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Abstract

We discuss the concept of probabilistic quasi-nonexpansive mappings in connection with the mappings of
Nishiura. We also prove a result regarding the convergence of the sequence of successive approximations for
probabilistic quasi-nonexpansive mappings.
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1. Introduction

Consider the equation
Ax = y, y ∈ X (1.1)

where A is a mapping on a metric space X endowed with the metric d. Suppose that (1.1) has a solution
x∗ and only one. An iterative method for solving (1.1) is defined by a mapping T from X into X having x∗

as a fixed point, and consists of a sequence of successive approximations xn, n ≥ 0, defined by

xn+1 = Txn, n ≥ 0. (1.2)

The fundamental problem in approximating the solution x∗ concerns the convergence of the sequence (1.2)
to x∗. In the literature there are many results in this respect. Widely used are the methods for which the
operator T is quasi-nonexpansive on a subset D of X, meaning that
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(a) T has a fixed point x∗ ∈ D, and

(b) T satisfies the inequality
d(Tx, x∗) < d(x, x∗), x ∈ D,x 6= x∗. (1.3)

This inequality implies the uniqueness of the fixed point x∗ of T . If, moreover, T satisfies (1.3) in the form

d(Tx, x∗) ≤ kd(x, x∗), x ∈ D,x 6= x∗ (1.4)

for a constant k ∈ [0, 1), the T is said to be a strict quasi-nonexpansive mapping on D.
We note that the concept of quasi-nonexpansive mappings was first considered on the real line by F.

Tricomi in 1941, and it was generalized and studied intensively in random spaces.
On the other hand, when the equation (1.1) is perturbed with a random noise, the mappings A and T

depend on a parameter belonging to a probability space (Ω,A, P ). Thus, A and T can be considered as
random mappings, and the fixed point formulation of the equation (1.1) becomes

T (ω, ξ(ω)) = ξ(ω), ω ∈ Ω. (1.5)

The fixed point is a mapping ξ∗ from Ω into X. The problem of the measurability of ξ∗ was studied by
many authors (see e.g. [2]).

Gh. Bocşan [1] showed that the study of the random fixed point for the equation (1.5) can be connected
with the study of fixed points for the Nemytskii operator induced by T on probabilistic metric spaces. This
operator is defined on the space S of the X-valued random variables ξ by

(T̃ ξ)(ω) = T (ω, ξ(ω)), ω ∈ Ω. (1.6)

The convergence in probability of the sequence of iterates of equation (1.5)

ξn+1(ω) = T (ω, ξn(ω)), ω ∈ Ω, n ≥ 0 (1.7)

means the convergence of the sequence

ξn+1 = T̃ ξn, n ≥ 0. (1.8)

Based on this observation, it is justified to generalize the results on quasi-nonexpansive mappings to prob-
abilistic metric spaces.

2. The order on ∆+

Consider the set ∆+ of all left-continuous distribution functions F satisfying F (0) = 0 and define an
order on this set by F ≤ G iff F (x) ≤ G(x) for all x > 0; we write F < G if F ≤ G and F (x) < G(x) for
some x > 0. As in [4], for F ∈ ∆+ define F∨ : [0, 1)→ [0,∞) by

F∨(a) = inf{x > 0 : F (x) > a}.

We adapt the considerations in [4] to our context. We first note that F can be recovered from F∨ by the
formula

F (x) = sup{a ∈ [0, 1) : F∨(a) < x}

because
F (x) > a⇔ F∨(a) < x. (2.1)

Indeed, if F (x) > a, then, since F is left continuous in x, we have F (x − δ) > a for some δ > 0, therefore
F∨(a) ≤ x− δ < x. Thus, F (x) > a implies F∨(a) < x. Clearly, if F∨(a) < x, then x ∈ {x > 0 : F (x) > a},
hence F (x) > a. Therefore, F∨(a) < x implies F (x) > a, and thus the equivalence (2.1) is proved.
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Proposition 2.1. The order on ∆+ can be characterized in terms of the functions F∨ by

F ≤ G⇔ F∨ ≥ G∨.

