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Abstract

Matthews, [S. G. Matthews, Partial metric topology, in: Proc. 8th Summer Conference on General Topology
and Applications, in: Ann. New York Acad. Sci., vol. 728, 1994, pp. 183-197], introduced and studied
the concept of partial metric space, as a part of the study of denotational semantics of dataflow networks.
He also obtained a Banach type fixed point theorem on complete partial metric spaces. Very recently
Berinde and Vetro, [V. Berinde, F. Vetro, Common fixed points of mappings satisfying implicit contractive
conditions, Fixed Point Theory and Applications 2012, 2012:105], discussed, in the setting of metric and
ordered metric spaces, coincidence point and common fixed point theorems for self-mappings in a general
class of contractions defined by an implicit relation. In this work, in the setting of partial metric spaces,
we study coincidence point and common fixed point theorems for two self-mappings satisfying generalized
contractive conditions, defined by implicit relations. Our results unify, extend and generalize some related
common fixed point theorems of the literature.
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1. Introduction and Preliminaries

In 1992, Matthews [20] introduced the concept of partial metric space as a part of the study of denota-
tional semantics of dataflow networks. Since then, it is widely recognized that partial metric spaces play a
fundamental role in developing models in the theory of computation [24, 31, 33, 38]. Here, we recall some
definitions and properties [20, 23, 24, 30, 35] of partial metric spaces, see also [4, 5, 14, 15, 18, 25, 37].
Throughout this paper the letters R+ and N will denote the set of all non negative real numbers and the
set of all positive integer numbers.
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Definition 1.1. A partial metric on a nonempty set X is a function p : X × X → R+ such that for all
x, y, z ∈ X:

(p1) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y);

(p2) p(x, x) ≤ p(x, y);

(p3) p(x, y) = p(y, x);

(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric on X.

Remark 1.2. It is clear that if p(x, y) = 0, then from (p1) and (p2), x = y, but if x = y, then p(x, y) may
not be 0.

The pair (R+, p), where p(x, y) = max{x, y} for all x, y ∈ R+, is a simple example of a partial metric
space.

Each partial metric p on X generates a T0 topology τp on X which has as a base the family of open
p-balls {Bp(x, ε), x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0.

If p is a partial metric on X, then the function ps : X ×X → R+ given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y),

is a metric on X.

Definition 1.3. Let (X, p) be a partial metric space and {xn} be a sequence in X. Then

(i) {xn} converges to a point x ∈ X if and only if p(x, x) = lim
n→+∞

p(x, xn);

(ii) {xn} is called a Cauchy sequence if there exists (and is finite) lim
n,m→+∞

p(xn, xm).

Definition 1.4. A partial metric space (X, p) is said to be complete if every Cauchy sequence {xn} in X
converges, with respect to τp, to a point x ∈ X, such that p(x, x) = lim

n,m→+∞
p(xn, xm).

It is easy to see that every closed subset of a complete partial metric space is complete.

Lemma 1.5 ([20, 23]). Let (X, p) be a partial metric space. Then

(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric space (X, ps);

(b) (X, p) is complete if and only if the metric space (X, ps) is complete. Furthermore, lim
n→+∞

ps(xn, x) = 0

if and only if
p(x, x) = lim

n→+∞
p(xn, x) = lim

n,m→+∞
p(xn, xm).

Using the above concepts, Matthews [20] obtained the following Banach fixed point theorem on a com-
plete partial metric space.

Theorem 1.6. Let f be a mapping of a complete partial metric space (X, p) into itself such that there is a
real number k with k ∈ [0, 1), satisfying for all x, y ∈ X :

p(fx, fy) ≤ kp(x, y).

Then f has a unique fixed point.

It is well know that, starting from the Banach fixed point theorem [7], the study of fixed and common
fixed points of mappings satisfying a certain metrical contractive condition attracted many researchers, see
for example [32]. In particular, among these results, we refer to the works [8, 9] of Berinde that obtained
also a constructive method for finding fixed points by considering self-mappings that satisfy an explicit
contractive type condition.
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On the other hand, Popa [26, 27], initiated a study of implicit contractive type conditions for proving
easily several classical fixed point theorems, see also [2, 3].

