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Abstract

The aim of this paper, is to introduce and study the modified Noor iterative algorithm with errors for
approximating common fixed points of three asymptotically nonexpansive nonself-mappings. Several strong
and weak convergence results on this algorithm are established under certain conditions in a uniformly
convex Banach space. The results obtained in this paper improve and generalize the recent ones announced
by Khan and Hussain [S. H. Khan, N. Hussain, Comput. Math. Appl. 55 (2008), 2544–2553.], Nammanee,
et. al., [K. Nammanee, M.A. Noor and S. Suantai, J. Math. Anal. Appl. 314 (2006), 320–334.], Suantai
[S. Suantai, J. Math. Anal. Appl. 311 (2005), 506–517.], Cho et. al., [Y. J. Cho, H. Y. Zhou and G. Guo,
Comput. Math. Appl. 47 (2004), 707–717.], Xu and Noor [B. L. Xu and M.A. Noor, J. Math. Anal. Appl.
267 (2002), 444–453.] and many others.
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1. Introduction

Let C be a nonempty closed convex subset of real normed linear space X. A self-mapping T : C → C
is said to be asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞), kn → 1 as n→∞ such
that

‖Tn(x)− Tn(y)‖ ≤ kn‖x− y‖ (1.1)

for all x, y ∈ C and n ≥ 1.
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If kn ≡ 1, then T is known as a nonexpansive mapping. A self-mapping T is called uniformly L−
Lipschitzian if there exists a constant L > 0 such that

‖Tn(x)− Tn(y)‖ ≤ L‖x− y‖ (1.2)

for all x, y ∈ C and n ≥ 1.
It is easy to see that if T is an asymptotically nonexpansive, then it is uniformly L−Lipschitzian with

the uniform Lipschitz constant L = sup{kn : n ≥ 1}.
Iterative methods for approximating fixed points of certain mappings have been studied by various

authors, using the Mann iterative (a one-step) and the Ishikawa iterative (a two-step) processes. For example,
see [3], [4], [9], [11], [15-19]. Goebel and Kirk [7] introduced the class of asymptotically nonexpansive self-
mappings, who proved that if C is a nonempty closed convex subset of a real uniformly convex Banach space
and T is an asymptotically nonexpansive self-mapping on C, then T has a fixed point.

Glowinski and Le Tallec [6] used three-step iterative schemes to find the approximate solutions of the
elastoviscoplasticity problem, liquid crystal theory, and eigenvalue computation. It has been shown in [6] that
the three-step iterative scheme gives better numerical results than the two-step and one-step approximate
iterations. In 1998, Haubruge, Nguyen and Strodiot [8] studied the convergence analysis of three-step
schemes of Glowinski and Le Tallec [6] and applied these schemes to obtain new splitting-type algorithms
for solving variation inequalities, separable convex programming and minimization of a sum of convex
functions. They also proved that three-step iterations lead to highly parallelized algorithms under certain
conditions. Thus we conclude that three-step scheme plays an important and significant part in solving
various problems, which arise in pure and applied sciences.

The concept of asymptotically nonexpansive nonself-mappings was introduced in [1] in 2003 as the
generalization of asymptotically nonexpansive self-mappings. The asymptotically nonexpansive nonself-
mapping is defined as follows:

Definition 1.1 ([1]). Let C be a nonempty subset of real normed linear space X. Let P : X → C be a
nonexpansive retraction of X onto C. A nonself-mapping T : C → X is called asymptotically nonexpansive
if there exists a sequence {kn} ⊂ [1,∞), kn → 1 as n→∞ such that

‖T (PT )n−1x− T (PT )n−1y‖ ≤ kn‖x− y‖ (1.3)

for all x, y ∈ C and n ≥ 1. T is said to be uniformly L-Lipschitzian if there exists a constant L > 0 such
that

‖T (PT )n−1x− T (PT )n−1y‖ ≤ L‖x− y‖ (1.4)

for all x, y ∈ C and n ≥ 1.

By studying the following iteration process:

x1 ∈ C, xn+1 = P ((1− αn)xn + αnT (PT )n−1xn),

Chidume, Ofoedu and Zegeye [1] gave some strong and weak convergence theorems for asymptotically
nonexpansive nonself-mapping in a uniformly convex Banach space.

If T is a self-mapping, then P becomes the identity mapping so that (1.3) and (1.4) reduce to (1.1) and
(1.2), respectively.

Recently, Khan and Hussain [10] introduced the following three-step iterative process and used it for the
weak and strong convergence of fixed points of asymptotically nonexpansive nonself-mappings in a uniformly
convex Banach space. For an arbitrary x1 ∈ C, compute the sequences {xn}, {yn} and {zn} by the iterative
scheme

zn = P (anT (PT )n−1xn + (1− an)xn),

yn = P (bnT (PT )n−1zn + cnT (PT )n−1xn + (1− bn − cn)xn), (1.5)

xn+1 = P (αnT (PT )n−1yn + βnT (PT )n−1zn + (1− αn − βn)xn), n ≥ 1,



T. Thianwan, J. Nonlinear Sci. Appl. 6 (2013), 181–197 183

where {an}, {bn}, {cn}, {αn}, {βn} are appropriate sequences in [0, 1] satisfy certain conditions.
Obviously the above process deals with one self mapping only. Note that approximating the common

fixed points, has its own importance as it has a direct link with the minimization problem, see for example
Takahashi [21].

Inspired and motivated by these facts, a three-step iterative scheme with errors for approximating com-
mon fixed points of three asymptotically nonexpansive nonself-mappings is introduced and studied in this
paper. The scheme is defined as follows.

Let X be a normed space, C a nonempty convex subset of X, P : X → C a nonexpansive retraction of
X onto C and T1, T2, T3 : C → X given mappings. Then for an arbitrary x1 ∈ C, the following iteration
scheme is studied:

zn = P (anT1(PT1)
n−1xn + (1− an − γn)xn + γnun),

yn = P (bnT2(PT2)
n−1zn + cnT1(PT1)

n−1xn + (1− bn − cn − µn)xn + µnvn),

xn+1 = P (αnT3(PT3)
n−1yn + βnT2(PT2)

n−1zn + (1− αn − βn − λn)xn + λnwn),

n ≥ 1, (1.6)

where {an}, {bn}, {cn}, {αn}, {βn}, {γn}, {µn}, {λn} are appropriate sequences in [0, 1] and {un}, {vn} , {wn}
are bounded sequences in C.

It reduces to the Khan and Hussain iterative process (1.5) for T1 = T2 = T3 ≡ T : C → X and
γn = µn = λn ≡ 0.

If T1 = T2 = T3 ≡ T : C → C, then the iterative schemes (1.6) reduces to the modified Noor iterations
with errors defined by Nammanee, Noor and Suantai [12]

zn = anT
nxn + (1− an − γn)xn + γnun,

yn = bnT
nzn + cnT

nxn + (1− bn − cn − µn)xn + µnvn, (1.7)

xn+1 = αnT
nyn + βnT

nzn + (1− αn − βn − λn)xn + λnwn, n ≥ 1,

where {an}, {bn}, {cn}, {αn}, {βn}, {γn}, {µn}, {λn} are appropriate sequences in [0, 1] and {un}, {vn} , {wn}
are bounded sequences in C.