Proof. It is immediate that F ≤ G implies F∨ ≥ G∨. We now suppose F∨ ≥ G∨, therefore F∨(a) ≥ G∨(a)
for all a ∈ (0, 1). For x > 0 let a < F (x). From relation (2.1) it follows that F∨(a) < x, and from F∨ ≥ G∨
we obtain G∨(a) < x. Once again, by (2.1), G(x) > a. Therefore, for every a < F (x) we have a < G(x).
Thus, F (x) ≤ G(x), for all x > 0.

Remark 2.2. The following characterization also holds:

F < G⇔ F∨ > G∨.

Proof. We first note that F < G implies F∨ ≥ G∨. Also, from F < G it follows that there exists x0 > 0
such that F (x0) < G(x0). Let a0 ∈ (0, 1) be such that F (x0) < a0 < G(x0). From the first inequality, we
have x0 /∈ {x > 0 : F (x) > a0}, i.e. F∨(a0) ≥ x0. From the second inequality we have G∨(a0) < x0. Hence,
F < G implies F∨ > G∨.

Conversely, suppose F∨ > G∨. From Proposition 2.1, it is clear that F ≤ G. Let a0 and x0 be such that
F∨(a0) > x0 > G∨(a0). Then, by using (2.1), we obtain F (x0) ≤ a0 < G(x0).

3. The mappings of Nishiura

Consider a Menger space S with respect to a continuous t-norm, and let Fpq be the probabilistic distance
between the points p, q ∈ S. We recall that the probabilistic distance defines the (ε, λ)-uniformity on S, for
which the following family is a basis:

U = {U(x, a), x > 0, a ∈ [0, 1)}, U(x, a) = {(p, q) ∈ S × S : Fpq(x) > a}.

The topology on S defined by the (ε, λ)-uniformity is defined by the family

US = {Up(x, a), p ∈ S, x > 0, a ∈ [0, 1)}, Up(x, a) = {q ∈ S : Fpq(x) > a}.

The convergence of a sequence and the continuity of a mapping on S are considered with respect to this
topology. On the other hand, following E. Nishiura [3], for each a ∈ [0, 1) define a function da on S × S by
the equality

da(p, q) = inf{x > 0 : Fpq(x) > a} = F∨pq(a), p, q ∈ S.

Lemma 3.1. [3] The following properties of the family da, a ∈ [0, 1), hold:

(i) p = q iff da(p, q) = 0 for all a ∈ [0, 1).

(ii) Fpq(x) > a iff da(p, q) < x.

(iii) For each (p, q) ∈ S × S, the function a 7→ da(p, q) is nondecreasing, right-continuous, and

Fpq(x) = sup{a ∈ [0, 1) : da(p, q) < x}, x > 0.

Therefore
U(x, a) = {(p, q) ∈ S × S : da(p, q) < x}

and
Up(x, a) = {q ∈ S : da(p, q) < x},

and thus we obtain the following result:

Lemma 3.2. (i) A sequence {pn, n ≥ 1} converges to p in the space S if and only if for each a ∈ [0, 1), the
sequence {da(pn, p), n ≥ 1} converges to 0.

(ii) For each a ∈ [0, 1), the function da(p, q) is continuous on S × S.
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4. Probabilistic quasi-nonexpansive mappings

Definition 4.1. Let T : D → S be a mapping defined on a subset D of S. T is said to be a probabilistic
quasi-nonexpansive mapping on D if

(i) T has a fixed point p∗ ∈ D, and

(ii) T satisfies the inequality
Fp∗Tp > Fp∗p, p ∈ D, p 6= p∗.

Clearly, from (ii) it follows that T has a unique fixed point in D.

Lemma 4.2. Suppose T : D → S has a fixed point p∗ ∈ D. If T is a probabilistic quasi-nonexpansive
mapping on D, then

(i) for each a ∈ [0, 1) the following inequality holds:

da(Tp, p
∗) ≤ da(p, p∗), p ∈ D, p 6= p∗

(ii) for all p ∈ D, p 6= p∗, there exists ap ∈ [0, 1) such that

dap(Tp, p∗) < dap(p, p∗).

We now consider a probabilistic quasi-nonexpansive mapping T : D ⊆ S → S and let pn+1 = Tpn,
n ≥ 0, denote the sequence of successive approximations of T starting at p0 ∈ D; of course, we suppose that
pn ∈ D for all n ≥ 1. Then, we prove the main result of this paper.

