n\to\infty} k_n = 1$ such that

$$\langle T^n x - T^n y, x - y \rangle \le k_n \|x - y\|^2, \quad \forall x, y \in C.$$
(1.2)

We remark here that the class of asymptotically pseudocontractive mappings was introduced by Schu; see [16] for more details.

It is clear that (1.2) is equivalent to

$$||T^{n}x - T^{n}y||^{2} \le (2k_{n} - 1)||x - y||^{2} + ||(I - T^{n})x - (I - T^{n})y||^{2}, \quad \forall x, y \in C.$$
(1.3)

The class of asymptotically pseudocontractive mappings contains properly the class of asymptotically nonexpansive mappings as a subclass, which can be seen from the following example.

Example. ([15]) For $x \in [0, 1]$, define a mapping $T : [0, 1] \rightarrow [0, 1]$ by

$$Tx = (1 - x^{\frac{2}{3}})^{\frac{3}{2}}$$

Then T is asymptotically pseudocontractive but it is not asymptotically nonexpansive.

 $T: C \to C$ is said to be asymptotically quasi-pseudocontractive if $F(T) \neq \emptyset$ and there exists a sequence $\{k_n\} \subset [1,\infty)$ with $\lim_{n\to\infty} k_n = 1$ such that

$$\langle T^n x - p, x - p \rangle \le k_n \|x - p\|^2, \quad \forall x \in C, \, p \in F(T).$$

$$(1.4)$$

It is clear that (1.4) is equivalent to

$$||T^{n}x - p||^{2} \le (2k_{n} - 1)||x - p||^{2} + ||x - T^{n}x||^{2}, \quad \forall x \in C, \ p \in F(T).$$

$$(1.5)$$

In 1991, Schu [16] proved the following results for asymptotically pseudocontractive mappings in the framework of Hilbert spaces.

Theorem Schu. Let C be a nonempty closed bounded convex subset of a Hilbert space H. Let L > 0and $T: C \to C$ be completely continuous, uniformly L-Lipschitzian and asymptotically pseudo-contractive with sequence $\{k_n\} \subset [1,\infty)$, $q_n = 2k_n - 1$ for all $n \ge 1$, $\sum_{n=1}^{\infty} (q_n^2 - 1) < \infty$, $\{\alpha_n\}$ and $\{\beta_n\} \subset [0,1]$, $\epsilon \le \alpha_n \le \beta_n \le b$ for all $n \ge 1$ and for some $\epsilon > 0$ and some $b \in (0, L^{-2}[\sqrt{1+L^2}-1])$. For given $x_1 \in K$, define a sequence $\{x_n\}$ in C by the following algorithm:

$$\begin{cases} y_n = (1 - \beta_n) x_n + \beta_n T^n x_n, \\ x_{n+1} = (1 - \alpha_n) x_n + \alpha_n T^n y_n, \quad \forall n \ge 1. \end{cases}$$

Then $\{x_n\}$ converges strongly to some fixed point of T.

Two classical iteration processes are often used to approximate a fixed point of a nonexpansive mapping and its extensions. The first one was introduced by Mann [7], which is defined as follows:

$$\begin{cases} x_0 \in C & arbitrary \ choosen, \\ x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T x_n, \quad \forall n \ge 0, \end{cases}$$
(1.6)

where $\{\alpha_n\}$ is a sequence in the interval (0, 1).

The second one was referred to as Ishikawa iteration process [4], which is defined recursively as follows:

$$\begin{cases} x_0 \in C & \text{arbitrary choosen,} \\ y_n = (1 - \beta_n) x_n + \beta_n T x_n, \\ x_{n+1} = (1 - \alpha_n) x_n + \alpha_n T y_n, \quad \forall n \ge 0, \end{cases}$$
(1.7)

where $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in the interval (0, 1).

But both (1.6) and (1.7) have only weak convergence, in general; see [2] and [19]. Reich [14] shows that, if E is a uniformly convex and has a Fréchet differentiable norm, and the sequence $\{\alpha_n\}$ is such that $\sum_{n=0}^{\infty} \alpha_n (1 - \alpha_n) = \infty$, then the sequence $\{x_n\}$ generated by the process (1.6) converges weakly to a point in F(T) (an extension of the results to the process (1.7) can be found in [19]). Therefore, many authors have attempted to modify (1.6) and (1.7) to have strong convergence.