If T1 = T2 = T3 ≡ T : C → C and γn = µn = λn ≡ 0, then (1.6) reduces to the modified Noor iterations
defined by Suantai [20]

zn = anT
nxn + (1− an)xn,

yn = bnT
nzn + cnT

nxn + (1− bn − cn)xn, (1.8)

xn+1 = αnT
nyn + βnT

nzn + (1− αn − βn)xn, n ≥ 1,

where {an}, {bn}, {cn}, {αn}, {βn} are appropriate sequences in [0, 1].
If T1 = T2 = T3 ≡ T : C → C and cn = βn ≡ 0, then (1.6) reduces to the three-step iterations with

errors defined by Cho, Zhou and Guo [2]

zn = anT
nxn + (1− an − γn)xn + γnun,

yn = bnT
nzn + (1− bn − µn)xn + µnvn, (1.9)

xn+1 = αnT
nyn + (1− αn − λn)xn + λnwn, n ≥ 1,

where {an}, {bn}, {αn}, {γn}, {µn}, {λn} are appropriate sequences in [0, 1] and {un}, {vn} , {wn} are bounded
sequences in C.

If T1 = T2 = T3 ≡ T : C → C and cn = βn = γn = µn = λn ≡ 0, then (1.6) reduces to the Noor
iterations defined by Xu and Noor [23]

zn = anT
nxn + (1− an)xn,

yn = bnT
nzn + (1− bn)xn, (1.10)

xn+1 = αnT
nyn + (1− αn)xn, n ≥ 1,
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where {an}, {bn}, {αn} are appropriate sequences in [0, 1].
We note that the usual Ishikawa and Mann iterations are special cases of (1.6). The convexity of C then

ensures that the sequences {xn}, {yn} and {zn} generated by (1.7)–(1.10) are well defined. If, however, C
is a proper subset of the real Banach space X and T maps C into X (as is the case in many applications),
then the sequences given by (1.7)–(1.10) may not be well defined. Clearly, we can obtain the corresponding
nonself versions of (1.7)–(1.10) . We shall obtain the strong and weak convergence theorems using (1.5)–
(1.10) for three asymptotically nonexpansive nonself-mappings in a uniformly convex Banach space. Our
results will thus improve and generalize corresponding results of Khan and Hussain [10], Nammanee, Noor
and Suantai [12], Suantai [20], Cho, Zhou and Guo [2], Xu and Noor [23] and many others.

2. Preliminaries

Let X be a Banach space with dimension X ≥ 2. The modulus of X is the function δX : (0, 2] → [0, 1]
defined by

δX(ε) = inf{1− ‖1

2
(x+ y)‖ : ‖x‖ = 1, ‖y‖ = 1, ε = ‖x− y‖}.

Banach space X is uniformly convex if and only if δX(ε) > 0 for all ε ∈ (0, 2].
A subset C of X is said to be retract if there exists continuous mapping P : X → C such that Px = x

for all x ∈ C. Every closed convex subset of a uniformly convex Banach space is a retract. A mapping
P : X → X is said to be a retraction if P 2 = P. It follows that if a mapping P is a retraction, then Pz = z
for every z ∈ R(P ), the range of P. A set C is optimal if each point outside C can be moved to be closer to
all points of C. It is well known (see [5]) that

(1) If X is a separable, strictly convex, smooth, reflexive Banach space, and if C ⊂X is an optimal set
with interior, then C is a nonexpansive retract of X.

(2) A subset of lp, with 1 < p <∞, is a nonexpansive retract if and only if it is optimal.
Note that every nonexpansive retract is optimal. In strictly convex Banach spaces, optimal sets are closed

and convex. Moreover, every closed convex subset of a Hilbert space is optimal and also a nonexpansive
retract.

Recall that a Banach space X is said to satisfy Opial’s condition [14] if xn → x weakly as n → ∞ and
x 6= y implying that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖.

A mapping T : C → X is said to be demicompact if, for any sequence {xn} in C such that ‖xn−Txn‖ → 0
as n→∞, there exists a subsequence {xnj} of {xn} such that {xnj} converges strongly to x∗ ∈ C.

In the sequel, the following lemmas are needed to prove our main results.

Lemma 2.1 ([22], Lemma 1 ). Let {an}, {bn} and {δn} be sequences of nonnegative real numbers satisfying
the inequality

an+1 ≤ (1 + δn)an + bn, ∀n = 1, 2, ... .

If
∑∞

n=1 δn <∞ and
∑∞

n=1 bn <∞, then
(1) limn→∞ an exists .
(2) limn→∞ an = 0 whenever lim infn→∞ an = 0.

Lemma 2.2 ([13], Lemma 4 ). Let X be a uniformly convex Banach space and r > 0. Then there exists a
continuous strictly increasing convex function g : [0, 1)→ [0, 1) with g(0) = 0 such that

‖λx+ µy + ξz + ϑw‖2 ≤ λ‖x‖2 + µ‖y‖2 + ξ‖z‖2 + ϑ‖w‖2

−1

3
ϑ(λg(‖x− w‖) + µg(‖y − w‖) + ξg(‖z − w‖)),

for all x, y, z, w ∈ Br = {x ∈ X : ‖x‖ ≤ r} and λ, µ, ξ, ϑ ∈ [0, 1] with λ+ µ+ ξ + ϑ = 1.
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Lemma 2.3 ([1], Theorem 3.4 ). Let X be a uniformly convex Banach space and C a nonempty closed convex
subset of X. Let T : C → X be an asymptotically nonexpansive mapping with a sequence {kn} ⊂ [1,∞) and
kn → 1 as n → ∞. Then I − T is demiclosed at zero, i.e., if xn → x weakly and xn − Txn → 0 strongly,
then x ∈ F (T ), where F (T ) is the set of fixed points of T .

Lemma 2.4 ([20], Lemma 2.7 ). Let X be a Banach space which satisfies Opial’s condition and let {xn}
be a sequence in X . Let u, v ∈ X be such that limn→∞ ‖xn − u‖ and limn→∞ ‖xn − v‖ exist. If {xnk

} and
{xmk

} are subsequences of {xn} which converge weakly to u and v, respectively, then u = v.

3. Main results

In this section, we prove strong and weak convergence theorems for the three-step iterative scheme with
errors given in (1.6) to a common fixed point for three asymptotically nonexpansive nonself-mappings in a
uniformly convex Banach space. In order to prove our main results, the following lemmas are needed.

Lemma 3.1. Let X be a uniformly convex Banach space and C a nonempty closed convex nonexpansive
retract of X with P a nonexpansive retraction. Let T1, T2, T3 : C → X be three asymptotically nonexpansive
nonself-mappings of C with sequences {kn}, {ln}, {mn} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) < ∞,

∑∞
n=1(ln −

1) < ∞,
∑∞

n=1(mn − 1) < ∞, kn → 1, ln → 1, mn → 1 as n → ∞, respectively and F := F (T1) ∩
F (T2) ∩ F (T3) 6= ∅. Let {an}, {bn}, {cn}, {αn}, {βn}, {γn}, {µn} and {λn} be real sequences in [0, 1] such
that an + γn, bn + cn + µn and αn + βn + λn are in [0, 1] for all n ≥ 1, and

∑∞
n=1 γn < ∞,

∑∞
n=1 µn <

∞,
∑∞

n=1 λn < ∞, and let {un}, {vn} and {wn} be the bounded sequences in C. From an arbitrary x1 ∈ C,
define the sequences {xn}, {yn} and {zn} using (1.6).

