
Available online at www.tjnsa.com
J. Nonlinear Sci. Appl. 6 (2013), 137–144

Research Article

Gravity-capillary water waves generated by multiple
pressure distributions

Charlotte Pagea, Emilian I. Părăub,∗, Scott Grandisona
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Abstract

Steady two-dimensional free-surface flows subjected to multiple localised pressure distributions are consid-
ered. The fluid is bounded below by a rigid bottom, and above by a free-surface, and is assumed to be
inviscid and incompressible. The flow is assumed irrotational, and the effects of both gravity and surface
tension are taken into account. Forced solitary wave solutions are found numerically, using boundary in-
tegral equation techniques, based on Cauchy integral formula. The integrodifferential equations are solved
iteratively by Newton’s method. The behaviour of the forced waves is determined by the Froude number,
the Bond number, and the coefficients of the pressure forcings. Multiple families of solutions are found to
exist for particular values of the Froude number; perturbations from a uniform stream, and perturbations
from pure solitary waves. Elevation waves are only obtained in the case of a negatively forced pressure
distribution.
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1. Introduction

The study of free-surface flows past disturbances in water of both finite and infinite depth has been developed
continuously in the last centuries. Such disturbances occur in many different physical situations; they can be
in the form of localised pressure distributions, caused for example by atmospheric disturbances due to high
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winds, submerged obstacles such as rocks on a river bed, partially submerged obstacles (i.e. fully submerged
obstacles which do not touch the bottom) for instance a submarine, or surface piercing objects such as a
boat. A frame of reference moving with the disturbance(s) is chosen and steady solitary wave solutions are
sought.

In the case of a single submerged obstruction, four classical free-surface flows, which are uniform far
upstream and/or far downstream, are known to exist. Fully nonlinear solutions for gravity waves have been
obtained numerically, for example by Forbes and Schwartz [6], Forbes [7], Dias and Vanden-Broeck [3], Dias
and Vanden-Broeck [4] and Binder, Dias and Vanden-Broeck [2]. To classify the solutions, we introduce the
Froude number

F =
U√
gH

(1.1)

where g is the acceleration due to gravity, and U and H describe the height and velocity of the uniform
flow, either up or downstream. A flow is said to be supercritical if F > 1 and subcritical if F < 1. The first
type of solution are solitary waves. They consist of a uniform supercritical flow, both up and downstream
of the obstruction, with an elevation or depression wave over the obstruction. The second type can be
characterised by a train of waves downstream of the disturbance with a uniform subcritical flow upstream.
Hydraulic falls are the third type of solution, and like solitary waves, these are uniform both upstream
and downstream of the obstruction. However, for a hydraulic fall, the flow upstream is subcritical, and
there exists a gradual change from subcritical to supercritical flow over the obstruction. Finally, there exist
generalised hydraulic falls, see Dias and Vanden-Broeck [4], which differ from hydraulic falls as they have
a train of waves upstream of the obstacle. However, this last type of classical solution is unphysical in the
case of a single submerged obstruction, as it does not satisfy the radiation condition (requiring that there
is no energy coming from infinity, i.e. that there are no waves upstream). Dias and Vanden-Broeck [5]
have shown that these solutions can become physically relevant when considered as the local flow over an
obstacle, in a configuration involving at least one other obstacle further upstream.

When the effects of surface tension are included, the linearised theory shows that the behaviour of the
gravity-capillary waves depends not only on the Froude number, but also on the Bond number τ , given by

τ =
T

ρgH2
(1.2)

where T describes the constant tension on the free-surface and ρ is the density of the fluid. If τ > 1
3 then

we need F < 1 to obtain only localised disturbances of the free surface such as free or forced solitary waves
to exist. If τ < 1

3 we need F < Fc for free and forced solitary waves to exist, where Fc < 1 is the critical
value of the Froude number marking the turning point of the dispersion curve in the F -k plane. Multiple
forced solutions are found to exist for the same values of the Froude and Bond numbers, and the same
pressure distribution. One family of solutions is a perturbation from a uniform stream, and the other(s),
a perturbation from a pure solitary wave. Maleewong, Asavanant and Grimshaw [8] found that for strong
surface tension (τ > 1

3) an elevation solitary wave exists, only if the coefficient of the forcing term is negative.
It is a perturbation from a uniform stream. If the forcing is positive, the perturbation from the uniform
stream is a depression. Depression waves perturbating from a pure depression solitary wave exist for both
positive and negative forcing.