In 2006, Martinez-Yanes and Xu [9] modified (1.7) to have strong convergence by hybrid projection algorithms in Hilbert spaces. To be more precise, They proved the following result.

Theorem MYX. Let C be a closed convex subset of a Hilbert space H and $T: C \to C$ be a nonexpansive mapping such that $F(T) \neq \emptyset$. Assume that $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in [0,1] such that $\alpha_n \leq 1-\delta$ for some $\delta \in (0,1]$ and $\beta_n \to 1$. Define a sequence $\{x_n\}$ in C by the following algorithm:

$$\begin{cases} x_{0} \in C \quad chosen \ arbitrarily, \\ z_{n} = \beta_{n}x_{n} + (1 - \beta_{n})Tx_{n}, \\ y_{n} = \alpha_{n}x_{n} + (1 - \alpha_{n})Tz_{n}, \\ C_{n} = \{v \in C : \|y_{n} - v\|^{2} \leq \|x_{n} - v\|^{2} + (1 - \alpha_{n})(\|z_{n}\|^{2} - \|x_{n}\|^{2} + 2\langle x_{n} - z_{n}, v \rangle)\} \\ Q_{n} = \{v \in C : \langle x_{0} - x_{n}, x_{n} - v \rangle \geq 0\}, \\ x_{n+1} = P_{C_{n} \cap Q_{n}}x_{0}. \end{cases}$$

Then $\{x_n\}$ converges in norm to $P_{F(T)}x_0$.

Recently, Qin, Su and Shang [13] improved the results of Martinez-Yanes and Xu [9] from nonexpansive mappings to asymptotically nonexpansive mappings. More precisely, They proved the following theorem.

Theorem QSS. Let C be a bounded closed convex subset of a Hilbert space H and $T : C \to C$ be an asymptotically nonexpansive mapping with a sequence $\{k_n\}$ such that $k_n \to 1$ as $n \to \infty$. Assume that $\{\alpha_n\}$ is a sequence in (0,1) such that $\alpha_n \leq 1 - \delta$ for all n and for some $\delta \in (0,1]$ and $\beta_n \to 1$. Define a sequence $\{x_n\}$ in C by the following algorithm:

$$\begin{cases} x_{0} \in C \quad chosen \ arbitrarily, \\ z_{n} = \beta_{n}x_{n} + (1 - \beta_{n})T^{n}x_{n}, \\ y_{n} = \alpha_{n}x_{n} + (1 - \alpha_{n})T^{n}z_{n}, \\ C_{n} = \{v \in C : \|y_{n} - v\|^{2} \leq \|x_{n} - v\|^{2} + (1 - \alpha_{n})[k_{n}^{2}\|z_{n}\|^{2} - \|x_{n}\|^{2} \\ + (k_{n}^{2} - 1)M + 2\langle x_{n} - k_{n}^{2}z_{n}, v \rangle]\}, \\ Q_{n} = \{v \in C : \langle x_{0} - x_{n}, x_{n} - v \rangle \geq 0\}, \\ x_{n+1} = P_{C_{n} \cap Q_{n}}x_{0}, \end{cases}$$

where M is a appropriate constant such that $M > ||v||^2$ for each $v \in C_n$, then $\{x_n\}$ converges to $P_{F(T)}x_0$.

Very recently, Zhou [20] improved the results of Martinez-Yanes and Xu [9] from nonexpansive mappings to Lipschitz pseudo-contractions. To be more precise, he proved the following theorem.

Theorem Zhou. Let C be a closed convex subset of a real Hilbert space H and $T : C \to C$ be a Lipschitz pseudo-contraction such that $F(T) \neq \emptyset$. Suppose that $\{\alpha_n\}$ and $\{\beta_n\}$ are two real sequences in (0,1) satisfying the conditions:

(a) $\beta_n \leq \alpha_n, \forall n \geq 0;$

(b) $\liminf_{n\to\infty} \alpha_n > 0;$

(c) $\limsup_{n\to\infty} \alpha_n \leq \alpha \leq \frac{1}{\sqrt{1+L^2+1}}, \forall n \geq 0$, where $L \geq 1$ is the Lipschitzian constant of T. Let a sequence $\{x_n\}$ generated by

$$\begin{cases} x_0 \in C, \\ y_n = (1 - \alpha_n)x_n + \alpha_n T x_n, \\ z_n = (1 - \beta_n)x_n + \beta_n T y_n, \\ C_n = \{z \in C : \|z_n - z\|^2 \le \|x_n - z\|^2 - \alpha_n \beta_n (1 - 2\alpha_n - L^2 \alpha_n^2) \|x_n - T^n x_n\|^2 \}, \\ Q_n = \{z \in C : \langle x_n - z, x_0 - x_n \rangle \ge 0 \}, \\ x_{n+1} = P_{C_n \cap Q_n} x_0. \end{cases}$$

Then $\{x_n\}$ converges strongly to a fixed point v of T, where $v = P_{F(T)}x_0$.

In this paper, motivated by Acedo and Xu [1], Kim and Xu [5, 6], Marino and Xu [8], Martinez-Yanes and Xu [9], Nakajo and Takahashi [10], Qin et al. [11], Qin, Cho and Zhou [12], Qin, Su and Shang [13], Su and Qin [17, 18] and Zhou [20, 21], we modify Ishikawa iterative process (1.7) to have strong convergence for asymptotically quasi-pseudocontractive mappings in the framework of Hilbert spaces without any compact assumption.

In order to prove our main results, we need the following lemmas.

Lemma 1.1. ([8]) Let H be a real Hilbert space. Then the following equations hold:
(a)
$$||x - y||^2 = ||x||^2 - ||y||^2 - 2\langle x - y, y \rangle$$
 for all $x, y \in H$.
(b) $||tx + (1 - t)y||^2 = t||x||^2 + (1 - t)||y||^2 - t(1 - t)||x - y||^2$ for all $t \in [0, 1]$ and $x, y \in H$.

Lemma 1.2. Let C be a closed convex subset of real Hilbert space H and P_C be the metric projection from H onto C (i.e., for $x \in H$, $P_C x$ is the only point in C such that $||x - P_C x|| = \inf\{||x - z|| : z \in C\}$). Given $x \in H$ and $z \in C$, $z = P_C x$ if and only if there holds the relations: $\langle x - z, y - z \rangle \leq 0$ for any $y \in C$.

The following lemma can be found in Zhou and Su [22], we still give the proof for the completeness of the paper.

Lemma 1.3. Let C be a nonempty bounded closed convex subset of H and $T : C \to C$ be a uniformly L-Lipschitzian and asymptotically quasi-pseudocontractive mapping. Then F(T) is a closed convex subset of C.

Proof. From the continuity of T, we can conclude that F(T) is closed.

Next, we show that F(T) is convex. If $F(T) = \emptyset$, then the conclusion is always true. Let $p_1, p_2 \in F(T)$. We prove $p \in F(T)$, where $p = tp_1 + (1-t)p_2$, for $t \in (0, 1)$. Put $y_{(\alpha,n)} = (1-\alpha)p + \alpha T^n p$, where $\alpha \in (0, \frac{1}{1+L})$. For all $w \in F(T)$, we see that

$$\begin{split} \|p - T^{n}p\|^{2} &= \langle p - T^{n}p, p - T^{n}p \rangle \\ &= \frac{1}{\alpha} \langle p - y_{(\alpha,n)}, p - T^{n}p \rangle \\ &= \frac{1}{\alpha} \langle p - y_{(\alpha,n)}, p - T^{n}p - (y_{(\alpha,n)} - T^{n}y_{(\alpha,n)}) \rangle + \frac{1}{\alpha} \langle p - y_{(\alpha,n)}, y_{(\alpha,n)} - T^{n}y_{(\alpha,n)} \rangle \\ &= \frac{1}{\alpha} \langle p - y_{(\alpha,n)}, p - T^{n}p - (y_{(\alpha,n)} - T^{n}y_{(\alpha,n)}) \rangle + \frac{1}{\alpha} \langle p - w + w - y_{(\alpha,n)}, y_{(\alpha,n)} - T^{n}y_{(\alpha,n)} \rangle \\ &\leq \frac{1 + L}{\alpha} \|p - y_{(\alpha,n)}\|^{2} + \frac{1}{\alpha} \langle p - w, y_{(\alpha,n)} - T^{n}y_{(\alpha,n)} \rangle + \frac{1}{\alpha} \langle w - y_{(\alpha,n)}, y_{(\alpha,n)} - T^{n}y_{(\alpha,n)} \rangle \\ &\leq (1 + L)\alpha \|p - T^{n}p\|^{2} + \frac{1}{\alpha} \langle p - w, y_{(\alpha,n)} - T^{n}y_{(\alpha,n)} \rangle + \frac{1}{\alpha} \langle k_{n} - 1 \| w - y_{(\alpha,n)} \|^{2}. \end{split}$$