In particular, we recall that Berinde [9], to obtain some constructive fixed point theorems for almost
contractions satisfying an implicit relation, considered the family F of all continuous real functions F :
R6
+ → R+ and the following conditions:

(F1a) F is nonincreasing in the fifth variable and F (u, v, v, u, u + v, 0) ≤ 0 for u, v ≥ 0 implies that there
exists h ∈ [0, 1) such that u ≤ hv;

(F1b) F is nonincreasing in the fourth variable and F (u, v, 0, u+ v, u, v) ≤ 0 for u, v ≥ 0 implies that there
exists h ∈ [0, 1) such that u ≤ hv;

(F1c) F is nonincreasing in the third variable and F (u, v, u + v, 0, v, u) ≤ 0 for u, v ≥ 0 implies that there
exists h ∈ [0, 1) such that u ≤ hv;

(F2) F (u, u, 0, 0, u, u) > 0, for all u > 0.

In this way Berinde unified and extended various results, see [1], [6], [8]-[11], [17, 19], [26, 28].

Example 1.7. The following functions F ∈ F satisfy the properties (F2) and (F1a)-(F1c) (see Examples
1-6, 9 and 11 of [9]).

(i) F (t1, t2, t3, t4, t5, t6) = t1 − at2, where a ∈ [0, 1);

(ii) F (t1, t2, t3, t4, t5, t6) = t1 − b(t3 + t4), where b ∈ [0, 1/2);

(iii) F (t1, t2, t3, t4, t5, t6) = t1 − c(t5 + t6), where c ∈ [0, 1/2);

(iv) F (t1, t2, t3, t4, t5, t6) = t1 − amax{t2, t3+t4
2 , t5+t6

2 }, where a ∈ [0, 1);

(v) F (t1, t2, t3, t4, t5, t6) = t1 − at2 − b(t3 + t4)− c(t5 + t6), where a, b, c ∈ [0, 1) and a+ 2b+ 2c < 1;

(vi) F (t1, t2, t3, t4, t5, t6) = t1 − amax{t2, t3+t4
2 , t5, t6}, where a ∈ [0, 1);

(vii) F (t1, t2, t3, t4, t5, t6) = t1 − at2 − Lmin{t3, t4, t5, t6}, where a ∈ [0, 1);

(viii) F (t1, t2, t3, t4, t5, t6) = t1 − amax{t2, t3, t4, t5+t6
2 } − Lmin{t3, t4, t5, t6}, where a ∈ [0, 1) and L ≥ 0.

Example 1.8. The function F ∈ F , given by

F (t1, t2, t3, t4, t5, t6) = t1 − amax{t2, t3, t4, t5, t6},

where a ∈ [0, 1/2) satisfies the properties (F2) and (F1a)-(F1c) with h =
a

1− a
< 1.

Example 1.9. The function F ∈ F , given by

F (t1, t2, t3, t4, t5, t6) = t1 − at2
t5 + t6
t3 + t4

,

where a ∈ (0, 1) satisfies the property (F1a) with h = a but does not satisfy the properties (F1b), (F1c) and
(F2).

Example 1.10. The function F ∈ F , given by

F (t1, t2, t3, t4, t5, t6) = t1 − at3
t5 + t6
t2 + t4

,

where a ∈ (0, 1) satisfies the properties (F1a) with h = a ∈ (0, 1) and (F2) but does not satisfy the properties
(F1b) and (F1c).

In the sequel, we need also the following definitions.

Definition 1.11. Let X be a non-empty set and f, T : X → X. A point x ∈ X is called a coincidence point
of f and T if Tx = fx.
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Definition 1.12. The mappings f and T are said to be weakly compatible if they commute at their
coincidence point, that is, Tfx = fTx whenever Tx = fx.

Definition 1.13. Suppose TX ⊂ fX. For every x0 ∈ X we consider the sequence {xn} ⊂ X defined by
fxn = Txn−1 for all n ∈ N, we say that {Txn} is a T -f -sequence with initial point x0.