If the effects of surface tension are weak (τ < 1
3), the behaviour of the flow changes. Solutions take

the form of envelope solitary waves. In contrast to the strong tension case, Maleewong, Asavanant and
Grimshaw [9] found that both elevation and depression waves perturbating from pure solitary waves exist,
for both positive and negative forcing. As in the case for strong surface tension, elevation waves perturbating
from a uniform stream exist for negative forcing. Perturbations from a uniform stream for positive forcing,
are depressions.

In this paper, we extend the work of Maleewong, Asavanant and Grimshaw [9] by including multiple
disturbances in the flow in the form of localised pressure distributions. Binder, Dias and Vanden-Broeck [1]
considered the case of free-surface flow over two submerged obstructions in a channel, but in the absence of
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surface tension. Here, both the effects of gravity and surface tension are included, and we look for solitary
wave solutions.

The problem is formulated in §2, the numerical method is described in §3 and the numerical results are
presented and discussed in §4. Finally, we conclude with a summary of our findings in §5.

2. Formulation

We consider a steady two-dimensional flow of an incompressible, inviscid fluid of constant density ρ,
bounded below by a horizontal impermeable bed at y = −H, and above by a free-surface. Cartesian
coordinates (x, y) are introduced such that the x-axis is aligned on the undisturbed free-surface. The
influences of both gravity and surface tension are taken into account. g is taken to be the acceleration due
to gravity acting in the negative y-direction, and T to be the constant tension on the free-surface. The
free-surface is given by y = η(x), and the fluid is subjected to a localised pressure distribution P (x) on the
free-surface. We choose a frame of reference traveling with this pressure distribution. Far downstream of
the pressure distribution (as x → ∞), the flow is assumed to become a uniform stream of constant depth
H and constant velocity U . We non-dimensionalise the problem by taking H and U as unit length and unit
velocity, respectively.

The flow is assumed to be irrotational, so we can introduce the velocity potential φ(x, y) such that
u = ∇φ. Incompressibility of the flow then implies that the velocity potential satisfies Laplace’s equation
in the flow domain:

∇2φ = 0 (2.1)

The kinematic boundary conditions on the bottom of the channel y = −1 and on the free-surface y = η(x)
are given, respectively, by

φy = 0 (2.2)

φy = φxηx (2.3)

The dynamic boundary condition on the free-surface y = η(x) is obtained by applying the Bernoulli equation
to the fluid at the free-surface:

1

2
(φ2x + φ2y − 1) +

1

F 2
η = β

ηxx

(η2x + 1)
3
2

− P (x). (2.4)

Here F is the Froude number defined in (1.1), β = τ
F 2 where τ is the Bond number given by (1.2), and P (x)

is the pressure distribution. To ensure a uniform stream as x→ ±∞ we impose the condition:

φx → 1, η → 0 as |x| → ∞. (2.5)

The problem then becomes that of finding the unknown functions φ(x, y) and η(x) satisfying (2.1)-(2.4) and
(2.5).

3. Numerical Scheme

We solve the problem numerically by first reformulating it as a system of integro-differential equations
(see for example Vanden-Broeck and Dias [11] and Părău and Vanden-Broeck [10]). The stream function
ψ(x, y) is defined, such that u = ∇×ψ. This means we can introduce the complex velocity potential function
f(z) = φ(x, y) + iψ(x, y). We now map the problem into the inverse plane, so that φ and ψ become the
independent variables, and without loss of generality, we choose φ = 0 at x = 0, and take ψ = 0 on the
free-surface so that ψ = −1 on the channel bottom. The fluid thus occupies the infinite strip −∞ < φ <∞,
−1 < ψ < 0 in the complex f -plane. We apply Cauchy’s integral formula to the function xφ − 1 + iyφ, with
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a contour consisting of the free-surface, its reflection in the channel bottom, and vertical lines joining them
at ±∞. Taking the real part, with evaluation point φo on the free-surface, we obtain:

xφ(φo)− 1 = − 1

π
int+∞−∞

yφ
φ− φo

dφ

+
1

π
int+∞−∞

(φ− φo)yφ + 2(xφ − 1)

(φ− φo)2 + 4
dφ

(3.1)

The first integral in this equation is evaluated as a Cauchy principal value.
The dynamic condition (2.4) on the free-surface becomes:

1

2

(
1

x2φ + y2φ
− 1

)
+

1

F 2
y = β

yφφxφ − xφφyφ
(x2φ + y2φ)

3
2

− P (3.2)