This implies that

$$\alpha [1 - (1 + L)\alpha] \|p - T^n p\|^2 \le \langle p - w, y_{(\alpha, n)} - T^n y_{(\alpha, n)} \rangle + (k_n - 1) \|w - y_{(\alpha, n)}\|^2, \quad \forall w \in F(T).$$
(1.8)

Taking $w = p_i$, i = 1, 2 in (1.8), multiplying t and (1 - t) on the both sides of (1.8), respectively and adding up, we see that

$$\alpha [1 - (1 + L)\alpha] \|p - T^n p\|^2 \le (k_n - 1) \|w - y_{(\alpha, n)}\|^2.$$

This shows that $T^n p - p \to 0$ as $n \to \infty$. Note that T is uniformly L-Lipschitzian. It follows that $T^{n+1}p - Tp \to 0$ as $n \to \infty$. This is, $p \in F(T)$. This completes the proof.

2. Main Results

Theorem 2.1. Let C be a nonempty closed convex subset of a real Hilbert space H and $T : C \to C$ be a uniformly L-Lipschitz and asymptotically quasi-pseudocontractive mapping such that F(T) is nonempty and bounded. Let $\{x_n\}$ be a sequence generated in the following algorithm:

$$\begin{cases} x_{0} \in H & chosen \ arbitrarily, \\ C_{1} = C, \\ x_{1} = P_{C_{1}}x_{0}, \\ y_{n} = (1 - \alpha_{n})x_{n} + \alpha_{n}T^{n}x_{n}, \\ z_{n} = (1 - \beta_{n})x_{n} + \beta_{n}T^{n}y_{n}, \\ C_{n+1} = \{z \in C_{n} : ||z_{n} - z||^{2} \le ||x_{n} - z||^{2} + \beta_{n}\theta_{n} - \alpha_{n}\beta_{n}(1 - 2\alpha_{n} - L^{2}\alpha_{n}^{2})||x_{n} - T^{n}x_{n}||^{2}\}, \\ x_{n+1} = P_{C_{n+1}}x_{0}, \end{cases}$$

where

$$\theta_n = 2(k_n - 1)[2k_n + 1 + (1 + L)^2] \left(\sup_{z \in F(T)} ||x_n - z||\right)^2 \to 0.$$

Assume that the control sequences $\{\alpha_n\}$ and $\{\beta_n\}$ in (0,1) satisfy the restrictions:

- (a) $\beta_n \leq \alpha_n, \forall n \geq 1;$
- (b) $\liminf_{n\to\infty} \alpha_n > 1;$
- (c) $\limsup_{n \to \infty} \alpha_n \le \alpha < \frac{1}{\sqrt{1+L^2}+1}, \forall n \ge 0.$

Then the sequence $\{x_n\}$ converges strongly to $P_{F(T)}x_0$.

Proof. We divide the proof into five parts.

Step 1. Show that C_n is closed and convex for all $n \ge 1$.

It is obvious that C_1 is closed and convex. Assume that C_m is closed and convex. Next, we show that C_{m+1} is closed and convex for the same m. For all $z \in C_m$, we see that

$$||z_m - z||^2 \le ||x_m - z||^2 + \beta_m \theta_m - \alpha_m \beta_m (1 - 2\alpha_m - L^2 \alpha_m^2) ||x_m - T^m x_m||^2$$

is equivalent to the following inequality

 $2\langle x_m - z_m, z \rangle \le \|x_m\|^2 - \|z_m\|^2 + \beta_m \theta_m - \alpha_m \beta_m (1 - 2\alpha_m - L^2 \alpha_m^2) \|x_m - T^m x_m\|^2.$

This shows that C_{m+1} is closed and convex. We, therefore, obtain that C_n is convex for every $n \ge 1$.

Step 2. Show that $F(T) \subset C_n, \forall n \ge 1$.