(i) If q is a fixed point of T1, T2 and T3 , then limn→∞ ‖xn − q‖ exists.
(ii) If lim infn→∞ αn > 0, lim infn→∞ bn > 0 and 0 < lim infn→∞ an ≤ lim supn→∞ (an + γn) < 1, then

limn→∞ ‖T1(PT1)n−1xn − xn‖ = 0.
(iii) If lim infn→∞ αn > 0 and 0 < lim infn→∞ cn ≤ lim supn→∞(bn + cn + µn) < 1, then

limn→∞ ‖T1(PT1)n−1xn − xn‖ = 0.
(iv) If lim infn→∞ βn > 0 and 0 < lim infn→∞ an ≤ lim supn→∞(an + γn) < 1, then

limn→∞ ‖T1(PT1)n−1xn − xn‖ = 0.
(v) If lim infn→∞ αn > 0 and 0 < lim infn→∞ bn ≤ lim supn→∞(bn + cn + µn) < 1, then

limn→∞ ‖T2(PT2)n−1zn − xn‖ = 0.
(vi) If 0 < lim infn→∞ βn ≤ lim supn→∞(αn + βn + λn) < 1, then limn→∞ ‖T2(PT2)n−1zn − xn‖ = 0.
(vii) If 0 < lim infn→∞ αn ≤ lim supn→∞(αn + βn + λn) < 1, then limn→∞ ‖T3(PT3)n−1yn − xn‖ = 0.

Proof. Let q ∈ F , by boundedness of the sequences {un}, {vn} and {wn}, we can put

M = max{sup
n≥1
‖un − q‖, sup

n≥1
‖vn − q‖, sup

n≥1
‖wn − q‖}.

(i) Using (1.6), we have

‖xn+1 − q‖ = ‖P (αnT3(PT3)
n−1yn + βnT2(PT2)

n−1zn

+ (1− αn − βn − λn)xn + λnwn)− P (q)‖
≤ ‖αn(T3(PT3)

n−1yn − q) + βn(T2(PT2)
n−1zn − q)

+ (1− αn − βn − λn)(xn − q) + λn(wn − q)‖
≤ αn‖T3(PT3)n−1yn − q‖+ βn‖T2(PT2)n−1zn − q‖

+ (1− αn − βn − λn)‖xn − q‖+ λn‖wn − q‖
≤ αnmn‖yn − q‖+ βnln‖zn − q‖+ (1− αn − βn − λn)‖xn − q‖+Mλn (3.1)

and
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‖zn − q‖ = ‖P (anT1(PT1)
n−1xn + (1− an − γn)xn + γnun)− P (q)‖

≤ ‖an(T1(PT1)
n−1xn − q) + (1− an − γn)(xn − q) + γn(un − q)‖

≤ an‖T1(PT1)n−1xn − q‖+ (1− an − γn)‖xn − q‖+ γn‖un − q‖
≤ ankn‖xn − q‖+ (1− an − γn)‖xn − q‖+Mγn

≤ (ankn + (1− an))‖xn − q‖+Mγn

= (an(kn − 1) + 1)‖xn − q‖+Mγn

≤ kn‖xn − q‖+Mγn. (3.2)

From (3.2), we have

‖yn − q‖ = ‖P (bnT2(PT2)
n−1zn + cnT1(PT1)

n−1xn

+ (1− bn − cn − µn)xn + µnvn)− P (q)‖
≤ ‖bn(T2(PT2)

n−1zn − q) + cn(T1(PT1)
n−1xn − q)

+ (1− bn − cn − µn)(xn − q) + µn(vn − q)‖
≤ bn‖T2(PT2)n−1zn − q‖+ cn‖T1(PT1)n−1xn − q‖

+ (1− bn − cn − µn)‖xn − q‖+ µn‖vn − q‖
≤ bnln‖zn − q‖+ cnkn‖xn − q‖+ (1− bn − cn − µn)‖xn − q‖+Mµn

≤ bnln(kn‖xn − q‖+Mγn) + cnkn‖xn − q‖
+ (1− bn − cn − µn)‖xn − q‖+Mµn

≤ bnlnkn‖xn − q‖+Mbnlnγn + cnkn‖xn − q‖
+ (1− bn − cn)‖xn − q‖+Mµn

= (bnlnkn + cnkn + (1− bn − cn))‖xn − q‖+ εn(1)

= (1 + (cn + bn)(kn − 1) + bnkn(ln − 1))‖xn − q‖+ εn(1), (3.3)

where εn(1) = Mbnlnγn+Mµn. Since
∑∞

n=1 γn <∞,
∑∞

n=1 µn <∞ and {ln} is bounded, we have
∑∞

n=1 ε
n
(1) <

∞.
By using (3.1), (3.2) and (3.3), we have

‖xn+1 − q‖ ≤ αnmn((1 + (cn + bn)(kn − 1) + bnkn(ln − 1))‖xn − q‖+ εn(1))

+ βnln(kn‖xn − q‖+Mγn) + (1− αn − βn − λn)‖xn − q‖+Mλn

= αnmn(1 + (cn + bn)(kn − 1) + bnkn(ln − 1))‖xn − q‖+ αnmnε
n
(1)

+ βnlnkn‖xn − q‖+Mβnlnγn + (1− αn − βn − λn)‖xn − q‖+Mλn

≤ αnmn(1 + (cn + bn)(kn − 1) + bnkn(ln − 1))‖xn − q‖
+ βnlnkn‖xn − q‖+ (1− αn − βn)‖xn − q‖+ εn(2)

= (αnmn + αnmn(cn + bn)(kn − 1) + αnmnbnkn(ln − 1) + βnlnkn

+ 1− αn − βn)‖xn − q‖+ εn(2)

= (αn(mn − 1) + αnmn(cn + bn)(kn − 1) + αnmnbnkn(ln − 1)

+ βn(kn − 1) + βnkn(ln − 1) + 1)‖xn − q‖+ εn(2)

≤ (1 + (mn − 1) + (mn + 1)(kn − 1)

+ (mnkn + kn)(ln − 1))‖xn − q‖+ εn(2), (3.4)

where εn(2) = αnmnε
n
(1) + Mβnlnγn + Mλn and we note here that

∑∞
n=1 ε

n
(2) < ∞ since

∑∞
n=1 ε

n
(1) < ∞,∑∞

n=1 γn <∞,
∑∞

n=1 λn <∞ and {mn}, {ln} are bounded. Since
∑∞

n=1(kn − 1) <∞,
∑∞

n=1(ln − 1) <∞,
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∑∞
n=1(mn − 1) < ∞ and

∑∞
n=1 ε

n
(2) < ∞ we obtained from (3.4) and Lemma 2.1(i) that limn→∞ ‖xn − q‖

exists.
(ii) First, we assume that lim infn→∞ αn > 0, lim infn→∞ bn > 0 and 0 < lim infn→∞ an ≤ lim supn→∞

(an+γn) < 1. By (i), we have limn→∞ ‖xn−q‖ exists for any q ∈ F . It follows that {xn−q}, {T1(PT1)n−1xn−
q}, {zn− q}, {T2(PT2)n−1zn− q}, {yn− q} and {T3(PT3)n−1yn− q} are bounded sequences. We may assume
that such sequences belong to Br where r > 0. By using Lemma 2.2, we have

‖zn − q‖2 = ‖P (anT1(PT1)
n−1xn + (1− an − γn)xn + γnun)− P (q)‖2

≤ ‖an(T1(PT1)
n−1xn − q) + (1− an − γn)(xn − q) + γn(un − q)‖2

≤ an‖T1(PT1)n−1xn − q‖2 + (1− an − γn)‖xn − q‖2 + γn‖un − q‖2

− 1

3
(1− an − γn)(ang(‖T1(PT1)n−1xn − xn‖) + γng(‖un − xn‖))

≤ ank2n‖xn − q‖2 + (1− an − γn)‖xn − q‖2 + γnM
2

− 1

3
an(1− an − γn)g(‖T1(PT1)n−1xn − xn‖)

≤ ank2n‖xn − q‖2 + (1− an)‖xn − q‖2 + γnM
2

− 1

3
an(1− an − γn)g(‖T1(PT1)n−1xn − xn‖)