We choose

P (φ) =


ε1 exp 1

(φ−a)2−1 −1 < |φ+ a| < 1

ε2 exp 1
(φ−b)2−1 −1 < |φ+ b| < 1

0 otherwise,

(3.3)

where a and b give the position of the forcing on the φ-axis.
We solve the two equations (3.1) and (3.2) for the unknowns xφ and yφ. The potential function φ is

discretized by introducing N equally spaced mesh-points

φ(i) = −N
2
e+ (i− 1)e i = 1, ..., n (3.4)

and the midpoints
φm(i) = φ(i) + e/2 i = 1, ..., n− 1 (3.5)

where e is the interval of discretization. The integrals in (3.1) are truncated and approximated using the
trapezoidal rule. Given a set of values for yφ, the values of xφ at the midpoints are then obtained by solving
the discretized version of (3.1). A four point interpolation scheme is used to obtain the values of xφ at the
mesh points. The remaining unknowns in the problem are the values of yφ. N equations are required to
solve the problem, of which, n−2 are obtained by satisfying the dynamic condition (3.2) at the mesh-points
(3.4) i = 2, ..., n− 1. The remaining two equations come from enforcing

y(1) = y(n) = 0 (3.6)

which forces the elevation to be 0 as x→ ±∞, i.e. we enforce zero mean level. The system is solved iteratively
using Newton’s method. We denote y′i = yφ(φi) for i = 1, ..., n and all the nonlinear equations satisfied by
Ei(y

′
1, y
′
2, ..., y

′
n) = 0 for i = 1, ..., n. We start the process with an initial guess for y′ = [y′1, y

′
2, ..., y

′
n]T

(usually y′ = 0). The vector y′ is updated by adding a correction vector ∆ = [∆1,∆2, ...,∆n]T to it at each
iteration. The correction ∆ is the solution of of the matrix equation

JE∆ = −E (3.7)

where E = [E1, E2, ..., En]T and JE is the Jacobian of E, JE =

(
∂Ei
∂y′j

)
i=1,...,n,j=1,...,n

. The Jacobian matrix

of partial derivatives JE is evaluated numerically by forward differention and the matrix equation (3.7) is
solved by LU-decomposition and backsubstitution.

To obtain the perturbations from a pure solitary wave, we first obtain a wave profile for the wave
perturbating from the uniform stream, using the scheme as described above. Parameter continuation on the
amplitude of the peak of one of the waves then allows us to follow the solution branch. After a critical value
of the Froude number is reached, the perturbation from the uniform stream becomes a perturbation from
a pure solitary wave. We check that decreasing the pressure forcing coefficient ε to zero after the turning
point is reached, does result in a pure solitary wave.
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4. Results

We restrict our attention to subcritical flows, F < 1, and concentrate on the case with strong surface
tension τ > 1

3 . Values for the parameters ε1, ε2, β and F are set, and the distance xd between the pressure
distributions is fixed. The solitary waves are calculated using the numerical scheme described in §3.

When ε1 = ε2 = 0.05, xd = 6, β = 0.49, and F = 0.886, typical free-surface solitary wave profiles are
shown in Figure 1. This result is similar to the wave profile found by Binder, Vanden-Broeck and Dias [1]
for supercritical flow in the absence of surface tension, over two submerged triangular obstructions. The
gravity-capillary waves obtained here are depression waves, whereas the gravity waves they obtained were
elevation waves. The result is also similar to the classical gravity-capillary solitary wave profile over a single
disturbance in the flow. As ε1 → 0, ε2 → 0 the broken curve solution reduces to a uniform stream. The solid
curve solution tends toward the pure solitary wave solution.

Figure 1: Typical fully nonlinear free-surface profiles for ε1 = ε2 = 0.05, xd = 6, β = 0.49, and F = 0.886. The pressures are
centred at a = 3,b = −3. The broken curve is a perturbation from a uniform stream and has maximum depression −0.037. The
solid curve is a perturbation from a depression solitary wave solution, and has maximum amplitude −0.184.

Only depression waves are found for ε > 0, and a turning point is obtained on the solution branch in the
amplitude vs F plane. When F > F ∗, the critical value of the Froude number corresponding to the turning
point, no solutions are found to exist. For F < F ∗∗, just one family of solutions is found; perturbations
from a uniform stream. For F ∗∗ < F < F ∗ we find two families of solution; perturbations from the uniform
stream, and perturbations from a pure solitary wave. This is in agreement with the findings of Maleewong,
Asavanant and Grimshaw [8] for flow disturbed by a single localised pressure distribution.