Definition 1.14. Let X be a nonempty set. If (X, p) is a partial metric space and (X,�) is partially
ordered, then (X, p,�) is called an ordered partial metric space. Then, x, y ∈ X are called comparable if
x � y or y � x holds. Let f, T : X → X be two self-mappings, T is said to be f -nondecreasing if fx � fy
implies Tx � Ty for all x, y ∈ X. If f is the identity mapping on X, then T is nondecreasing.

Starting from the concept of partially ordered set, the existence of fixed points in ordered metric spaces
was largely investigated by many researchers, some of these are Turinici [34], Ran and Reurings [29], Nieto
and Rodŕıguez-López [22]. For more details on this topic, we also refer to [12, 13, 16, 21, 36] and references
therein.

In this paper, in the setting of partial metric spaces and ordered partial metric spaces, we state and
prove coincidence point and common fixed point results for self-mappings satisfying contractive conditions
that are defined by an implicit relation. Our results extend and generalize some related common fixed point
theorems of the literature.

2. Main results

The following Lemma is useful in the sequel.

Lemma 2.1. Let (X, p) be a partial metric space and T, f : X → X be self-mappings. Assume that there
exists F ∈ F satisfying (F1a) such that, for all x, y ∈ X, we have

F (p(Tx, Ty), p(fx, fy), p(fx, Tx), p(fy, Ty), p(fx, Ty), p(fy, Tx)− p(fy, fy)) ≤ 0. (2.1)

Then, for all z ∈ X such that fz = Tz we have p(Tz, Tz) = p(fz, fz) = 0.

Proof. Assume p(Tz, Tz) > 0, then using (2.1) with x = y = z we get

F (p(Tz, Tz), p(fz, fz), p(fz, Tz), p(fz, Tz), p(fz, Tz), p(fz, Tz)− p(fz, fz)) ≤ 0.

This implies F (u, v, v, u, u+ v, 0) ≤ 0, where u = v = p(Tz, Tz) and so by (F1a) there exists h ∈ [0, 1) such
that u ≤ hv = hu. It follows u = p(Tz, Tz) = 0.

Our first main theorem is essentially inspired by Berinde and Vetro [10].

Theorem 2.2. Let (X, p) be a partial metric space and T, f : X → X be self-mappings such that TX ⊆ fX.
Assume that there exists F ∈ F satisfying (F1a) such that, for all x, y ∈ X, condition (2.1) holds. If fX
is a 0-complete subspace of X, then T and f have a coincidence point. Moreover, if T and f are weakly
compatible and F satisfies also (F2), then T and f have a unique common fixed point. Further, for any
x0 ∈ X, the T -f -sequence {Txn} with initial point x0 converges to the common fixed point.

Proof. Let x0 ∈ X be an arbitrary point. As TX ⊆ fX, one can choose a T -f -sequence {Txn} with initial
point x0. Assume x = xn and y = xn+1 in (2.1) and denote u := p(Txn, Txn+1) and v := p(Txn−1, Txn),
then we have

F (u, v, v, u, p(Txn−1, Txn+1), 0) ≤ 0.

By (p4) of Definition 1.1, we get

p(Txn−1, Txn+1) ≤ p(Txn−1, Txn) + p(Txn, Txn+1)− p(Txn, Txn) ≤ u+ v



C. Vetro, F. Vetro, J. Nonlinear Sci. Appl. 6 (2013), 152–161 156

and, since F is nonincreasing in the fifth variable, we have

F (u, v, v, u, u+ v, 0) ≤ 0

and hence, by (F1a) there exists h ∈ [0, 1) such that u ≤ hv, that is

p(Txn, Txn+1) ≤ h p(Txn−1, Txn) for all n ∈ N. (2.2)

We note that (2.2) and (p2) of Definition 1.1 imply that

lim
n→+∞

p(Txn, Txn) ≤ lim
n→+∞

p(Txn, Txn+1) ≤ lim
n→+∞

hnp(Tx0, Tx1) = 0.