= (1 + an(k2n − 1))‖xn − q‖2 + γnM
2

− 1

3
an(1− an − γn)g(‖T1(PT1)n−1xn − xn‖) (3.5)

and

‖yn − q‖2 = ‖P (bnT2(PT2)
n−1zn + cnT1(PT1)

n−1xn

+ (1− bn − cn − µn)xn + µnvn)− P (q)‖2

≤ ‖bn(T2(PT2)
n−1zn − q) + cn(T1(PT1)

n−1xn − q)
+ (1− bn − cn − µn)(xn − q) + µn(vn − q)‖2

≤ bn‖T2(PT2)n−1zn − q‖2 + cn‖T1(PT1)n−1xn − q‖2

+ (1− bn − cn − µn)‖xn − q‖2 + µn‖vn − q‖2

− 1

3
(1− bn − cn − µn)(bng(‖T2(PT2)n−1zn − xn‖)

+ cng(‖T1(PT1)n−1xn − xn‖) + µng(‖vn − xn‖))
≤ bnl2n‖zn − q‖2 + cnk

2
n‖xn − q‖2 + (1− bn − cn)‖xn − q‖2 + µnM

2

− 1

3
bn(1− bn − cn − µn)g(‖T2(PT2)n−1zn − xn‖)

− 1

3
cn(1− bn − cn − µn)g(‖T1(PT1)n−1xn − xn‖)

− 1

3
µn(1− bn − cn − µn)g(‖vn − xn‖))

≤ bnl2n‖zn − q‖2 + cnk
2
n‖xn − q‖2 + (1− bn − cn)‖xn − q‖2 + µnM

2

− 1

3
bn(1− bn − cn − µn)g(‖T2(PT2)n−1zn − xn‖)

− 1

3
cn(1− bn − cn − µn)g(‖T1(PT1)n−1xn − xn‖). (3.6)

By (3.5) and (3.6), we also have
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‖xn+1 − q‖2 = ‖P (αnT3(PT3)
n−1yn + βnT2(PT2)

n−1zn

+ (1− αn − βn − λn)xn + λnwn)− P (q)‖2

≤ ‖αn(T3(PT3)
n−1yn − q) + βn(T2(PT2)

n−1zn − q)
+ (1− αn − βn − λn)(xn − q) + λn(wn − q)‖2

≤ αn‖T3(PT3)n−1yn − q‖2 + βn‖T2(PT2)n−1zn − q‖2

+ (1− αn − βn − λn)‖xn − q‖2 + λn‖wn − q‖2

− 1

3
(1− αn − βn − λn)(αng(‖T3(PT3)n−1yn − xn‖)

+ βng(‖T2(PT2)n−1zn − xn‖) + λng(‖wn − xn‖))
≤ αnm

2
n‖yn − q‖2 + βnl

2
n‖zn − q‖2

+ (1− αn − βn − λn)‖xn − q‖2 + λnM
2

− 1

3
αn(1− αn − βn − λn)g(‖T3(PT3)n−1yn − xn‖)

− 1

3
βn(1− αn − βn − λn)g(‖T2(PT2)n−1zn − xn‖)

− 1

3
λn(1− αn − βn − λn)g(‖wn − xn‖)

≤ αnm
2
n(bnl

2
n‖zn − q‖2 + cnk

2
n‖xn − q‖2 + (1− bn − cn)‖xn − q‖2

+ µnM
2 − 1

3
bn(1− bn − cn − µn)g(‖T2(PT2)n−1zn − xn‖)

− 1

3
cn(1− bn − cn − µn)g(‖T1(PT1)n−1xn − xn‖)) + βnl

2
n‖zn − q‖2

+ (1− αn − βn − λn)‖xn − q‖2 + λnM
2

− 1

3
αn(1− αn − βn − λn)g(‖T3(PT3)n−1yn − xn‖)

− 1

3
βn(1− αn − βn − λn)g(‖T2(PT2)n−1zn − xn‖)

≤ αnm
2
nbnl

2
n‖zn − q‖2 + αnm

2
ncnk

2
n‖xn − q‖2 + αnm

2
n(1− bn − cn)‖xn − q‖2

+ αnm
2
nµnM

2 − 1

3
αnbnm

2
n(1− bn − cn − µn)g(‖T2(PT2)n−1zn − xn‖)

− 1

3
αncnm

2
n(1− bn − cn − µn)g(‖T1(PT1)n−1xn − xn‖) + βnl

2
n‖zn − q‖2

+ (1− αn − βn − λn)‖xn − q‖2 + λnM
2

− 1

3
αn(1− αn − βn − λn)g(‖T3(PT3)n−1yn − xn‖)

− 1

3
βn(1− αn − βn − λn)g(‖T2(PT2)n−1zn − xn‖)

= (αnbnm
2
nl

2
n + βnl

2
n)‖zn − q‖2 + αnm

2
ncnk

2
n‖xn − q‖2

+ αnm
2
n(1− bn − cn)‖xn − q‖2 + αnm

2
nµnM

2

+ (1− αn − βn − λn)‖xn − q‖2 + λnM
2

− 1

3
αnbnm

2
n(1− bn − cn − µn)g(‖T2(PT2)n−1zn − xn‖)

− 1

3
αncnm

2
n(1− bn − cn − µn)g(‖T1(PT1)n−1xn − xn‖)

− 1

3
αn(1− αn − βn − λn)g(‖T3(PT3)n−1yn − xn‖)

− 1

3
βn(1− αn − βn − λn)g(‖T2(PT2)n−1zn − xn‖)
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≤ (αnbnm
2
nl

2
n + βnl

2
n)((1 + an(k2n − 1))‖xn − q‖2 + γnM

2

− 1

3
an(1− an − γn)g(‖T1(PT1)n−1xn − xn‖)) + αnm

2
ncnk

2
n‖xn − q‖2

+ αnm
2
n(1− bn − cn)‖xn − q‖2 + αnm

2
nµnM

2

+ (1− αn − βn − λn)‖xn − q‖2 + λnM
2

− 1

3
αnbnm

2
n(1− bn − cn − µn)g(‖T2(PT2)n−1zn − xn‖)

− 1

3
αncnm

2
n(1− bn − cn − µn)g(‖T1(PT1)n−1xn − xn‖)

− 1

3
αn(1− αn − βn − λn)g(‖T3(PT3)n−1yn − xn‖)

− 1

3
βn(1− αn − βn − λn)g(‖T2(PT2)n−1zn − xn‖)

≤ (αnbnm
2
nl

2
n + βnl

2
n + (αnbnm

2
nl

2
n + βnl

2
n)an(k2n − 1) + αnm

2
ncnk

2
n

+ αnm
2
n(1− bn − cn) + 1− αn − βn)‖xn − q‖2

+ (αnbnm
2
nl

2
n + βnl

2
n)γnM

2 + αnm
2
nµnM

2 + λnM
2

− 1

3
(αnbnm

2
nl

2
n + βnl

2
n)an(1− an − γn)g(‖T1(PT1)n−1xn − xn‖)

− 1

3
αnbnm

2
n(1− bn − cn − µn)g(‖T2(PT2)n−1zn − xn‖)

− 1

3
αncnm

2
n(1− bn − cn − µn)g(‖T1(PT1)n−1xn − xn‖)

− 1

3
αn(1− αn − βn − λn)g(‖T3(PT3)n−1yn − xn‖)

− 1

3
βn(1− αn − βn − λn)g(‖T2(PT2)n−1zn − xn‖).