Theorem 4.3. Suppose that the probabilistic quasi-nonexpansive mapping T is continuous and the set D is
closed. If the sequence of successive approximations of T starting at p0 ∈ D has a convergent subsequence,
then it converges to p∗ ∈ D, the unique fixed point of T .

Proof. From Lemma 4.2, it follows that the sequence {da(pn, p∗), n ≥ 0} is nonincreasing. We denote
d∗a = lim

n→∞
da(pn, p

∗). Let {pnj} ⊆ {pn} be a convergent subsequence of {pn}, and let q∗ = lim
j→∞

pnj . Since

{pnj} ⊆ D and D is closed, we have q∗ ∈ D. Moreover, from the continuity of da,

d∗a = lim
j→∞

da(pnj , p
∗) = da(q

∗, p∗).

Also, from the continuity of T it follows that

d∗a = lim
j→∞

da(pnj+1, p
∗) = lim

j→∞
da(Tpnj , p

∗) = da(Tq
∗, p∗).

Thus, we have da(Tq
∗, p∗) = da(q

∗, p∗) for all a. But, if q∗ 6= p∗, then by Lemma 4.2 (ii) it follows that there
exists a0 such that da0(Tq∗, p∗) < da0(q∗, p∗). Therefore, q∗ = p∗ and then d∗a = 0. This implies that the
sequence {da(pn, p∗)} converges to 0 for each a. By Lemma 3.2 (i), the sequence {pn} converges to p∗ and
the theorem is proved.

Definition 4.4. A mapping T is said to be strict quasi-nonexpansive on D if for a constant k ∈ (0, 1) the
following inequality holds:

Fp∗Tp ≥ k ◦ Fp∗p,

or equivalently

Fp∗Tp(x) ≥ Fp∗p
(x
k

)
, x > 0, p ∈ D, p 6= p∗.
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We note that for the sequence of successive approximations of T starting at p0 ∈ D we have

Fp∗Tpn ≥ k ◦ Fp∗Tpn−1 ≥ k2 ◦ Fp∗Tpn−2 ≥ · · · ≥ kn ◦ Fp∗Tp0 .

Consider a probability measure space (Ω,A, P ). Then, the space S of all X-valued random variables
which are equal with probability one can be endowed with a probabilistic metric, with respect to the t-norm
Tm(u, v) = max(u+ v − 1, 0), defined by

Fξη(x) = P (d(ξ, η) < x), x ≥ 0.

This probabilistic metric defines the convergence in probability on S. Let T (·, ·) be a continuous random
operator on random domain ω → D(ω) for which the trajectories x→ T (x, ω) satisfy the condition of quasi-
nonexpansivity in the following form: for a.a ω ∈ Ω the mapping x → T (x, ω) is strict quasi-nonexpansive
with the constant k ∈ [0, 1), i.e.

d(T (x, ω), ξ∗(ω)) < d(x, ξ∗(ω)), x ∈ D(ω), x 6= ξ∗(ω).

Suppose that ω → D(ω) is a closed random set, and let D be the set of all measurable selectors of ω → D(ω).
We also denote by T (·) the mapping defined by ω → T (ξ(ω), ω) for ξ ∈ D. It is easy to verify that T (·) is
a continuous mapping on S and it is also strict quasi-nonexpansive with the constant k on D ⊂ S. Since
ω → D(ω) is closed in probability, it follows that Theorem 4.3 can be applied, and that we can also obtain
an estimation of the approximation error in terms of the probabilistic metric defined above.
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[2] Gh. Constantin, I. Istrăţescu, Elements of probabilistic analysis with applications, Mathematics and its Applica-
tions (East European Series), 36, Kluwer Academic Publishers, Dordrecht, 1989. 1

[3] E. Nishiura, Constructive methods in probabilistic metric spaces, Fundamenta Mathematicae 67 (1970), 115–124.
3, 3.1

[4] B. Schweizer, A. Sklar, Probabilistic Metric Spaces, North Holland Series in Probability and Applied Mathematics,
New York, Amsterdam, Oxford, 1983. 2


	1 Introduction
	2 The order on +
	3 The mappings of Nishiura
	4 Probabilistic quasi-nonexpansive mappings