...9

It is obvious that $F(T) \subset C_1$. Assume that $F(T) \subset C_m$ for some m. Next, we show that $F(T) \subset C_{m+1}$ for the same m. In view of Lemma 1.1, for all $u \in F(T) \subset C_m$, we see from (1.3) that

$$||z_m - u||^2 = ||(1 - \beta_m)(x_m - u) + \beta_m (T^m y_m - u)||^2$$

= $(1 - \beta_m)||x_m - u||^2 + \beta_m ||T^m y_m - u||^2 - \beta_n (1 - \beta_m)||x_m - T^m y_m||^2$
 $\leq (1 - \beta_m)||x_m - u||^2 + \beta_m ((2k_m - 1))||y_m - u||^2 + ||y_m - T^m y_m||^2)$
 $- \beta_m (1 - \beta_m)||x_m - T^m y_m||^2$ (2.1)

and

$$\begin{aligned} \|y_m - T^m y_m\|^2 \\ &= \|(1 - \alpha_m)(x_m - T^m y_m) + \alpha_m (T^m x_m - T^m y_m)\|^2 \\ &= (1 - \alpha_m)\|x_m - T^m y_m\|^2 + \alpha_m \|T^m x_n - T^m y_m\|^2 - \alpha_m (1 - \alpha_m)\|x_m - T^m x_m\|^2 \\ &\leq (1 - \alpha_m)\|x_m - T^m y_m\|^2 + L^2 \alpha_m \|x_m - y_m\|^2 - \alpha_m (1 - \alpha_m)\|x_m - T^m x_m\|^2 \\ &\leq (1 - \alpha_m)\|x_m - T^m y_m\|^2 + \alpha_m (L^2 \alpha_m^2 + \alpha_m - 1)\|x_m - T^m x_m\|^2. \end{aligned}$$
(2.2)

Note that

$$||y_m - u||^2 = (1 - \alpha_m) ||x_m - u||^2 + \alpha_m ||T^m x_m - u||^2 - \alpha_m (1 - \alpha_m) ||x_m - T^m x_m||^2$$

$$\leq (1 - \alpha_m) ||x_m - u||^2 + \alpha_m (2k_m - 1) ||x_m - u||^2 + \alpha_m ||x_m - T^m x_m||^2$$

$$- \alpha_m (1 - \alpha_m) ||x_m - T^m x_m||^2$$

$$\leq [1 + 2\alpha_m (k_m - 1)] ||x_m - u||^2 + \alpha_m^2 ||x_m - T^m x_m||^2.$$
(2.3)

Substituting (2.2) and (2.3) into (2.1), we arrive at

$$\begin{split} |z_m - u||^2 &\leq (1 - \beta_m) \|x_m - u\|^2 + \beta_m (2k_m - 1)[1 + 2\alpha_m (k_m - 1)] \|x_m - u\|^2 \\ &+ (2k_m - 1)\alpha_m^2 \beta_m \|x_m - T^m x_m\|^2 + \alpha_m \beta_m (L^2 \alpha_m^2 + \alpha_m - 1) \|x_m - T^m x_m\|^2 \\ &+ \beta_m (\beta_m - \alpha_m) \|x_m - T^m y_m\|^2 \\ &\leq (1 - \beta_m) \|x_m - u\|^2 + \beta_m (2k_m - 1)[1 + 2\alpha_m (k_m - 1)] \|x_m - u\|^2 \\ &+ 2(k_m - 1)\alpha_m^2 \beta_m \|x_m - T^m x_m\|^2 + \alpha_m \beta_m (L^2 \alpha_m^2 + 2\alpha_m - 1) \|x_m - T^m x_m\|^2 \\ &+ \beta_m (\beta_m - \alpha_m) \|x_m - T^m y_m\|^2 \\ &\leq \|x_m - u\|^2 + 2(k_m - 1)\beta_m [2\alpha_m k_m + 1 - \alpha_m + \alpha_m^2 (1 + L)^2] \|x_m - u\|^2 \\ &+ \alpha_m \beta_m (L^2 \alpha_m^2 + 2\alpha_m - 1) \|x_m - T^m x_m\|^2 + \beta_m (\beta_m - \alpha_m) \|x_m - T^m y_m\|^2 \\ &\leq \|x_m - u\|^2 + 2(k_m - 1)\beta_m [2k_m + 1 + (1 + L)^2] \|x_m - u\|^2 \\ &+ \alpha_m \beta_m (L^2 \alpha_m^2 + 2\alpha_m - 1) \|x_m - T^m x_m\|^2 + \beta_m (\beta_m - \alpha_m) \|x_m - T^m y_m\|^2. \end{split}$$

From the condition (a), we obtain that

$$||z_m - u||^2 \le ||x_m - u||^2 + \beta_m \theta_m - \alpha_m \beta_m (1 - 2\alpha_m - L^2 \alpha_m^2) ||x_m - T^m x_m||^2.$$

Therefore, we obtain that $u \in C_{m+1}$. This concludes that $F(T) \subset C_n, \forall n \ge 1$.