(3.7)
We note that

αnbnm
2
nl

2
n + βnl

2
n + (αnbnm

2
nl

2
n + βnl

2
n)an(k2n − 1) + αnm

2
ncnk

2
n + αnm

2
n(1− bn − cn) + 1− αn − βn

= (αnbnm
2
nl

2
n − αnbnm

2
n) + (βnl

2
n − βn) + (αncnm

2
nk

2
n − αncnm

2
n) + (αnm

2
n − αn)

+ 1 + (αnbnm
2
nl

2
n + βnl

2
n)an(k2n − 1)

= αnbnm
2
n(l2n − 1) + βn(l2n − 1) + αncnm

2
n(k2n − 1) + αn(m2

n − 1)

+ (αnbnm
2
nl

2
n + βnl

2
n)an(k2n − 1) + 1

= (αnbnm
2
n + βn)(l2n − 1) + αn(m2

n − 1)

+ (αncnm
2
n + an(αnbnm

2
nl

2
n + βnl

2
n))(k2n − 1) + 1. (3.8)

Since {mn} and {ln} are bounded, there exists a constant K > 0 such that

(αnbnm
2
n + βn)(l2n − 1) + αn(m2

n − 1) + (αncnm
2
n + an(αnbnm

2
nl

2
n + βnl

2
n))(k2n − 1)‖xn − q‖2

≤ K((k2n − 1) + (l2n − 1) + (m2
n − 1)) (3.9)

for all n ≥ 1. By using (3.7), (3.8) and (3.9), we have

‖xn+1 − q‖2 ≤ ((αnbnm
2
n + βn)(l2n − 1) + αn(m2

n − 1) + (αncnm
2
n

+ an(αnbnm
2
nl

2
n + βnl

2
n))(k2n − 1) + 1)‖xn − q‖2

+ αnbnm
2
nl

2
nγnM

2 + βnl
2
nγnM

2 + αnm
2
nµnM

2 + λnM
2
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− 1

3
(αnbnm

2
nl

2
n + βnl

2
n)an(1− an − γn)g(‖T1(PT1)n−1xn − xn‖)

− 1

3
αnbnm

2
n(1− bn − cn − µn)g(‖T2(PT2)n−1zn − xn‖)

− 1

3
αncnm

2
n(1− bn − cn − µn)g(‖T1(PT1)n−1xn − xn‖)

− 1

3
αn(1− αn − βn − λn)g(‖T3(PT3)n−1yn − xn‖)

− 1

3
βn(1− αn − βn − λn)g(‖T2(PT2)n−1zn − xn‖)

≤ ‖xn − q‖2 +K((k2n − 1) + (l2n − 1) + (m2
n − 1))

+ (αnbnm
2
nl

2
nγn + βnl

2
nγn + αnm

2
nµn + λn)M2

− 1

3
αnbnan(1− an − γn)g(‖T1(PT1)n−1xn − xn‖)

− 1

3
βnan(1− an − γn)g(‖T1(PT1)n−1xn − xn‖)

− 1

3
αnbn(1− bn − cn − µn)g(‖T2(PT2)n−1zn − xn‖)

− 1

3
αncn(1− bn − cn − µn)g(‖T1(PT1)n−1xn − xn‖)

− 1

3
αn(1− αn − βn − λn)g(‖T3(PT3)n−1yn − xn‖)

− 1

3
βn(1− αn − βn − λn)g(‖T2(PT2)n−1zn − xn‖). (3.10)

From (3.10), we obtain the following six important inequalities:

1

3
αnbnan(1− an − γn)g(‖T1(PT1)n−1xn − xn‖) ≤ ‖xn − q‖2 − ‖xn+1 − q‖2

+K((k2n − 1) + (l2n − 1) + (m2
n − 1)) + (αnbnm

2
nl

2
nγn + βnl

2
nγn + αnm

2
nµn + λn)M2, (3.11)

1

3
αncn(1− bn − cn − µn)g(‖T1(PT1)n−1xn − xn‖) ≤ ‖xn − q‖2 − ‖xn+1 − q‖2

+K((k2n − 1) + (l2n − 1) + (m2
n − 1)) + (αnbnm

2
nl

2
nγn + βnl

2
nγn + αnm

2
nµn + λn)M2, (3.12)

1

3
βnan(1− an − γn)g(‖T1(PT1)n−1xn − xn‖) ≤ ‖xn − q‖2 − ‖xn+1 − q‖2

+K((k2n − 1) + (l2n − 1) + (m2
n − 1)) + (αnbnm

2
nl

2
nγn + βnl

2
nγn + αnm

2
nµn + λn)M2, (3.13)

1

3
αnbn(1− bn − cn − µn)g(‖T2(PT2)n−1zn − xn‖) ≤ ‖xn − q‖2 − ‖xn+1 − q‖2

+K((k2n − 1) + (l2n − 1) + (m2
n − 1)) + (αnbnm

2
nl

2
nγn + βnl

2
nγn + αnm

2
nµn + λn)M2, (3.14)

1

3
βn(1− αn − βn − λn)g(‖T2(PT2)n−1zn − xn‖) ≤ ‖xn − q‖2 − ‖xn+1 − q‖2

+K((k2n − 1) + (l2n − 1) + (m2
n − 1)) + (αnbnm

2
nl

2
nγn + βnl

2
nγn + αnm

2
nµn + λn)M2 (3.15)

and
1

3
αn(1− αn − βn − λn)g(‖T3(PT3)n−1yn − xn‖) ≤ ‖xn − q‖2 − ‖xn+1 − q‖2

+K((k2n − 1) + (l2n − 1) + (m2
n − 1)) + (αnbnm

2
nl

2
nγn + βnl

2
nγn + αnm

2
nµn + λn)M2. (3.16)
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By our assumption lim infn→∞ αn > 0, lim infn→∞ bn > 0 and 0 < lim infn→∞ an ≤ lim supn→∞ (an +
γn) < 1, there exists n0 ∈ N and δ1, δ2, δ3, δ4 ∈ (0, 1) such that 0 < δ1 < αn, 0 < δ2 < bn, 0 < δ3 < an and
αn + γn < δ4 < 1 for all n ≥ n0. Hence, by (3.11), we have

1

3
δ1δ2δ3(1− δ4)

m∑
n=n0

g(‖T1(PT1)n−1xn − xn‖ ≤
m∑

n=n0

(‖xn − q‖2 − ‖xn+1 − q‖2)

+K
m∑

n=n0

((k2n − 1) + (l2n − 1) + (m2
n − 1))

+M2
m∑

n=n0

(αnbnm
2
nl

2
nγn + βnl

2
nγn + αnm

2
nµn + λn)

= ‖xn0 − q‖2 +K

m∑
n=n0

((k2n − 1) + (l2n − 1) + (m2
n − 1))

+M2
m∑

n=n0

(αnbnm
2
nl

2
nγn + βnl

2
nγn + αnm

2
nµn + λn). (3.17)

Since
∑∞

n=1 γn <∞,
∑∞

n=1 µn <∞,
∑∞

n=1 λn <∞,
∑∞

n=1(k
2
n−1) <∞,

∑∞
n=1(l

2
n−1) <∞,

∑∞
n=1(m

2
n−

1) <∞ and {mn}, {ln} are bounded sequences, we have K
∑m

n=n0
((k2n− 1) + (l2n− 1) + (m2

n− 1)) <∞ and
M2

∑m
n=n0

(αnbnm
2
nγn + βnl

2
nγn + αnm

2
nµn + λn) <∞.

By letting m→∞ in (3.17) we get
∑∞

n=n0
g(‖T1(PT1)n−1xn − xn‖) <∞, and therefore

lim
n→∞

g(‖T1(PT1)n−1xn − xn‖) = 0.

Since g is strictly increasing and continuous at 0 with g(0) = 0, it follows that limn→∞ ‖T1(PT1)n−1xn−xn‖ =
0. Thus (ii) is proved. By using a similar method as in (ii), together with inequalities (3.12), (3.13), (3.14),
(3.15) and (3.16), one can show that (iii)− (vii) are satisfied, respectively.