Now, using (2.2), it is easy to show that {Txn} is a Cauchy sequence. Since fX is 0-complete, there exist
z, w ∈ X such that z = fw and

0 = p(z, z) = lim
n→+∞

p(Txn, z) = lim
n→+∞

p(fxn, z) = p(fw, fw). (2.3)

From (2.3) and the inequality

p(fw, Tw) + p(Txn, Txn)− p(fw, Txn) ≤ p(Txn, Tw) ≤ p(Txn, fw) + p(fw, Tw),

we get
lim

n→+∞
p(Txn, Tw) = p(fw, Tw).

Now, using (2.1) with x = xn and y = w, we get

F (p(Txn, Tw), p(fxn, fw), p(fxn, Txn), p(fw, Tw), p(fxn, Tw), p(fw, Txn)− p(fw, fw)) ≤ 0. (2.4)

Using the continuity of F , (2.3) and letting n→ +∞ in (2.4), we have

F (p(fw, Tw), p(fw, fw), p(fw, fw), p(fw, Tw), p(fw, Tw), p(fw, fw)− p(fw, fw)) ≤ 0,

that is,
F (p(fw, Tw), 0, 0, p(fw, Tw), p(fw, Tw) + 0, 0) ≤ 0,

which, by assumption (F1a) yields p(fw, Tw) ≤ 0, and by (p2) of Definition 1.1, it follows p(fw, Tw) = 0,
that is, fw = Tw = z. In this way, we showed that T and f have a coincidence point.

Now, we assume that T and f are weakly compatible, then fz = fTw = Tfw = Tz. We will show that
Tz = z = Tw.

Suppose p(Tz, Tw) > 0 and let x = z and y = w in (2.1), then we obtain

F (p(Tz, Tw), p(fz, fw), p(fz, Tz), p(fw, Tw), p(fz, Tw), p(fw, Tz)− p(fw, fw)) ≤ 0,

that is
F (p(Tz, Tw), p(Tz, Tw), p(Tz, Tz), 0, p(Tz, Tw), p(Tz, Tw)) ≤ 0.

Now, by Lemma 2.1 we have p(Tz, Tz) = 0 and so from the previous inequality we obtain F (u, u, 0, 0, u, u) ≤
0, where u = p(Tz, Tw), which is a contradiction by assumption (F2). This implies that p(Tz, Tw) = 0 and
hence fz = Tz = Tw = z, that is, T and f have a common fixed point.

To prove the uniqueness of the common fixed point, it is suffices to use again the assumption (F2) and
so, to avoid repetition, we omit the details. Finally, to complete the proof, we observe that for any x0 ∈ X,
the T -f -sequence {Txn} with initial point x0 converges to the unique common fixed point.

If f is the identity mapping on X, from Theorem 2.2 we obtain the following corollary.
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Corollary 2.3. Let (X, p) be a 0-complete metric space and T : X → X be a self-mapping. Assume that
there exists F ∈ F satisfying (F1a) such that, for all x, y ∈ X, we have

F (p(Tx, Ty), p(x, y), p(x, Tx), p(y, Ty), p(x, Ty), p(y, Tx)− p(y, y)) ≤ 0.

Then T has a fixed point. Moreover, if F satisfies also (F2), then T has a unique fixed point. Further, for
any x0 ∈ X, the Picard sequence {Txn} with initial point x0 converges to the fixed point.

In view of the constructive character of Theorem 2.2 and from (2.2) we deduce the following unifying
error estimate

p(Txn+i−1, z) ≤
hi

1− h
p(Txn−1, Txn).

Then, from this we get both the a priori estimate

p(Txn, z) ≤
hn

1− h
p(Tx0, Tx1), n ∈ N

and the a posteriori estimate

p(Txn, z) ≤
h

1− h
p(Txn−1, Txn), n ∈ N

which play an important role in applications, i.e., consider the problem of approximating the solutions of
nonlinear equations.

Now, we state and prove a common fixed point result for two self-mappings satisfying an implicit con-
tractive condition in the setting of ordered partial metric spaces.