As the distance xd between the obstacles decreases, the wave profile of the perturbation from pure de-
pression solitary waves reduces to the classical free-surface profile obtained for flow over a single disturbance.
See the solid curve in Figure 2. As the distance xd increases, the wave profile becomes that of two classical
solutions over two separate disturbances; the depressions resulting from the localised pressure distributions
do not influence one another.

Typical negatively forced wave profiles, with ε1 = ε2 = −0.01 can be seen in Figure 3 for F = 0.895,
β = 0.49. Both elevation and depression waves are obtained. The elevation waves are perturbations from
a uniform stream, and are of much smaller amplitude than the depression waves, perturbating from a
pure solitary wave solution. We obtain the depression waves by firstly finding the pure depression solitary
wave curve, using parameter continuation on the amplitude of a positively forced flat stream depression
perturbation. The coefficients ε1 and ε2 of the pressure distributions are then gradually decreased from
zero, and parameter continuation on the amplitude of the depression is used to move along the negatively
forced solution branch.

As F → 1, the amplitude of the peak between the two depressions increases, and a flat region between the
depressions’ troughs is approached. This is illustrated in Figure 4 for F = 0.958, with pressure distributions
centred at a = 4 and b = −4. As the distance xd between the pressure distributions increases, the region of
free-surface between the two troughs steepens, and approaches the level of the undisturbed flat stream far
upstream. As xd decreases, the region between the troughs flattens more quickly, and the amplitude of the
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Figure 2: Fully nonlinear wave profiles for ε1 = ε2 = 0.05, xd = 2.4, β = 0.49, and F = 0.898. The pressures are centred at
a = 1.2,b = −1.2. The broken curve is a perturbation from a uniform stream and has maximum amplitude −0.0569. The solid
curve is a perturbation from a classical depression solitary wave and has maximum amplitude −0.117.

Figure 3: Typical negatively forced fully nonlinear wave profiles with ε1 = ε2 = −0.01, xd = 8, β = 0.49, and F = 0.895. The
pressures are centred at a = 4,b = −4. The broken curve is a perturbation from a uniform stream, with maximum elevation
0.0069. The depressions shown with a solid curve, are perturbations from a pure solitary wave solution. They have maximum
amplitude −0.1946.

region gradually increases.
A non-symmetric solution can be found by taking ε1 6= ε2. Setting ε1 > 0 and ε2 < 0 we obtain a

depression wave near the positively forced pressure distribution, and an elevation wave near the negatively
forced distribution, see Figure 5. This solution is similar, but of opposite orientation, to the solution obtained
by Binder, Vanden-Broeck and Dias [1].

Using parameter continuation on the amplitude of the depression wave, we find a turning point for the
curve in the amplitude vs F plane. The solution for this configuration is therefore also multivalued for
some particular values of the Froude number. The wave profile given by the broken curve in Figure 5 is a
perturbation from the uniform stream. The solid curve solution is more complex. After the turning point on
the solution branch is reached, decreasing the pressure forcings to zero reduces the amplitude of the elevation
to zero, but the depression wave reduces to a pure depression solitary wave. The elevation is therefore a
perturbation from the uniform stream, but the depression is a perturbation from a pure depression solitary
wave.

5. Conclusions

We have considered subcritical free-surface flows with a strong surface tension, subjected to two localised
pressure distributions. Fully nonlinear numerical results, calculated using a boundary integral equation
method based on Cauchy integral formula, have been presented. Multiple families of solitary wave solutions
were found to exist for particular values of the Froude number. Depression waves perturbating from both a
uniform stream and pure solitary waves have been found. Elevation waves were only found to exist in the
case of a negatively forced pressure distribution.
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Figure 4: Negatively forced fully nonlinear free-surface profile with ε1 = ε2 = −0.01, xd = 8, β = 0.49, and F = 0.958. The
pressures are centred at a = 4,b = −4. The broken curve is a perturbation from a uniform stream, with maximum elevation
0.0126. The solid curve is a perturbation from a pure solitary wave solution. It has maximum amplitude −0.081.

Figure 5: Fully nonlinear wave profiles for ε1 = 0.05, ε2 = −0.05, xd = 8, β = 0.49, and F = 0.91. The pressures are centred
at a = 4,b = −4. The broken curve is a perturbation from a uniform stream and has maximum amplitude −0.0509 and
maximum elevation 0.0359. The depression wave on the solid curve is a perturbation from a pure depression solitary wave and
has maximum amplitude −0.1337. The elevation wave is a perturbation from the uniform stream, with maximum elevation
0.0359.
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