Step 3. Show that $\{x_n\}$ is a Cauchy sequence in C.

In view of $x_n = P_{C_n} x_0$ and $P_{F(T)} x_0 \in F(T) \subset C_n$ for each $n \ge 1$, we see that

$$||x_0 - x_n|| \le ||x_0 - P_{F(T)}x_0||$$

This proves that the sequence $\{x_n\}$ is bounded. From $x_n = P_{C_n} x_0$, we see that

$$\langle x_0 - x_n, x_n - y \rangle \ge 0, \quad \forall y \in C_n.$$
 (2.4)

In view of $x_{n+1} \in C_{n+1} \subset C_n$, we see that

$$0 \le \langle x_0 - x_n, x_n - x_{n+1} \rangle = \langle x_0 - x_n, x_n - x_0 + x_0 - x_{n+1} \rangle \le - \|x_0 - x_n\|^2 + \|x_0 - x_n\| \|x_0 - x_{n+1}\|,$$

that is, $||x_0 - x_n|| \le ||x_0 - x_{n+1}||$. This together with the boundedness of $\{x_n\}$ implies that $\lim_{n\to\infty} ||x_0 - x_n||$ exists. By the construction of C_n , we see that $C_m \subset C_n$ and $x_m = P_{C_m} x_0 \in C_n$ for any positive integer $m \ge n$. From $x_n = P_{C_n} x_0$, we see that

$$\langle x_0 - x_n, x_n - x_m \rangle \ge 0. \tag{2.5}$$

It follows that

$$||x_m - x_n||^2 = ||x_m - x_0 + x_0 - x_n||^2$$

= $||x_m - x_0||^2 + ||x_0 - x_n||^2 - 2\langle x_0 - x_n, x_0 - x_m \rangle$
 $\leq ||x_m - x_0||^2 - ||x_0 - x_n||^2 - 2\langle x_0 - x_n, x_n - x_m \rangle$
 $\leq ||x_m - x_0||^2 - ||x_0 - x_n||^2.$ (2.6)

Letting $m, n \to \infty$ in (2.6), we have $\lim_{m,n\to\infty} ||x_n - x_m|| = 0$. Hence, $\{x_n\}$ is a Cauchy sequence.

Step 4. Show that $Tx_n - x_n \to 0$ as $n \to \infty$.

Since H is a Hilbert space and C is closed and convex, we may assume that

$$x_n \to q \in C \quad \text{as } n \to \infty.$$
 (2.7)

Next, we show that $q = P_{F(T)}x_0$. To end this, we first show that $q \in F(T)$. By taking m = n + 1 in (2.6), we arrive at

$$\lim_{n \to \infty} \|x_n - x_{n+1}\| = 0, \tag{2.8}$$

In view of $x_{n+1} = P_{C_{n+1}} x_0 \in C_{n+1}$, we obtain that

$$||z_n - x_{n+1}||^2 \le ||x_n - x_{n+1}||^2 + \beta_n \theta_n - \alpha_n \beta_n (1 - 2\alpha_n - L^2 \alpha_n^2) ||x_n - T^n x_n||^2.$$
(2.9)

On the other hand, we have

$$||z_n - x_{n+1}||^2 = ||z_n - x_n + x_n - x_{n+1}||^2$$

= $||z_n - x_n||^2 + 2\langle x_n - z_n, x_{n+1} - x_n \rangle + ||x_n - x_{n+1}||^2.$ (2.10)

Combining (2.9) with (2.10) and noting that $z_n = (1 - \beta_n)x_n + \beta_n T^n y_n$, we see that

$$\beta_n^2 \|x_n - T^n y_n\|^2 + 2\beta_n \langle x_n - T^n y_n, x_{n+1} - x_n \rangle \le \beta_n \theta_n - \alpha_n \beta_n (1 - 2\alpha_n - L^2 \alpha_n^2) \|x_n - T^n x_n\|^2.$$