Theorem 2.4. Let (X, p,�) be a 0-complete ordered metric space and T, f : X → X be self-mappings such
that TX ⊆ fX. Assume that there exists F ∈ F satisfying (F1a) such that, for all x, y ∈ X with fx � fy,
we have

F (p(Tx, Ty), p(fx, fy), p(fx, Tx), p(fy, Ty), p(fx, Ty), p(fy, Tx)− p(fy, fy)) ≤ 0. (2.5)

If the following conditions hold:

(i) there exists x0 ∈ X such that fx0 � Tx0;

(ii) T is f -nondecreasing;

(iii) for a nondecreasing sequence {fxn} ⊆ X converging to fw ∈ X, we have fxn � fw for all n ∈ N and
fw � ffw,

then T and f have a coincidence point in X. Moreover, if T and f are weakly compatible and F satisfies
(F2), then T and f have a common fixed point. Further, for any x0 ∈ X, the T -f -sequence {Txn} with
initial point x0 converges to a common fixed point.

Proof. Let x0 ∈ X such that fx0 � Tx0 and let {Txn} be a T -f -sequence with initial point x0. Since
fx0 � Tx0 and Tx0 = fx1, we have fx0 � fx1. As T is f -nondecreasing we get that Tx0 � Tx1.
Continuing this process we obtain

fx0 � Tx0 = fx1 � Tx1 = fx2 � · · · � Txn = fxn+1 � · · · .

In what follows we will suppose that p(Txn, Txn+1) > 0 for all n ∈ N. In fact, if Txn = Txn+1 for some
n, then fxn+1 = Txn = Txn+1 and so xn+1 is a coincidence point for T and f and the result is proved. As
fxn � fxn+1 for all n ∈ N, if we take x = xn and y = xn+1 in (2.5) and denote u := p(Txn, Txn+1) and
v := p(Txn−1, Txn), we get

F (u, v, v, u, p(Txn−1, Txn+1), 0) ≤ 0.



C. Vetro, F. Vetro, J. Nonlinear Sci. Appl. 6 (2013), 152–161 158

By (p4) of Definition 1.1, we have

p(Txn−1, Txn+1) ≤ p(Txn−1, Txn) + p(Txn, Txn+1)− p(Txn, Txn) ≤ u+ v

and, since F is nonincreasing in the fifth variable, we get

F (u, v, v, u, u+ v, 0) ≤ 0

and hence, in view of assumption (F1a), there exists h ∈ [0, 1) such that u ≤ hv, that is

p(Txn, Txn+1) ≤ h p(Txn−1, Txn). (2.6)

By (2.6), we deduce that {Txn} is a Cauchy sequence. Now, since (X, p) is 0-complete, there exist z, w ∈ X
such that z = fw and

0 = p(z, z) = lim
n→+∞

p(Txn, z) = lim
n→+∞

p(fxn, z) = p(fw, fw). (2.7)

By condition (iii), fxn � fw for all n ∈ N, if we take x = xn and y = w in (2.5) we get

F (p(Txn, Tw), p(fxn, fw), p(fxn, Txn), p(fw, Tw), p(fxn, Tw), p(fw, Txn)− p(fw, fw)) ≤ 0.

Since
lim

n→+∞
p(Txn, Tw) = p(fw, Tw) and lim

n→+∞
p(Txn, Txn+1) = 0,

using the continuity of F , (2.7) and letting n→ +∞ we obtain

F (p(fw, Tw), 0, 0, p(fw, Tw), p(fw, Tw), 0) ≤ 0

which, by assumption (F1a), yields p(fw, Tw) ≤ 0, and by (p2) of Definition 1.1, it follows p(fw, Tw) = 0,
that is, fw = Tw. In this way, we showed that T and f have a coincidence point.

If T and f are weakly compatible we can also show that z is a common fixed point for T and f . In fact,
as fz = fTw = Tfw = Tz, by condition (iii), we have that fw � ffw = fz.

Now, for x = w and y = z in (2.5), we get

F (p(Tw, Tz), p(fw, fz), p(fw, Tw), p(fz, Tz), p(fw, Tz), p(fz, Tw)− p(fw, fw)) ≤ 0.