Lemma 3.2. Let X be a uniformly convex Banach space and C a nonempty closed convex nonexpansive
retract of X with P a nonexpansive retraction. Let T1, T2, T3 : C → X be three asymptotically nonexpansive
nonself-mappings of C with sequences {kn}, {ln}, {mn} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) < ∞,

∑∞
n=1(ln −

1) < ∞,
∑∞

n=1(mn − 1) < ∞, kn → 1, ln → 1, mn → 1 as n → ∞, respectively and F := F (T1) ∩ F (T2) ∩
F (T3) 6= ∅. Let {an}, {bn}, {cn}, {αn}, {βn}, {γn}, {µn} and {λn} be real sequences in [0, 1] such that an +
γn, bn+cn+µn and αn+βn+λn are in [0, 1] for all n ≥ 1, and

∑∞
n=1 γn <∞,

∑∞
n=1 µn <∞,

∑∞
n=1 λn <∞,

and let {un}, {vn} and {wn} be the bounded sequences in C. From an arbitrary x1 ∈ C, define the sequences
{xn}, {yn} and {zn} using (1.6). If limn→∞ ‖T1(PT1)n−1xn−xn‖ = 0, limn→∞ ‖T2(PT2)n−1zn−xn‖ = 0 and
limn→∞ ‖T3(PT3)n−1yn−xn‖ = 0, then limn→∞ ‖T1xn−xn‖ = limn→∞ ‖T2xn−xn‖ = limn→∞ ‖T3xn−xn‖ =
0.

Proof. Suppose that

lim
n→∞

‖T1(PT1)n−1xn − xn‖

= lim
n→∞

‖T2(PT2)n−1zn − xn‖

= lim
n→∞

‖T3(PT3)n−1yn − xn‖ = 0. (3.18)

Using (1.6), we have

‖zn − xn‖ = ‖P (anT1(PT1)
n−1xn + (1− an − γn)xn + γnun)− P (xn)‖

≤ ‖an(T1(PT1)
n−1xn − xn) + γn(un − xn)‖

≤ an‖T1(PT1)n−1xn − xn‖+ γn‖un − xn‖
≤ an‖T1(PT1)n−1xn − xn‖+ γn‖un‖+ γn‖xn‖, (3.19)
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‖yn − xn‖ = ‖P (bnT2(PT2)
n−1zn + cnT1(PT1)

n−1xn

+ (1− bn − cn − µn)xn + µnvn)− P (xn)‖
≤ ‖bn(T2(PT2)

n−1zn − xn) + cn(T1(PT1)
n−1xn − xn) + µn(vn − xn)‖

≤ bn‖T2(PT2)n−1zn − xn‖+ cn‖T1(PT1)n−1xn − xn‖+ µn‖vn − xn‖
≤ bn‖T2(PT2)n−1zn − xn‖+ cn‖T1(PT1)n−1xn − xn‖+ µn‖vn‖+ µn‖xn‖ (3.20)

and

‖xn+1 − xn‖ = ‖P (αnT3(PT3)
n−1yn + βnT2(PT2)

n−1zn

+ (1− αn − βn − λn)xn + λnwn)− P (xn)‖
≤ ‖αn(T3(PT3)

n−1yn − xn) + βn(T2(PT2)
n−1zn − xn) + λn(wn − xn)‖

≤ αn‖T3(PT3)n−1yn − xn‖+ βn‖T2(PT2)n−1zn − xn‖+ λn‖wn − xn‖
≤ αn‖T3(PT3)n−1yn − xn‖+ βn‖T2(PT2)n−1zn − xn‖+ λn‖wn‖+ λn‖xn‖. (3.21)

Since
∑∞

n=1 γn < ∞,
∑∞

n=1 µn < ∞,
∑∞

n=1 λn < ∞, and {un}, {vn}, {wn} and {xn} are all bounded. It
follows from (3.18), (3.19), (3.20) and (3.21) that

lim
n→∞

‖zn − xn‖ = lim
n→∞

‖yn − xn‖ = lim
n→∞

‖xn+1 − xn‖ = 0. (3.22)

Using (3.18) and (3.22), we have

‖T2(PT2)n−1xn − xn‖ = ‖T2(PT2)n−1xn − T2(PT2)n−1zn + T2(PT2)
n−1zn − xn‖

≤ ‖T2(PT2)n−1zn − T2(PT2)n−1xn‖+ ‖T2(PT2)n−1zn − xn‖
≤ ln‖zn − xn‖+ ‖T2(PT2)n−1zn − xn‖ → 0, as n→∞,

(3.23)

‖T3(PT3)n−1xn − xn‖ = ‖T3(PT3)n−1xn − T3(PT3)n−1yn + T3(PT3)
n−1yn − xn‖

≤ ‖T3(PT3)n−1yn − T3(PT3)n−1xn‖+ ‖T3(PT3)n−1yn − xn‖
≤ mn‖yn − xn‖+ ‖T3(PT3)n−1yn − xn‖ → 0, as n→∞

(3.24)
and

‖xn+1 − T1(PT1)n−1xn+1‖ = ‖xn+1 − xn + xn − T1(PT1)n−1xn
+T1(PT1)

n−1xn − T1(PT1)n−1xn+1‖
≤ ‖xn+1 − xn‖+ ‖T1(PT1)n−1xn+1 − T1(PT1)n−1xn‖

+‖T1(PT1)n−1xn − xn‖
≤ ‖xn+1 − xn‖+ kn‖xn+1 − xn‖+ ‖T1(PT1)n−1xn − xn‖
→ 0, as n→∞. (3.25)

In addition,

‖xn+1 − T1(PT1)n−2xn+1‖ = ‖xn+1 − xn + xn − T1(PT1)n−2xn
+T1(PT1)

n−2xn − T1(PT1)n−2xn+1‖
≤ ‖xn+1 − xn‖+ ‖T1(PT1)n−2xn − xn‖

+‖T1(PT1)n−2xn+1 − T1(PT1)n−2xn‖
≤ ‖xn+1 − xn‖+ ‖T1(PT1)n−2xn − xn‖+ L‖xn+1 − xn‖,
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where L = sup{kn : n ≥ 1}. It follows from (3.22) and (3.25) that

lim
n→∞

‖xn+1 − T1(PT1)n−2xn+1‖ = 0. (3.26)

We denote as (PT1)
1−1 the identity maps from C onto itself. Thus by the inequality (3.25) and (3.26),

we have

‖xn+1 − T1xn+1‖ = ‖xn+1 − T1(PT1)n−1xn+1 + T1(PT1)
n−1xn+1 − T1xn+1‖

≤ ‖xn+1 − T1(PT1)n−1xn+1‖+ ‖T1(PT1)n−1xn+1 − T1xn+1‖
= ‖xn+1 − T1(PT1)n−1xn+1‖+ ‖T1(PT1)1−1(PT1)n−1xn+1

−T1(PT1)1−1xn+1‖
≤ ‖xn+1 − T1(PT1)n−1xn+1‖+ L‖(PT1)n−1xn+1 − xn+1‖
= ‖xn+1 − T1(PT1)n−1xn+1‖+ L‖(PT1)(PT1)n−2xn+1 − P (xn+1)‖
≤ ‖xn+1 − T1(PT1)n−1xn+1‖+ L‖T1(PT1)n−2xn+1 − xn+1‖
→ 0, as n→∞,

which implies that limn→∞ ‖T1xn − xn‖ = 0. Similarly, by using (3.23) and (3.24), we may show that
limn→∞ ‖T2xn − xn‖ = 0 and limn→∞ ‖T3xn − xn‖ = 0. The proof is completed.