That is,

$$\beta_n \|x_n - T^n y_n\|^2 + 2\langle x_n - T^n y_n, x_{n+1} - x_n \rangle \le \theta_n - \alpha_n (1 - 2\alpha_n - L^2 \alpha_n^2) \|x_n - T^n x_n\|^2$$

It follows that

$$\alpha_n (1 - 2\alpha_n - L^2 \alpha_n^2) \|x_n - T^n x_n\|^2 \le \theta_n - 2\langle x_n - T^n y_n, x_{n+1} - x_n \rangle.$$

From the assumptions on $\{\alpha_n\}$, we can choose $a \in (\alpha, \frac{1}{\sqrt{1+L^2+1}})$. For such chosen a, there exists a positive integer $N \ge 1$ such that $\alpha_n < a$ for all $n \ge N$. It follows that $1 - 2a - L^2 a^2 > 0$. On the other hand, one can choose $b \in (0, c)$, where $c = \liminf_{n \to \infty} \alpha_n$. we obtain that $\alpha_n > b$ for n large enough. It follows that

$$b(1 - 2a - L^2 a^2) \|x_n - T^n x_n\|^2 \le \theta_n + M \|x_{n+1} - x_n\|$$

for $n \ge 0$ large enough, where $M = 2 \sup_{n>0} \{ \|x_n - T^n y_n\| \}$. From (2.8), we obtain that

$$\lim_{n \to \infty} \|x_n - T^n x_n\| = 0.$$
 (2.11)

On the other hand, we have

$$\begin{aligned} \|x_n - Tx_n\| &= \|x_n - x_{n+1}\| + \|x_{n+1} - T^{n+1}x_{n+1}\| + \|T^{n+1}x_{n+1} - T^{n+1}x_n\| \\ &+ \|T^{n+1}x_n - Tx_n\| \\ &\leq \|x_n - x_{n+1}\| + \|x_{n+1} - T^{n+1}x_{n+1}\| + L\|x_{n+1} - x_n\| + L\|T^nx_n - x_n\|. \end{aligned}$$

From (2.8) and (2.11), we arrive at

$$\lim_{n \to \infty} \|x_n - Tx_n\| = 0.$$
 (2.12)

Step 5. Show that $x_n \to q = P_{F(T)}x_0$ as $n \to \infty$. Notice that

$$||q - Tq|| \le ||q - x_n|| + ||x_n - Tx_n|| + ||Tx_n - Tq||$$

$$\le (1 + L)||q - x_n|| + ||x_n - Tx_n||.$$

It follows from (2.7) and (2.12) that $q \in F(T)$. From (2.4), we see that

$$\langle x_0 - x_n, x_n - y \rangle \ge 0, \quad \forall y \in F(T) \subset C_n.$$
 (2.13)

Taking the limit in (2.13), we obtain that $\langle x_0 - q, q - y \rangle \ge 0$, $\forall y \in F(T)$. In view of Lemma 1.2, we see that $q = P_{F(T)}x_0$. This completes the proof.

Remark 2.2. Theorem 2.1 includes Theorem 4.1 of Kim and Xu [6] a as special case. It also improves the results of Kim and Xu [5] and Qin, Su and Shang [13] from asymptotically nonexpansive mappings to asymptotically quasi-pseudocontractive mappings.

For the class of Lipschitz quasi-pseudocontractive mappings, we have from Theorem 2.1 the following result.

Corollary 2.3. Let C be a nonempty closed convex subset of a real Hilbert space H and $T : C \to C$ be a L-Lipschitz and quasi-pseudocontractive mapping such that $F(T) \neq \emptyset$. Let $\{x_n\}$ be a sequence generated in the following algorithm:

$$\begin{cases} x_{0} \in H & chosen \ arbitrarily, \\ C_{1} = C, \\ x_{1} = P_{C_{1}}x_{0}, \\ y_{n} = (1 - \alpha_{n})x_{n} + \alpha_{n}Tx_{n}, \\ z_{n} = (1 - \beta_{n})x_{n} + \beta_{n}Ty_{n}, \\ C_{n} = \{z \in C_{n} : \|z_{n} - z\|^{2} \leq \|x_{n} - z\|^{2} - \alpha_{n}\beta_{n}(1 - 2\alpha_{n} - L^{2}\alpha_{n}^{2})\|x_{n} - Tx_{n}\|^{2}\}, \\ x_{n+1} = P_{C_{n+1}}x_{0}. \end{cases}$$