Since p(Tz, Tz) = p(fz, fz) = 0 by Lemma 2.1, assumption (F2) implies that d(Tz, Tw) = 0 and hence
fz = Tz = Tw = z, that is, T and f have a common fixed point. As in the proof of Theorem 2.2, to conclude
we have only to observe that, for any x0 ∈ X, the T -f -sequence {Txn} with initial point x0 converges to a
common fixed point.

If we add some hypotheses to Theorem 2.4, we are ready to prove the uniqueness of the common fixed
point. Precisely, we give the following result.

Theorem 2.5. Let all the conditions of Theorem 2.4 be satisfied. If the following conditions hold:

(iv) for all x, y ∈ fX there exists v0 ∈ X such that fv0 � x, fv0 � y;

(v) F satisfies (F1c),

then T and f have a unique common fixed point.

Proof. Let z, w be two common fixed points of T and f with z 6= w. If z and w are comparable, say z � y.
Then for x = z and y = w in (2.5), we get

F (p(Tz, Tw), p(fz, fw), p(fz, Tz), p(fw, Tw), p(fz, Tw), p(fw, Tz)− p(fw, fw)) ≤ 0,
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which is a contradiction by assumption (F2) and so z = w.
If z and w are not comparable, then there exists v0 ∈ X such that fv0 � fz = z and fv0 � fw = w.
As T is f -nondecreasing, from fv0 � fz we get that

fv1 = Tv0 � Tz = fz.

Continuing this process, we obtain

fvn+1 = Tvn � Tz = fz for all n ∈ N.

Then, for x = vn and y = z in (2.5) we have

F (p(Tvn, T z), p(fvn, fz), p(fvn, T vn), p(fz, Tz), p(fvn, T z), p(fz, Tvn)− p(fz, fz)) ≤ 0,

that is
F (p(Tvn, T z), p(Tvn−1, T z), p(Tvn−1, T vn), p(fz, Tz), p(Tvn−1, T z), p(Tz, Tvn)) ≤ 0.

Denote u := p(Tvn, T z) and v := p(Tvn−1, T z). As F is nonincreasing in the third variable, we get

F (u, v, u+ v, 0, v, u) ≤ 0.

By assumption (F1c), there exists h ∈ [0, 1) such that u ≤ hv, that is

p(Tvn, T z) ≤ h p(Tvn−1, T z) for all n ∈ N.

This implies that p(Tvn, T z) = p(Tvn, z)→ 0 as n→ +∞.
With similar arguments, we deduce that p(Tvn, w)→ 0 as n→ +∞. Hence

0 < p(w, z) ≤ p(w, Tvn) + p(Tvn, z)− p(Tvn, T vn)→ 0

as n→ +∞, which is a contradiction. Thus T and f have a unique common fixed point.

If f is the identity mapping on X, from Theorems 2.4 and 2.5, we deduce the following results of fixed
point for a self-mapping.

Corollary 2.6. Let (X, p,�) be a 0-complete ordered metric space and T : X → X be a self-mapping.
Assume that there exists F ∈ F satisfying (F1a) such that, for all x, y ∈ X with x � y, we have

F (p(Tx, Ty), p(x, y), p(x, Tx), p(y, Ty), p(x, Ty), p(y, Tx)− p(y, y)) ≤ 0. (2.8)

If the following conditions hold:

(i) there exists x0 ∈ X such that x0 � Tx0;

(ii) T is nondecreasing;

(iii) for a nondecreasing sequence {xn} ⊆ X converging to w ∈ X, we have xn � w for all n ∈ N,

then T has a fixed point in X. Further, for any x0 ∈ X, the Picard sequence {Txn} with initial point x0
converges to a fixed point.

Corollary 2.7. Let all the conditions of Corollary 2.6 be satisfied. If the following conditions hold:

(iv) F satisfies (F2);

(v) for all x, y ∈ X there exists v0 ∈ X such that v0 � x, v0 � y;

(vi) F satisfies (F1c),

then T has a unique common fixed point.
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