Theorem 3.3. Let X be a uniformly convex Banach space and C a nonempty closed convex nonexpansive
retract of X with P a nonexpansive retraction. Let T1, T2, T3 : C → X be three asymptotically nonexpansive
nonself-mappings of C with sequences {kn}, {ln}, {mn} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) < ∞,

∑∞
n=1(ln −

1) < ∞,
∑∞

n=1(mn − 1) < ∞, kn → 1, ln → 1, mn → 1 as n → ∞, respectively and F := F (T1) ∩
F (T2) ∩ F (T3) 6= ∅. Let {an}, {bn}, {cn}, {αn}, {βn}, {γn}, {µn} and {λn} be real sequences in [0, 1] such
that an + γn, bn + cn + µn and αn + βn + λn are in [0, 1] for all n ≥ 1, and

∑∞
n=1 γn < ∞,

∑∞
n=1 µn <

∞,
∑∞

n=1 λn < ∞, and let {un}, {vn} and {wn} be the bounded sequences in C. From an arbitrary x1 ∈ C,
define the sequences {xn}, {yn} and {zn} using (1.6) and the parameters satisfy one of the following control
conditions:

(C1) 0 < lim infn→∞ αn ≤ lim supn→∞(αn + βn + λn) < 1,

0 < lim infn→∞ bn ≤ lim supn→∞(bn + cn + µn) < 1, and

0 < lim infn→∞ an ≤ lim supn→∞(an + γn) < 1,

(C2) 0 < lim infn→∞ αn, lim infn→∞ βn ≤ lim supn→∞(αn + βn + λn) < 1,

0 < lim infn→∞ bn ≤ lim supn→∞(bn + cn + µn) < 1, and

0 < lim infn→∞ an ≤ lim supn→∞(an + γn) < 1,

(C3) 0 < lim infn→∞ αn ≤ lim supn→∞(αn + βn + λn) < 1, and

0 < lim infn→∞ bn, lim infn→∞ cn ≤ lim supn→∞(bn + cn + µn) < 1,

(C4) 0 < lim infn→∞ αn, lim infn→∞ βn ≤ lim supn→∞(αn + βn + λn) < 1,

0 < lim infn→∞ bn, and lim infn→∞ an ≤ lim supn→∞(an + γn) < 1,

(C5) 0 < lim infn→∞ αn, lim infn→∞ βn ≤ lim supn→∞(αn + βn + λn) < 1, and

0 < lim infn→∞ an ≤ lim supn→∞(an + γn) < 1,

(C6) 0 < lim infn→∞ αn, lim infn→∞ βn ≤ lim supn→∞(αn + βn + λn) < 1, and

0 < lim infn→∞ cn ≤ lim supn→∞(bn + cn + µn) < 1.
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If one of T1, T2 and T3 is either completely continuous or demicompact, then {xn}, {yn} and {zn} converge
strongly to a common fixed point of T1, T2 and T3.

Proof. Suppose that one of the conditions (C1)− (C6) is satisfied. By Lemma 3.1(i), {xn} is bounded. In
addition, by Lemma 3.2, limn→∞ ‖T1xn − xn‖ = 0, limn→∞ ‖T2xn − xn‖ = 0 and limn→∞ ‖T3xn − xn‖ = 0,
and then the sequences {T1xn}, {T2xn} and {T3xn} are also bounded. If T1 is completely continuous,
there exists a subsequence {T1xnj} of {T1xn} such that T1xnj → q as j → ∞. It follows from Lemma 3.2,
that limj→∞ ‖T1xnj − xnj‖ = limj→∞ ‖T2xnj − xnj‖ = limj→∞ ‖T3xnj − xnj‖ = 0. So by the continuity
of T1 and Lemma 2.3, we have limj→∞ ‖xnj − q‖ = 0 and q ∈ F. Furthermore, by Lemma 3.1 (i), we
get that limn→∞ ‖xn − q‖ exists. Thus limn→∞ ‖xn − q‖ = 0. From (3.22), we have limn→∞ ‖zn − xn‖ =
limn→∞ ‖yn − xn‖ = 0 and it follows that

lim
n→∞

‖zn − q‖ = lim
n→∞

‖yn − q‖ = 0.

Next, assume that one of T1, T2 and T3 is demicompact, then there exists a subsequence {xnj} of {xn}
such that xnj converges strongly to p. It follows from Lemma 2.3 that p ∈ F. Thus limn→∞ ‖xn − p‖ exists
by Lemma 3.1. Since the subsequence {xnj} of {xn} such that {xnj} converges strongly to p, then {xn}
converges strongly to the common fixed point p ∈ F. That is, limn→∞ ‖xn − p‖ = 0. From (3.22), we have

lim
n→∞

‖zn − xn‖ = lim
n→∞

‖yn − xn‖ = 0,

it follows that limn→∞ ‖zn − p‖ = 0 and limn→∞ ‖yn − p‖ = 0. This completes the proof.

For γn = µn = λn ≡ 0 with the control conditions (C1)− (C6) in Theorem 3.3, we obtain the following
result.

Theorem 3.4. Let X be a uniformly convex Banach space and C a nonempty closed convex nonexpansive
retract of X with P a nonexpansive retraction. Let T1, T2, T3 : C → X be three asymptotically nonexpansive
nonself-mappings of C with sequences {kn}, {ln}, {mn} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) < ∞,

∑∞
n=1(ln −

1) < ∞,
∑∞

n=1(mn − 1) < ∞, kn → 1, ln → 1, mn → 1 as n → ∞, respectively and F := F (T1) ∩ F (T2) ∩
F (T3) 6= ∅. Let {an}, {bn}, {cn}, {αn}, and {βn} be real sequences in [0, 1] such that bn + cn and αn + βn
are in [0, 1] for all n ≥ 1, and the control conditions (C1)− (C6) in Theorem 3.3 are satisfied. For a given
x1 ∈ C, define

zn = P (anT1(PT1)
n−1xn + (1− an)xn),

yn = P (bnT2(PT2)
n−1zn + cnT1(PT1)

n−1xn + (1− bn − cn)xn),

xn+1 = P (αnT3(PT3)
n−1yn + βnT2(PT2)

n−1zn + (1− αn − βn)xn), n ≥ 1.

If one of T1, T2 and T3 is either completely continuous or demicompact, then {xn}, {yn} and {zn} converge
strongly to a common fixed point of T1, T2 and T3.

For cn = βn ≡ 0 with the control condition (C1) in Theorem 3.3, we obtain the following result.

Theorem 3.5. Let X be a uniformly convex Banach space and C a nonempty closed convex nonexpansive
retract of X with P a nonexpansive retraction. Let T1, T2, T3 : C → X be three asymptotically nonexpansive
nonself-mappings of C with sequences {kn}, {ln}, {mn} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) < ∞,

∑∞
n=1(ln −

1) < ∞,
∑∞

n=1(mn − 1) < ∞, kn → 1, ln → 1, mn → 1 as n → ∞, respectively and F := F (T1) ∩ F (T2) ∩
F (T3) 6= ∅. Let {an}, {bn}, {αn}, {γn}, {µn} and {λn} be real sequences in [0, 1] such that an + γn, bn + µn
and αn + λn are in [0, 1] for all n ≥ 1, and the control condition (C1) in Theorem 3.3 are satisfied. Let
{un}, {vn} and {wn} be the bounded sequences in C. From an arbitrary x1 ∈ C, define
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zn = P (anT1(PT1)
n−1xn + (1− an − γn)xn + γnun),

yn = P (bnT2(PT2)
n−1zn + (1− bn − µn)xn + µnvn),

xn+1 = P (αnT3(PT3)
n−1yn + (1− αn − λn)xn + λnwn), n ≥ 1.