Assume that the control sequences $\{\alpha_n\}$ and $\{\beta_n\}$ in (0,1) satisfy the restrictions:

(a) $\beta_n \leq \alpha_n, \forall n \geq 1;$

- (b) $\liminf_{n\to\infty} \alpha_n > 1;$
- (c) $\limsup_{n\to\infty} \alpha_n \le \alpha < \frac{1}{\sqrt{1+L^2+1}}, \forall n \ge 0.$

Then the sequence $\{x_n\}$ converges strongly to $P_{F(T)}x_0$.

Remark 2.4. Comparing Corollary 2.3 with Theorem 3.6 of Zhou [20], we do not require that the mapping I - T is demi-closed at zero. From the computation point of view, we remove the iterative step Q_n , see [20] for more details.

Remark 2.5. Corollary 2.3 also gives an affirmative answer to the problem proposed by Marino and Xu [8].

References

- G.L. Acedo and H.K. Xu, Iterative methods for strict pseudo-contractions in Hilbert spaces, Nonlinear Anal., 67 (2007), 2258–2271.
- [2] A. Genel and J. Lindenstrass, An example concerning fixed points, Israel J. Math., 22 (1975), 81–86. 1
- [3] K. Goebel and W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 35 (1972), 171–174. 1
- [4] S. Ishikawa, Fixed points by a new iteration medthod, Proc. Amer. Math. Soc., 44 (1974), 147–150. 1
- T.H. Kim and H.K. Xu, Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal., 64 (2006), 1140–1152. 1, 2.2
- [6] T.H. Kim and H.K. Xu, Convergence of the modified Mann's iteration method for asymptotically strict pseudo-contractions, Nonlinear Anal., 68 (2008), 2828–2836. 1, 2.2
- [7] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510. 1
- [8] G. Marino and H.K. Xu Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl., 329 (2007), 336–346. 1, 1.1, 2.5
- C. Martinez-Yanes and H.K. Xu, Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal., 64 (2006), 2400–2411.
- [10] K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., 279 (2003), 372–379. 1
- [11] X. Qin, Y.J. Cho, S.M. Kang and M. Shang, A hybrid iterative scheme for asymptotically k-strict pseudo-contractions in Hilbert spaces, Nonlinear Anal., 70 (2009), 1902–1911.
- [12] X. Qin, Y.J. Cho and H. Zhou, Strong convergence theorems of fixed point for quasi-pseudo-contractions by hybrid projection algorithms, Fixed Point Theory, 11 (2010), 347–354. 1
- [13] X. Qin, Y. Su and M. Shang, Strong convergence theorems for asymptotically nonexpansive mappings by hybrid methods, Kyungpook Math. J., 48 (2008), 133–142. 1
- [14] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 67 (1979), 274–276. 1, 2.2
- [15] B.E. Rhoades, Comments on two fixed point iteration methods, J. Math. Anal. Appl., 56 (1976), 741–750. 1
- [16] J. Schu, Iteration constrction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl., 158 (1991), 107–413. 1
- [17] Y. Su and X. Qin, Strong convergence theorems for asymptotically nonexpansive mappings and asymptotically nonexpansive semigroups, Fixed Point Theory Appl., 2006 (2006), Article ID 96215. 1
- [18] Y. Su and X. Qin, Monotone CQ iteration processes for nonexpansive semigroups and maximal monotone operators, Nonlinear Anal., 68 (2008), 3657–3664. 1
- [19] K.K. Tan and H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl., 178 (1993), 301–308. 1
- [20] H. Zhou, Convergence theorems of fixed points for Lipschitz pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl., 343 (2008), 546–556. 1
- [21] H. Zhou, Demiclosedness principle with applications for asymptotically pseudo-contractions in Hilbert spaces, Nonlinear Anal., 70 (2009), 3140–3145. 1, 2.4
- [22] H. Zhou and Y. Su, Strong convergence theorems for a family of quasi-asymptotic pseudo-contractions in Hilbert spaces, Nonlinear Anal., 70 (2009), 4047–4052. 1