If one of T1, T2 and T3 is either completely continuous or demicompact, then {xn}, {yn} and {zn} converge
strongly to a common fixed point of T1, T2 and T3.

For cn = βn = γn = µn = λn ≡ 0 with the control condition (C1) in Theorem 3.3, we obtain the
following result.

Theorem 3.6. Let X be a uniformly convex Banach space and C a nonempty closed convex nonexpansive
retract of X with P a nonexpansive retraction. Let T1, T2, T3 : C → X be three asymptotically nonexpansive
nonself-mappings of C with sequences {kn}, {ln}, {mn} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) < ∞,

∑∞
n=1(ln −

1) < ∞,
∑∞

n=1(mn − 1) < ∞, kn → 1, ln → 1, mn → 1 as n → ∞, respectively and F := F (T1) ∩ F (T2) ∩
F (T3) 6= ∅. Let {an}, {bn} and {αn} be real sequences in [0, 1] satisfying the control conditions (C1) in
Theorem 3.3. From an arbitrary x1 ∈ C, define

zn = P (anT1(PT1)
n−1xn + (1− an)xn),

yn = P (bnT2(PT2)
n−1zn + (1− bn)xn),

xn+1 = P (αnT3(PT3)
n−1yn + (1− αn)xn), n ≥ 1.

If one of T1, T2 and T3 is either completely continuous or demicompact, then {xn}, {yn} and {zn} converge
strongly to a common fixed point of T1, T2 and T3.

For T1 = T2 = T3 = T : C → X and γn = µn = λn ≡ 0, then the iterative scheme (1.6) reduces to that
of (1.5) and the following result is directly obtained by Theorem 3.3.

Theorem 3.7. ([10], Theorem 1). Let X be a uniformly convex Banach space and let C be its closed
and convex subset. Let T : C → X be an asymptotically nonexpansive nonself-mapping with a sequence
{kn} ⊂ [1,∞) and

∑∞
n=1(kn − 1) <∞. Suppose that the set F (T ) of fixed points of T is nonempty. Define

a sequence {xn} in C as in (1.5) where {an}, {bn}, {cn}, {αn} and {βn} in [0, 1] are such that bn + cn
and αn + βn remain in [0, 1], and 0 < lim infn→∞ bn ≤ lim supn→∞(bn + cn) < 1, and 0 < lim infn→∞ αn ≤
lim supn→∞(αn+βn) < 1. If T is either completely continuous or demicompact, then the sequences {xn}, {yn}
and {zn} converge strongly to a fixed point of T.

Remark 3.8. If T is a self-mapping and T1 = T2 = T3 ≡ T, then Theorem 3.3 generalizes Theorem 2.3 of
Nammanee, Noor and Suantai [12]. By the same argument, Theorem 3.4, Theorem 3.5 and Theorem 3.6
are generalization of Theorem 2.3 of Suantai [20], Corollary 2.5 of Cho, Zhou and Guo [2] and Theorem 2.1
of Xu and Noor [23], respectively.

In the remainder of this section, we deal with the weak convergence of the iterative scheme with errors
(1.6) for three asymptotically nonexpansive nonself-mappings in a uniformly convex Banach space satisfying
Opial’s condition.

Theorem 3.9. Let X be a uniformly convex Banach space which satisfies Opial’s condition and C a
nonempty closed convex nonexpansive retract of X with P a nonexpansive retraction. Let T1, T2, T3 : C → X
be three asymptotically nonexpansive nonself-mappings of C with sequences {kn}, {ln}, {mn} ⊂ [1,∞) such
that

∑∞
n=1(kn − 1) < ∞,

∑∞
n=1(ln − 1) < ∞,

∑∞
n=1(mn − 1) < ∞, kn → 1, ln → 1, mn → 1 as n → ∞,

respectively and F := F (T1) ∩ F (T2) ∩ F (T3) 6= ∅. Let {an}, {bn}, {cn}, {αn}, {βn}, {γn}, {µn} and {λn} be
real sequences in [0, 1] such that an + γn, bn + cn + µn and αn + βn + λn are in [0, 1] for all n ≥ 1, and
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∑∞
n=1 γn < ∞,

∑∞
n=1 µn < ∞,

∑∞
n=1 λn < ∞, and let {un}, {vn} and {wn} be the bounded sequences in C.

From an arbitrary x1 ∈ C, define the sequences {xn}, {yn} and {zn} using (1.6) and the parameters satisfy
one of the control conditions (C1) − (C6). Then {xn}, {yn} and {zn} converge weakly to a common fixed
point of T1, T2 and T3.

Proof. Suppose that one of the conditions (C1) − (C6) is satisfied. It follows from Lemma 3.2 that
limn→∞ ‖T1xn − xn‖ = limn→∞ ‖T2xn − xn‖ = limn→∞ ‖T3xn − xn‖ = 0. Since X is uniformly convex
and {xn} is bounded, we may assume that xn → u weakly as n→∞, without loss of generality. By Lemma
2.3, we have u ∈ F. Suppose that subsequences {xnk

} and {xmk
} of {xn} converge weakly to u and v,

respectively. From Lemma 2.3, we have u, v ∈ F . By Lemma 3.1 (i), limn→∞ ‖xn−u‖ and limn→∞ ‖xn−v‖
exist. It follows from Lemma 2.4 that u = v. Therefore {xn} converges weakly to a common fixed point of
T1, T2 and T3. From (3.22), we have limn→∞ ‖zn − xn‖ = limn→∞ ‖yn − xn‖ = 0. Since xn → u weakly as
n → ∞, it follows that the sequences {yn} and {zn} converge weakly to a common fixed point u of T1, T2
and T3. This completes the proof.

For T1 = T2 = T3 ≡ T : C → X and γn = µn = λn ≡ 0, then the iterative scheme (1.6) reduces to that
of (1.5) and the following result is directly obtained by Theorem 3.9.

Theorem 3.10. ([10], Theorem 6). Let X be a uniformly convex Banach space satisfying Opial’s condition
and let C be its closed and convex subset. Let T : C → X be an asymptotically nonexpansive nonself-
mapping with a sequence {kn} ⊂ [1,∞) and

∑∞
n=1(kn − 1) < ∞. Let {an}, {bn}, {cn}, {αn} and {βn} be in

[0, 1] such that bn + cn and αn + βn are in [0, 1], and 0 < lim infn→∞ bn ≤ lim supn→∞(bn + cn) < 1, and
0 < lim infn→∞ αn ≤ lim supn→∞(αn + βn) < 1. Define a sequence {xn} in C as in (1.5). If F (T ) 6= ∅, then
{xn} converges weakly to a fixed point of T.

Remark 3.11. (1) For γn = µn = λn ≡ 0 in Theorem 3.9 with one of the control conditions (C1)− (C6) in
Theorem 3.3, we obtain the sequence {xn} defined as in Theorem 3.4 converges weakly to a common fixed
point of T1, T2 and T3.
(2) For cn = βn ≡ 0 in Theorem 3.9 with the control condition (C1) in Theorem 3.3, we obtain the sequence
{xn} defined as in Theorem 3.5 converges weakly to a common fixed point of T1, T2 and T3.
(3) For cn = βn = γn = µn = λn ≡ 0 in Theorem 3.9 with the control condition (C1) in Theorem 3.3, we
obtain the sequence {xn} defined as in Theorem 3.6 converges weakly to a common fixed point of T1, T2 and
T3.
(4) Theorem 3.9 contains Theorem 2.8, Corollaries 2.9 and 2.10 of Nammanee, Noor and Suantai [12] and
Theorem 2.1 of Cho, Zhou and Guo [2] as special cases when T1 = T2 = T3 ≡ T is a self-mapping.
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